?

金屬-有機骨架用于各類藥物的控釋載體

2016-05-25 08:37馬艾華胡庭維賈慶明陜紹云蘇紅瑩王亞明
功能材料 2016年3期
關鍵詞:金屬

馬艾華,胡庭維,賈慶明,陜紹云,蘇紅瑩,王亞明

(昆明理工大學 化學工程學院,昆明 650500)

?

金屬-有機骨架用于各類藥物的控釋載體

馬艾華,胡庭維,賈慶明,陜紹云,蘇紅瑩,王亞明

(昆明理工大學 化學工程學院,昆明 650500)

摘要:新型控釋藥物直接作用于靶細胞,提高藥理效率、減小毒副作用,已成為一種極具潛力的藥療方法。與一般藥物控釋載體相比,金屬-有機骨架材料(metal-organic frameworks,MOFs)的優勢明顯,將其顆粒尺寸降至納米級后性能更為優異,能同時兼顧藥物負載量、目標靶向性、表面特性改善和生物相容性等特性。目前,已有較多類藥物吸附在MOFs上的研究報道,主要包括抗癌藥物、抗病毒藥物及消炎藥物。介紹了MOFs的毒性及其發展過程,詳細闡述了MOFs對于各類藥物的吸附-釋放情況,并對此領域的研究和發展進行總結和展望,以期對MOFs作為藥物控釋載體的應用有比較全面的認識。

關鍵詞:金屬-有機骨架;控釋藥物;生物毒性;抗癌抗病毒;消炎藥物

0引言

將藥物負載在適宜的載體上,可改善藥物分子在人體內的釋放、吸收、代謝和排泄過程,顯著提高藥物利用率,減弱高濃度藥物的毒副作用[1]??蒲腥藛T已發現多種合成材料均可用作控釋載體,主要有分子篩、膠束、脂質體、樹狀聚合物等[2-5],但此類物質在藥物負載量、目標靶向性、藥物釋放動力學、表面特性改善和生物相容性等方面并不能同時兼顧,均存在一定的缺陷。

近年來,金屬-有機骨架(metal-organic frameworks,MOFs)在諸多領域的應用研究發展迅速,主要歸因于其內部規整、比表面積大、結構可調,同時可根據客體分子的體積和性質改變內部特性[6-10]。此外,官能化修飾后的MOFs可同時實現高載藥量和適宜的藥物釋放速率[11-12],且納米級MOFs-藥物控釋劑顆粒的合成簡單、穩定性好、靶向性強?,F階段對于改善MOFs生物相容性的研究也取得較大進展,已成為近年研究比較熱門的一類新型藥物控釋材料[13-16]。

1MOFs材料特性

1.1MOFs的生物毒性

藥物控釋材料的生物相容性研究主要是為了改善藥物-載體在生物體內的毒性,避免其對細胞和組織的毒害作用。

目前,對于MOFs生物毒性的研究主要側重于增強MOF整體穩定性、降低金屬中心的毒性和有機配體的毒性3個方面。研究人員選用生物體必需的金屬元素鐵、鈣、鎂、鋅和鋯等作為MOFs的金屬中心[11, 15-16],但這類金屬的攝入量仍需控制在安全范圍內[15]。對于有機配體,內源性配體是生物體新陳代謝的中間物質,生物相容性好,已應用于MOFs制備的主要有煙酸、延胡索酸、黃嘌呤、氨基酸等[17-22]。對于MOFs的配體毒性研究,親水-疏水平衡也是重要參數之一,研究證明含有親水基團的MOFs細胞毒性相對較小[23]。

此外,Patricia Horcajada小組[15, 21]進一步研究了Fe-MOFs在小鼠體內循環分布代謝的情況見圖1。MOFs注入小鼠體內后沒有出現明顯的腦中毒現象,只在肝臟和腎臟中短暫積累,隨后被迅速排出體外,組織器官并沒有持續中毒的跡象。

1.2MOFs的結構特性

用于藥物負載時,MOFs材料的結構優異性體現在孔道結構和骨架結構兩方面。就孔道結構而言,有些MOFs(如MIL-53)的孔道可隨環境溫度和壓力的變化而改變,從而產生呼吸效應[24];有些MOFs(MIL-100(Fe))則擁有兩種不同尺寸的介孔[25];還有一些MOFs(UMCM-1)同時具有尺寸為1.4 nm×1.7 nm的微孔和2.7 nm×3.2 nm的介孔[26]。MOFs內部孔道結構靈活多變、尺寸范圍較廣,能為多種藥物分子提供可靠的吸附存儲空間。在骨架結構方面,通過選用不同的金屬中心和有機配體可以得到不同結構的MOFs[15](圖2),也可改善藥物-MOFs復合物顆粒的藥理毒性[23-24, 27]。

