?

由一道高考題(2014年四川理20題)看圓錐曲線的性質

2014-10-21 16:33王戶世
中學數學雜志(高中版) 2014年5期
關鍵詞:準線垂線雙曲線

王戶世

題目(2014年四川理第20題)橢圓C:x2a2+y2b2=1(a>b>0)的焦距為4,其短軸兩個端點與長軸一個端點構成正三角形.

(Ⅰ)求橢圓C的方程.

(Ⅱ)設F為橢圓C的左焦點,T為直線x=-3上任一點,過F作TF的垂線交橢圓于P,Q兩點.

(?。┳C明:OT平分線段PQ(其中O是坐標原點).

(ⅱ)當TFPQ最小時,求T點坐標.

答案如下(過程略):(Ⅰ)x26+y22=1;(Ⅱ).(?。┞?;(ⅱ)TFPQ取最小值33時,點T(-3,±1).

分析本題第(Ⅱ)問是針對橢圓x26+y22=1,(?。┳C明:OT平分PQ;(ⅱ)當TFPQ取最小值33時,求出T(-3,±1),透過現象看本質,我們可否把這個橢圓推廣,使本題的條件僅作為一種特殊情況?一番研究,得到如下收獲:

圖1

定理1橢圓x2a2+y2b2=1(a>b>0)的焦點為F,T為橢圓準線上任一點(焦點和準線在y軸同側),過F作TF的垂線交橢圓于P,Q兩點.

(?。┳C明:OT平分線段PQ(其中O是坐標原點).

(ⅱ)當c2>b2時,TFPQ有最小值ba,這時

T(a2c,±bcc2-b2).

證明不妨取橢圓右焦點F(c,0)和右準線x=a2c(左焦點和左準線時同理可證明).

(?。┰OT(a2c,m),則kTF=cmb2,當m=0時,T為橢圓右準線與x軸的交點,這時PQ為橢圓的通徑,OT顯然平分PQ.當m≠0時,由條件知kPQ=-b2cm,所以直線PQ方程為:y=-b2cm(x-c),記P(x1,y1),Q(x2,y2),聯立x2a2+y2b2=1,

y=-b2cm(x-c),

得(c2m2+a2b2)x2-2a2b2cx+c2a2(b2-m2)=0,

因為Δ=4a4b4c2-4a2c2(c2m2+a2b2)(b2-m2)=4a2c2m2(c2m2+b4)>0,

所以x1+x2=2a2b2cc2m2+a2b2,

x1x2=c2a2(b2-m2)c2m2+a2b2.(*)

y1+y2=-b2cm(x1+x2-2c)=2b2c2mc2m2+a2b2,

知PQ中點N(a2b2cc2m2+a2b2,b2c2mc2m2+a2b2),則kON=cma2,又kOT=cma2,知O,T,N三點共線,即OT過線段PQ的中點N,所以OT平分PQ.

(ⅱ)因為TF=a2c-c=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2

把kPQ=-b2cm及(*)式代入得:PQ=1+-b2cm22a2b2cc2m2+a2b2c2a2(b2-m2)c2m2+a2b2

=2a(b4+c2m2)c2m2+a2b2,所以TFPQ=c2m2+a2b22acb4+c2m2=

12ac(c2m2+b4)+b4c4c2m2+b4+2b2c2≥ba,即TFPQ≥ba,當且僅當c2m2+b4=b2c2

m2=b2c2(c2-b2)時取等號,因為已知條件有c2>b2,所以當m=±bcc2-b2時,TFPQmin=ba,這時Ta2c,±bcc2-b2.

反過來看四川高考20題第(Ⅱ)問,相當于定理1中a2=6,b2=2,F為左焦點,T為左準線x=-a2c=-3上一點,由定理1知(?。㎡T平分PQ.(ⅱ)因為c2=4知c2>b2成立,知TFPQ有最小值ba=33,這時T-a2c,±bcc2-b2,即T(-3,±1).

圖2

推論1橢圓x2a2+y2b2=1(a>b>0)的焦點為F,T為橢圓準線上任一點(焦點和準線在y軸同側),過F作TF的垂線交橢圓于P,Q兩點,P關于坐標原點O的對稱點為P′,則P′Q∥OT.