1.3MOFs-藥物的合成

載體顆粒尺寸大小影響著藥物的吸附量及其療效,納米級藥物-載體更容易進入目標細胞進行靶向性治療[1, 28-30]。NMOFs制備方法較多,主要有溶劑/水熱法、反相微乳液法、超聲法和微波法,對MOFs結構形貌的影響也不盡相同[15, 31-35]。微波輔助水熱法加熱能量分布均勻、反應速度較快、易于操作,產率高,可得到各種尺寸的生物NMOFs,因此最為理想。

圖1 藥物-MOFs(Fe)的裝載、運輸、釋放和分解代謝過程

圖2 不同金屬不同配體構成的MOFs結構[15]

Joaquín Coronas等[19]報道了一步法合成的咖啡因-ZIF-8復合顆粒,其檢測性能甚至優于常規方法所得的目標產物。將負載后NMOFs的表面包裹1層球殼[32, 36-37]并將靶向性配體(RGD肽鏈)嫁接在球殼表面,隨后,使具有靶向性的復合物進入細胞內部進行控釋(圖3)[32, 38-39]。當藥物-NMOFs在細胞內部通常采用藥物擴散、MOFs水解、光催化和pH值變化等方法來控制藥物分子的緩釋[15, 40-42]。

2抗癌藥物

用于癌癥化療的藥物較多,主要有金屬雜類的順鉑、烷化劑類白消安、抗代謝類的5-氟脲嘧啶、抗生素類的阿霉素、黃膽素,植物類的喜樹堿、長春堿等。

順鉑化合物具有廣譜抗癌性,作用強而持久,在臨床上運用廣泛[33]。對比使用一步法制備的NCP-1[32]和用常規方法得到的ESCP-MIL-101(Fe)復合物(ESCP為乙氧基琥珀酸順鉑)[43],兩者具有相似的控釋效果和癌細胞毒性[36]。Wenbin Lin等[12]用UiO-NMOFs(Zn)同時吸附小干擾RNA(siRNAs) 和順鉑前驅體藥物(圖4)。結果表明,siRNAs/UiO-Cis的協同藥效比普通療法藥效高出一個數量級。

Elsa Quartapelle Procopio[44]用鎳做金屬中心制備了一種可以吸附控釋RAPTA-C(Ru(p-cymene)Cl2(pta))(pta=1,3,5-triaza-7-phospha-adamantane)的MOFs材料,該材料化學穩定性和熱穩定性好、強度高,且對RAPTA-C的吸附量為1.1 g/g MOF。

圖3 NCP-1合成后用PVP與正硅酸乙酯(TEOS)包裹,再在表面加上c(RGDfK)提高靶向性

圖4 siRNA/UiO-Cis的制備與藥物負載[12]

楊寶春等[45]使用MOF-5分別負載5-氟尿嘧啶(5-fluouourail,5-Fu)與辣椒素(capsaicin),由于藥物分子中的酚羥基與MOF-5中的羧基存在相互作用,兩者最高載藥量分別為0.315 g/g MOF和0.592 g/g MOF。兩種藥物均在第7 d達到平衡且體外釋藥均有明顯的兩相模式,這表明MOF-5的表面和孔隙內部均可以吸附藥物。

白消安(Busulfan)、 阿霉素(doxorubicin,DOXO)和喜樹堿(Camptothecin,CPT)幾種藥物的毒副作用大,將其負載在納米載體上可提高藥物利用率,降低給藥過程對身體的傷害。白消安具有親水和疏水兩種特性[11, 31],因此使用具有兩親結構的MIL-100(Fe)負載,最高吸附量可達26%(質量分數)[46]。用Zn-MOF負載阿霉素,其中的Zn2+可與阿霉素螯合形成醌和酚醛結構,阻止其對心肌的毒害[47-48]。Patricia Horcajada等[11]用納米MIL-100對DOXO進行吸附,吸附量為9%(質量分數),且脫附效果較好,可在兩周內逐步完全釋放。Jia Zhuang等[49]將CPT負載在納米ZIF-8上并利用細胞內部偏酸性的特性調節藥物分子的釋放。將拓撲替康(topotecan,TPT,喜樹堿衍生物)負載在納米MIL-100材料上,其最大負載量可達33%(質量分數),隨后利用光輻射引發TPT釋放,該過程對TPT分子結構沒有影響[41]。