證明由定理1知OT平分線段PQ,即OT過線段PQ的中點N,又O是PP′的中點,所以ON是△PP′Q的中

位線,則P′Q∥ON,即P′Q∥OT.

定理2橢圓x2a2+y2b2=1(a>b>0)的焦點為F,T為橢圓準線上(但非x軸上)任一點(其中焦點,準線在y軸同側),過F作TF的垂線交橢圓于P,Q兩點,則kOT·kPQ=-b2a2.

證明不妨取橢圓右焦點F(c,0)和右準線x=a2c,設Ta2c,m,因T非x軸上點,所以m≠0,則kTF=ma2c-c=cmb2,知kPQ=-b2cm,又kOT=cma2,所以kOT·kPQ=-b2a2.

定理3雙曲線C:x2a2-y2b2=1的焦點為F,T為雙曲線準線上任一點(焦點和準線在y軸同側),且T點的縱坐標m≠±abc,過F作TF的垂線交雙曲線于P,Q兩點.

(?。┳C明:直線OT平分線段PQ(其中O是坐標原點).

(ⅱ)TFPQ=

12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.

圖3

證明不妨取雙曲線右焦點F(c,0)和右準線x=a2c(左焦點和左準線時同理可證明).

(?。┰OTa2c,m,則kTF=-cmb2,當m=0時,T為雙曲線右準線x=a2c與x軸的交點,這時PQ為雙曲線的通徑,OT顯然平分PQ.當m≠0時,由條件知kPQ=b2cm,所以直線PQ方程為:y=b2cm(x-c),記P(x1,y1),Q(x2,y2),聯立x2a2-y2b2=1,

y=b2cm(x-c),得

(c2m2-a2b2)x2+2a2b2cx-c2a2(b2+m2)=0,因為m≠±abc,知c2m2-a2b2≠0,

又Δ=4a4b4c2+4a2c2(c2m2-a2b2)(b2+m2)=4a2c2m2(c2m2+b4)>0,

所以x1+x2=-2a2b2cc2m2-a2b2,

x1x2=-c2a2(b2+m2)c2m2-a2b2.(*)

y1+y2=b2cm(x1+x2-2c)=-2b2c2mc2m2-a2b2,知PQ中點N-a2b2cc2m2-a2b2,-b2c2mc2m2-a2b2,則kON=cma2,又kOT=cma2,知O,T,N三點共線,即直線OT過線段PQ的中點N,所以直線OT平分PQ.

(ⅱ)因為TF=a2c-c2+m2=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2,

把kPQ=b2cm及(*)式代入得:PQ=1+b2cm2-2a2b2cc2m2-a2b22+4c2a2(b2+m2)c2m2-a2b2

=

2a(b4+c2m2)c2m2-a2b2,所以TFPQ=c2m2-a2b22acb4+c2m2=

12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.

注:因為m≠±abc,基本不等式(c2m2+b4)+b4c4c2m2+b4≥2b2c2中等號不成立.

即TFPQ=

12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.

圖4

推論2雙曲線x2a2-y2b2=1的焦點為F,T為雙曲線準線上任一點(焦點和準線在y軸同側),且T點的縱坐標m≠±abc,過F作TF的垂線交雙曲線于P,Q兩點,P關于坐標原點O的對稱點為P′,則P′Q∥OT.

證明由定理3知直線OT平分線段PQ,即直線OT過線段PQ的中點N,又O是PP′的中點,所以ON是

△PP′Q的中位線,則P′Q∥ON,即P′Q∥OT.

注:結合定理3的證明知:m≠±abc,是為了保證“過F作TF的垂線能夠交雙曲線于P,Q兩點”,否則直線PQ與一條漸近線平行,過F作TF的垂線與雙曲線只有一個交點.

定理4雙曲線x2a2-y2b2=1的焦點為F,T為雙曲線準線上(但非x軸上)任一點(其中焦點和準線在y軸同側),過F作TF的垂線交雙曲線于P,Q兩點,

則kOT·kPQ=b2a2.

證明不妨取雙曲線右焦點F(c,0)和右準線x=a2c,設T(a2c,m),因T非x軸上點,所以m≠0,則kTF=ma2c-c=-cmb2,知kPQ=b2cm,又kOT=cma2,所以kOT·kPQ=b2a2.