3抗病毒藥物

疊氮胸苷三磷酸鹽(azidothymidine triphosphate,AZT-TP)是一種抗HIV病毒感染的親水性藥物。但由于AZT-TP的細胞攝取量低且穩定性差限制了它的應用。近年來,大量用于吸附AZT-TP的材料涌現,如磁性納米顆粒的吸附量為3.5%(質量分數);陽離子納米凝膠的吸附量為30.0%(質量分數)[50];而MIL-100(Fe)-NH2的吸附量則可高達42.0%(質量分數)[11]。

Valentina Agostoni等[25, 51]使用MIL-100(Fe)吸附AZT-TP的最大量為24%(質量分數)。隨后,該小組又深入考察了HF對MIL-100(Fe)吸附性能的影響,研究表明無氟情況下制備的MIL-100(Fe)吸附量較高為(24.3±4.4)%(質量分數),且吸附量與氟原子、骨架中殘余的BTC無關,由于AZT-TP的磷酸基和不飽和Lewis酸性位點之間存在相互作用,均需48 h完全釋放[53-54]。

4消炎藥物

布洛芬(ibuprofen)具有抗炎、鎮痛、解熱的作用,但需頻繁給藥,長期進藥會導致體內藥物殘留濃度過高,對人體產生毒副作用。將布洛芬吸附在特定載體上于體內指定部位釋放可提高藥效,從而減少藥物對人體的傷害。2006年,Gérard Férey等[55]制備的MIL-100和MIL-101開啟了MOFs用于藥物載體的廣泛研究。該課題組[56]以Fe作金屬中心制得具有呼吸效應的MIL-53,脫水后布洛芬吸附量為0.21 g/g MOF。李宗群等[57]用ZnO/C/SNTs復合物與布洛芬反應合成藥物組裝體Zn(IBU)2/C/SNTs且載藥量為752 mg/g。Zn(IBU)2在前12 h里釋放速率比較快之后變得緩慢,2 d后Zn(IBU)2的濃度基本不變。由—NH2和—Br修飾的UiO-66(Zr)對布洛芬的負載動力學進行考察可知,MOF載藥量的增加使配體的旋轉空間減小,此時位阻效應對配體的動力學存在影響[58]。

表1 MOFs吸附控釋幾類藥物的情況

2014年,Toma??endak等[59]在四氫呋喃溶劑(THF)中用MIL-101(Fe)-NH2負載消炎痛(indomethacin)并發現THF與金屬骨架之間存在氫鍵作用。在每個MOF單元中,MIL-101(Fe)-NH2的負載量為(2.2±0.3)個消炎痛分子。Fei Ke等[60]報道了一種由Cu3(BTC)2納米晶體嵌入Fe3O4納米棒上制成的MOF,每克該MOF可吸附0.2 g的尼美舒利(Nimesulide)。

5結語

MOFs結構和組成可調、孔隙比表面積大、易于功能化修飾,且金屬位點較多,在藥物控釋載體的應用方面具有顯著優勢。選擇適當的金屬、配體,改變鏈接方式可賦予MOFs優異的生物性能,同時增強藥物分子的吸附和控釋效率,另外MOFs較好的晶體結構便于模型化研究其吸附脫附機理。到目前為止,在藥物載體中MOFs的吸附量最大,釋放控制也比較好[11, 31, 46, 48]。

現階段,雖然MOFs作為藥物載體的研究已取得一定的進步,但其在臨床醫學上的實際應用仍有大量挑戰性工作亟需完成。首先,MOFs吸脫附動力學并不十分清晰;其次,MOFs生物毒性雖已得到改善,但運載、代謝排泄機制、生理穿透和慢性毒性等問題有待進一步探索,因此體內藥物動力學研究將是以后MOFs生物醫學應用的核心。此外,現在可生物應用的MOFs類別較少,對可負載藥物種類有較大的限制,擴充生物MOFs及負載藥物的種類,使其應用到更多疾病的治療上。

目前,MOFs的醫學應用尚處于早期發展階段,其在藥物載體上的應用潛力已得到肯定。充分發展MOFs的固有優勢,解決體內控釋吸收問題,MOFs在藥物方面的應用前景將會更加廣闊。

參考文獻:

[1]Davis M E, Shin D M. Nanoparticle therapeutics: an emerging treatment modality for cancer [J]. Nature Reviews Drug Discovery, 2008, 7(9): 771-782.

[2]Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer [J]. Clinical Cancer Research, 2008, 14(5): 1310-1316.

[3]Deng K, Hou Z, Li X, et al. Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging [J]. Scientific Reports, 2015, 5:7851.

[4]Reimer N, Reinsch H, Inge A K, et al. New Al-MOFs based on sulfonyldibenzoate ions: a rare example of intralayer porosity [J]. Inorganic Chemistry, 2015, 54(2): 492-501.

[5]Alexis F, Pridgen E, Molnar L K, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles [J]. Molecular Pharmaceutics, 2008, 5(4): 505-515.

[6]Li H, Eddaoudi M, O’keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402(6759): 276-279.

[7]Mu Cuizhi, Xu Feng, Lei Wei. Application of functional metal-organic framework materials [J]. Progress in Chemistry, 2007, 19(9): 1345-1356.

穆翠枝, 徐峰, 雷威. 功能金屬-有機骨架材料的應用[J]. 化學進展, 2007, 19(9): 1345-1356.

[8]Kuppler R J, Timmons D J, Fang Q R, et al. Potential applications of metal-organic frameworks [J]. Coordination Chemistry Reviews, 2009, 253(23): 3042-3066.

[9]Evans J D, Sumby C J, Doonan C J. Post-synthetic metalation of metal-organic frameworks [J]. Chemical Society Reviews, 2014, 43(16): 5933-5951.

[10]Song Xiaokai, ZhouYajing, Li Liang. Synthesis of core-shell metal-organic frameworks [J]. Progress in Chemistry, 2014, 26(2/3): 424-435.

宋肖鍇, 周雅靜, 李亮. 核殼結構金屬-有機骨架的研究 [J]. 化學進展, 2014, 26(2/3): 424-435.

[11]Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging [J]. Nature Materials, 2010, 9(2): 172-178.

[12]He C, Lu K, Liu D, et al. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells [J]. Journal of the American Chemical Society, 2014, 136(14): 5181-5184.

[13]Mckinlay A C, Morris R E, Horcajada P, et al. BioMOFs: metal-organic frameworks for biological and medical applications [J]. Angewandte Chemie International Edition, 2010, 49(36): 6260-6266.

[14]Huxford R C, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers [J]. Current Opinion in Chemical Biology, 2010, 14(2): 262-268.

[15]Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine [J]. Chemical Reviews, 2012, 112(2): 1232-1268.

[16]Keskin S, Kzlel S. Biomedical applications of metal organic frameworks [J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 1799-1812.

[17]Imaz I, Rubio-Martínez M, Saletra W J, et al. Amino acid based metal-organic nanofibers [J]. Journal of the American Chemical Society, 2009, 131(51): 18222-18223.

[18]Rabone J, Yue Y F, Chong S, et al. An adaptable peptide-based porous material [J]. Science, 2010, 329(5995): 1053-1057.

[19]Liedana N, Galve A, Rubio C, et al. CAF@ZIF-8: one-step encapsulation of caffeine in MOF [J]. ACS Applied Materials Interfaces, 2012, 4(9): 5016-5021.

[20]Imaz I, Rubio-Martinez M, An J, et al. Metal-biomolecule frameworks (MBioFs) [J]. Chemical Communications, 2011, 47(26): 7287-7302.

[21]Baati T, Njim L, Neffati F, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(Ⅲ) metal-organic frameworks [J]. Chemical Science, 2013, 4(4): 1597-1607.

[22]Miller S R, Heurtaux D, Baati T, et al. Biodegradable therapeutic MOFs for the delivery of bioactive molecules [J]. Chemical Communications, 2010, 46(25): 4526-4528.

[23]Tamames-Tabar C, Cunha D, Imbuluzqueta E, et al. Cytotoxicity of nanoscaled metal-organic frameworks [J]. Journal of Materials Chemistry B, 2014, 2(3): 262.

[24]Devic T, Horcajada P, Serre C, et al. Functionalization in flexible porous solids: effects on the pore opening and the host-guest interactions [J]. Journal of the American Chemical Society, 2009, 132(3): 1127-1136.

[25]Agostoni V, Chalati T, Horcajada P, et al. Towards an improved anti-HIV activity of NRTI via metal-organic frameworks nanoparticles [J]. Advanced Healthcare Materials, 2013, 2(12): 1630-1637.