定理5拋物線y2=2px的焦點為F,T為拋物線準線上任一點,過F作TF的垂線交拋物線于P,Q兩點,弦PQ中點為N,則NT平行于x軸.

圖5

證明因Fp2,0,設T-p2,m,則kTF=-mp,當m=0時,T為拋物線準線與x軸的交點,這時PQ為拋物線的通徑,點N與焦點F重合,顯然NT平行于x軸.當m≠0時,由條件知kPQ=pm,所以直線PQ方程為:y=pm(x-p2),聯立y2=2px

y=pm(x-p2),得4p2x2-4p(p2+2m2)x+p4=0,又

Δ=16p2(p2+2m2)2-16p6=64p2m2(p2+m2)>0,記P(x1,y1)、Q(x2,y2),由根與系數關系知x1+x2=p2+2m2p,y1+y2=pm(x1+x2-p)=2m,所以弦PQ中點N(p2+2m22p,m),又T(-p2,m),知kNT=0,則NT平行于x軸.

又Δ=4a4b4c2+4a2c2(c2m2-a2b2)(b2+m2)=4a2c2m2(c2m2+b4)>0,

所以x1+x2=-2a2b2cc2m2-a2b2,

x1x2=-c2a2(b2+m2)c2m2-a2b2.(*)

y1+y2=b2cm(x1+x2-2c)=-2b2c2mc2m2-a2b2,知PQ中點N-a2b2cc2m2-a2b2,-b2c2mc2m2-a2b2,則kON=cma2,又kOT=cma2,知O,T,N三點共線,即直線OT過線段PQ的中點N,所以直線OT平分PQ.

(ⅱ)因為TF=a2c-c2+m2=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2,

把kPQ=b2cm及(*)式代入得:PQ=1+b2cm2-2a2b2cc2m2-a2b22+4c2a2(b2+m2)c2m2-a2b2

=

2a(b4+c2m2)c2m2-a2b2,所以TFPQ=c2m2-a2b22acb4+c2m2=

12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.

注:因為m≠±abc,基本不等式(c2m2+b4)+b4c4c2m2+b4≥2b2c2中等號不成立.

即TFPQ=

12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.

圖4

推論2雙曲線x2a2-y2b2=1的焦點為F,T為雙曲線準線上任一點(焦點和準線在y軸同側),且T點的縱坐標m≠±abc,過F作TF的垂線交雙曲線于P,Q兩點,P關于坐標原點O的對稱點為P′,則P′Q∥OT.

證明由定理3知直線OT平分線段PQ,即直線OT過線段PQ的中點N,又O是PP′的中點,所以ON是

△PP′Q的中位線,則P′Q∥ON,即P′Q∥OT.

注:結合定理3的證明知:m≠±abc,是為了保證“過F作TF的垂線能夠交雙曲線于P,Q兩點”,否則直線PQ與一條漸近線平行,過F作TF的垂線與雙曲線只有一個交點.

定理4雙曲線x2a2-y2b2=1的焦點為F,T為雙曲線準線上(但非x軸上)任一點(其中焦點和準線在y軸同側),過F作TF的垂線交雙曲線于P,Q兩點,

則kOT·kPQ=b2a2.

證明不妨取雙曲線右焦點F(c,0)和右準線x=a2c,設T(a2c,m),因T非x軸上點,所以m≠0,則kTF=ma2c-c=-cmb2,知kPQ=b2cm,又kOT=cma2,所以kOT·kPQ=b2a2.

定理5拋物線y2=2px的焦點為F,T為拋物線準線上任一點,過F作TF的垂線交拋物線于P,Q兩點,弦PQ中點為N,則NT平行于x軸.

圖5

證明因Fp2,0,設T-p2,m,則kTF=-mp,當m=0時,T為拋物線準線與x軸的交點,這時PQ為拋物線的通徑,點N與焦點F重合,顯然NT平行于x軸.當m≠0時,由條件知kPQ=pm,所以直線PQ方程為:y=pm(x-p2),聯立y2=2px

y=pm(x-p2),得4p2x2-4p(p2+2m2)x+p4=0,又

Δ=16p2(p2+2m2)2-16p6=64p2m2(p2+m2)>0,記P(x1,y1)、Q(x2,y2),由根與系數關系知x1+x2=p2+2m2p,y1+y2=pm(x1+x2-p)=2m,所以弦PQ中點N(p2+2m22p,m),又T(-p2,m),知kNT=0,則NT平行于x軸.