[26]Babarao R, Jiang J. Unraveling the energetics and dynamics of ibuprofen in mesoporous metal-organic frameworks [J]. Journal of Physical Chemistry C, 2009, 113(42): 18287-18291.

[27]Gaudin C, Cunha D, Ivanoff E, et al. A quantitative structure activity relationship approach to probe the influence of the functionalization on the drug encapsulation of porous metal-organic frameworks [J]. Microporous and Mesoporous Materials, 2012, 157:124-130.

[28]Petros R A, Desimone J M. Strategies in the design of nanoparticles for therapeutic applications [J]. Nature Reviews Drug Discovery, 2010, 9(8): 615-627.

[29]Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents [J]. Advanced Drug Delivery Reviews, 2010, 62(11): 1064-1079.

[30]Taylor-Pashow K M, Rocca J D, Xie Z, et al. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery [J]. Journal of the American Chemical Society, 2009, 131(40):14261-14263.

[31]Chalati T, Horcajada P, Gref R, et al. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A [J]. Journal of Materials Chemistry, 2011, 21(7): 2220-2227.

[32]Rieter W J, Pott K M, Taylor K M, et al. Nanoscale coordination polymers for platinum-based anticancer drug delivery [J]. Journal of the American Chemical Society, 2008, 130(35): 11584-11585.

[33]Taylor-Pashow K M L, Della Rocca J, Xie Z, et al. Postsynthetic modifications of iron-carboxylate hanoscale meter-organic frameworks for imaging and drug delivery[J]. Journal of the American Chemical Society, 2009,131(40):14261-14263.

[34]Rieter W J, Taylor K M L, An H, et al. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents [J]. Journal of the American Chemical Society, 2006, 128(28): 9024-9025.

[35]Qiu L G, Li Z Q, Wu Y, et al. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines [J]. Chemical Communications, 2008, 31: 3642.

[36]Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery [J]. Accounts of Chemical Research, 2011, 44(10): 957-968.

[37]Rieter W J, Taylor K M, Lin W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing [J]. Journal of the American Chemical Society, 2007, 129(32): 9852-9853.

[38]Taylor K M, Rieter W J, Lin W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging [J]. Journal of the American Chemical Society, 2008, 130(44): 14358-14359.

[39]Alhaddad A, Adam M P, Botsoa J, et al. Nanodiamond as a vector for siRNA delivery to ewing sarcoma cells [J]. Small, 2011, 7(21): 3087-3095.

[40]Sortino S. Photoactivated nanomaterials for biomedical release applications [J]. Journal of Materials Chemistry, 2012, 22(2): 301.

[41]Rosaria Di Nunzio M, Agostoni V, Cohen B, et al. A “Ship in a Bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery [J]. Journal of Medicinal Chemistry, 2014, 57(2): 411-420.

[42]Zhuang J, Kuo C H, Chou L Y, et al. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation [J]. Acs Nano, 2014, 8(3): 2812-2819.

[43]Layre A, Couvreur P, Chacun H, et al. Novel composite core-shell nanoparticles as busulfan carriers [J]. Journal of Controlled Release, 2006, 111(3): 271-280.

[44]Procopio E Q, Rojas S, Padial N M, et al. Study of the incorporation and release of the non-conventional half-sandwich ruthenium(Ⅱ) metallodrug RAPTA-C on a robust MOF [J]. Chemical Communications, 2011, 47(42): 11751-11753.

[45]Yang Chunbao,Jiang Yaodong,Qin Xuejuanl,et al. Loaded and drug release of anticancer drugs in porous metal-organic frameworks [J]. Chemical Journal of Chinese Universities, 2012, 33 (1): 26-31.

楊寶春, 姜耀東, 秦雪娟,等. 抗腫瘤藥物在金屬有機骨架中的裝載及體外釋放 [J]. 高等學?;瘜W學報, 2012, 33 (1): 26-31.

[46]Chalati T, Horcajada P, Couvreur P, et al. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation [J]. Nanomedicine, 2011, 6(10): 1683-1695.

[47]Vasconcelos I B, Silva T G D, Milit?o G C G, et al. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8 [J]. RSC Advances, 2012, 25(2): 9437.

[48]Imaz I, Rubio-Martinez M, Garcia-Fernandez L, et al. Coordination polymer particles as potential drug delivery systems [J]. Chemical Communications, 2010, 46(26): 4737-4739.

[49]Zhuang J, Chun H, Chou L Y, et al. Optimized metal-organic framework nanospheres for drug delivery: evaluation of small-molecule encapsulation [J]. ACS Nano, 2013, 8(3): 2812-2819.

[50]Kabanov A V, Vinogradov S V. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities [J]. Angewandte Chemie International Edition, 2009, 48(30): 5418-5429.

[51]Agostoni V, Anand R, Monti S, et al. Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(Ⅲ) metal-organic framework MIL-100(Fe) nanoparticles [J]. Journal of Materials Chemistry B, 2013, 34(1): 4231.

[52]Agostoni V, Willaime H, Gref R, et al. “Green” fluorine-free mesoporous iron(Ⅲ) trimesate nanoparticles for drug delivery [J]. Green Materials, 2013, 1(4): 209-217.

[53]Hillaireau H, Couvreur P. Nanoencapsulation of antiviral nucleotide analogs [J]. Journal of Drug Delivery Science and Technology, 2009, 19(6): 385-390.

[54]Saiyed Z M, Gandhi N H, Nair M P N. AZT 5’-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells [J]. Journal of Neurovirology, 2009, 15(4): 343-347.

[55]Horcajada P, Serre C, Vallet-Regí M, et al. Metal-organic frameworks as efficient materials for drug delivery [J]. Angewandte Chemie, 2006, 118(36): 6120-6124.

[56]Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery [J]. Journal of the American Chemical Society, 2008, 130(21): 6774-6780.

[57]Li Zongjun,Ai Wang,Guo Chunyan. Synthesis of ZnO/C/SNTs and their drug using Zn-MOF as template delivery ability [J]. Chemical Journal of Chinese Universities, 2013, 34(11): 2470-2477.

李宗群, 艾汪, 郭春燕, 等. Zn-MOF模板法制備Zn/C/SNTs及其藥物緩釋性能 [J]. 高等學?;瘜W學報, 2013, 34(11):2470-2477.

[58]Devautour-Vinot S, Diaby S, Da Cunha D, et al. Ligand dynamics of drug-loaded microporous zirconium terephthalates-based metal-organic frameworks: impact of the nature and concentration of the guest [J]. The Journal of Physical Chemistry C, 2014, 118(4): 1983-1989.

[60]Ke F, Yuan Y P, Qiu L G, et al. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery [J]. Journal of Materials Chemistry, 2011, 21(11): 3843-3848.

Metal-organic frameworks used as delivery vehicles for therapeutic agents

MA Aihua, HU Tingwei, JIA Qingming, SHAN Shaoyun, SU Hongying, WANG Yaming

(Faculty of Chemical Engineering,Kunming University of Science and Technology, Kunming 650500,China)

Abstract:Drug sustained delivery emerging as a class of therapeutics for the particular subsets of cells or tissues, that can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as less dose, more targeted localization in tumours and active cellular uptake. Metal-organic frameworks (MOFs) possess several potential advantages over conventional medicines, notabl they scaled down to nanometer sizes (NMOFs). MOFs have been used as promising drug carriers in biomedical applications due to the high drug loading capacity, intrinsic biodegradability, and versatile functionality. The bulk MOFs can absorb and release large amounts of therapeutic including anticancer and antiviral drugs and anti-inflammatory drugs. In this review, we outline the recent progress of using MOFs as delivery vehicles for therapeutic agents, demonstrate the continuous development and implementation in biomedical toxicology. Although signicant progress has been made in utilizing MOFs for drug delivery, further improvements must still occur before they can be considered for clinical therapeutics.

Key words:metal-organic frameworks;drug delivery;biomedical toxicology; anticancer and antiviral drugs;anti-inflammatory drugs

DOI:10.3969/j.issn.1001-9731.2016.03.007

文獻標識碼:A

中圖分類號:O641.4; O647.3

作者簡介:馬艾華(1990-),女,吉林人,碩士,師承陜紹云教授,從事金屬有機化合物研究。

基金項目:國家自然科學基金資助項目(51364023,21366014);后備人才項目資助項目(2015HB014)

文章編號:1001-9731(2016)03-03033-07

收到初稿日期:2015-05-07 收到修改稿日期:2015-09-10 通訊作者:陜紹云,E-mail: shansy411@163.com

猜你喜歡
金屬
從發現金屬到制造工具
致命金屬
“金屬的化學性質”同步演練
金屬鈦的制備工藝
“神的金屬”鈦合金SHINE YOUR LIFE
這些金屬不太冷
銅冶煉渣中有價金屬的綜合回收
再生金屬行業喜迎利好
金屬美甲
2015 年7~8 月金屬報價
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合