又Δ=4a4b4c2+4a2c2(c2m2-a2b2)(b2+m2)=4a2c2m2(c2m2+b4)>0,

所以x1+x2=-2a2b2cc2m2-a2b2,

x1x2=-c2a2(b2+m2)c2m2-a2b2.(*)

y1+y2=b2cm(x1+x2-2c)=-2b2c2mc2m2-a2b2,知PQ中點N-a2b2cc2m2-a2b2,-b2c2mc2m2-a2b2,則kON=cma2,又kOT=cma2,知O,T,N三點共線,即直線OT過線段PQ的中點N,所以直線OT平分PQ.

(ⅱ)因為TF=a2c-c2+m2=b4+m2c2c,PQ=1+k2PQ(x1+x2)2-4x1x2,

把kPQ=b2cm及(*)式代入得:PQ=1+b2cm2-2a2b2cc2m2-a2b22+4c2a2(b2+m2)c2m2-a2b2

=

2a(b4+c2m2)c2m2-a2b2,所以TFPQ=c2m2-a2b22acb4+c2m2=

12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.

注:因為m≠±abc,基本不等式(c2m2+b4)+b4c4c2m2+b4≥2b2c2中等號不成立.

即TFPQ=

12ac(c2m2+b4)+b4c4c2m2+b4-2b2c2.

圖4

推論2雙曲線x2a2-y2b2=1的焦點為F,T為雙曲線準線上任一點(焦點和準線在y軸同側),且T點的縱坐標m≠±abc,過F作TF的垂線交雙曲線于P,Q兩點,P關于坐標原點O的對稱點為P′,則P′Q∥OT.

證明由定理3知直線OT平分線段PQ,即直線OT過線段PQ的中點N,又O是PP′的中點,所以ON是

△PP′Q的中位線,則P′Q∥ON,即P′Q∥OT.

注:結合定理3的證明知:m≠±abc,是為了保證“過F作TF的垂線能夠交雙曲線于P,Q兩點”,否則直線PQ與一條漸近線平行,過F作TF的垂線與雙曲線只有一個交點.

定理4雙曲線x2a2-y2b2=1的焦點為F,T為雙曲線準線上(但非x軸上)任一點(其中焦點和準線在y軸同側),過F作TF的垂線交雙曲線于P,Q兩點,

則kOT·kPQ=b2a2.

證明不妨取雙曲線右焦點F(c,0)和右準線x=a2c,設T(a2c,m),因T非x軸上點,所以m≠0,則kTF=ma2c-c=-cmb2,知kPQ=b2cm,又kOT=cma2,所以kOT·kPQ=b2a2.

定理5拋物線y2=2px的焦點為F,T為拋物線準線上任一點,過F作TF的垂線交拋物線于P,Q兩點,弦PQ中點為N,則NT平行于x軸.

圖5

證明因Fp2,0,設T-p2,m,則kTF=-mp,當m=0時,T為拋物線準線與x軸的交點,這時PQ為拋物線的通徑,點N與焦點F重合,顯然NT平行于x軸.當m≠0時,由條件知kPQ=pm,所以直線PQ方程為:y=pm(x-p2),聯立y2=2px

y=pm(x-p2),得4p2x2-4p(p2+2m2)x+p4=0,又

Δ=16p2(p2+2m2)2-16p6=64p2m2(p2+m2)>0,記P(x1,y1)、Q(x2,y2),由根與系數關系知x1+x2=p2+2m2p,y1+y2=pm(x1+x2-p)=2m,所以弦PQ中點N(p2+2m22p,m),又T(-p2,m),知kNT=0,則NT平行于x軸.

猜你喜歡
準線垂線雙曲線
關聯圓錐曲線焦點、準線的一個性質的推廣
雙曲線的一個性質與應用
雙曲線的一個美妙性質及應用
淺談三垂線定理及其應用
“斜向”垂線段的最值求解策略
“垂直”重難點解讀
細說垂線、垂線段、點到直線的距離
圓錐曲線的一個性質及應用
與圓錐曲線準線有關的一個性質的推廣
促進數學思維訓練的好題
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合