?

表面張力法判斷親水性的研究

2018-03-09 05:59李喜樂許文然
信息記錄材料 2018年5期
關鍵詞:親水性表面張力極性

李喜樂,許文然,張 攀

(樂凱華光印刷科技有限公司 河南 南陽 473003)

1 引言

親水性[1],顧名思義,就是物質(或材料)對水的親和能力。根據研究,分子對水的親和能力,取決于分子的極性,極性大,一般來講,分子的親水性就大。由極性大的分子所組成的材料,其表面容易被水所潤濕。親水性,從本質上來說是分子的物理性質。如果分子的親水性部分,能夠有能力極化到形成氫鍵,那么相對于不能形成氫鍵的分子,或者極化能力小的分子,這類分子更容易溶解在水或者其他極性溶液里面。

生活中,常用的洗衣粉、洗衣液、洗潔精等清潔用品,都是應用表面活性劑的兩親(一端親水一端親油)性質來進行除污的。還有許多防水材料則是利用其親水性差的特性制作的。在印刷行業,印刷版材的感光層中,當光照之后,光照部位的親水性會變成憎水性(親油性),在另外一些印刷版材的感光層中,則會發生相反的過程。

如上所述,一個分子在水中或者極性溶液中的溶解性,或者該分子的親水性,取決于該分子的極性。那么究竟這個分子是屬于極性分子還是非極性分子,如何判斷?

根據研究[2],分子的極性與分子的空間結構有關,當一個分子中的正電荷“重心”與負電荷“重心”不能重合,那么分子就表現出極性,與此同時,對分子所有的化學鍵極性的向量求和,就得到了衡量極性大小的標度——偶極矩μ,偶極矩的大小就代表著分子極性的大小。

如前所述,物質的親水性越大,其對誰的親和性越好,就可以吸引水分子,甚至溶解于水。那么親水性越大,就一定水溶性越好嗎?實際上不是的,例如,比較明顯的例子是氯甲烷、硝基苯的極性非常大,按照如前所述的親水性非常好,可事實上這兩種物質都難溶于水。

其實物質的水溶性,除了與物質的極性有關,還與其他因素,比如分子間作用力的類型、大小及分子結構有密切的關系。例如像硝基苯等一些物質,其分子的極性雖然很強,但是兩者的分子結構和水的分子結構相差比較大,所以兩者難溶于水。

所以說,根據親水性的定義,雖然物質極性的強弱可以判斷其親水性的強弱,但是卻不能反應出物質和水之間的接觸狀態,比如溶解、混合、懸濁等。本文嘗試通過表面張力的方法,研究物質和水之間的接觸狀態,物質與水直接的界面(表面)形成方式,從而得出判斷物質的親水性的方法。

2 界面(表面)的親水性

在實際的研究和實驗過程中,也經常遇到物質或材料的親水性問題。研究親水性,就需要研究物質或材料與水的接觸界面。通常使用表面來代替界面,比如習慣上把液體與空氣的界面,還有固體與空氣的界面,都稱為表面[3]。由于水通常情況下是液體,所以研究親水性,就需要研究固體-液體(水)、液體-液體(水)的界面(表面)的性質。

2.1 表面張力及其測定方法

研究固體-液體(水)、液體-液體(水)的表面,通常會用到表面張力。在液體的表面,與氣體接觸的地方,會產生一個薄薄的表面層,在這一層里面的分子,其分子間距離比液體內部大,比氣體小,就像在液體與氣體之間產生了一層“彈簧”一樣,想要把“彈簧”拉開,“彈簧”就會向反方向收縮,這種使得液體的表面收縮的力,就稱之為表面張力。

液體表面張力可以通過儀器測定,目前測定方法大體上分為動態法和靜態法。這兩大類方法下面由于細分,具體分類如表1。

表1 表面張力的測定方法Chart.1 Methods of determining surface tension

值得注意的是,每種測定方法都有自身的應用范圍,比如說如果測定液-液界面張力,就不能使用最大氣泡壓力法和毛細管上升法。此外目前的動態法,由于方法較為復雜,導致測試精度不能盡如人意,所以動態法很少能夠成功應用。所以目前的實際生產和研究中,測定表面張力中多采用靜態法。下面以滴體積法為例說明表面張力的測定。

滴體積法的基本原理是這樣的,利用毛細管滴頭,緩慢往下滴液體,這時候測量液滴的大小,就能測定液體的表面張力。這是因為液體的表面張力,與從毛細管滴下的液滴的大小有內在關聯,存在正比關系,這個關系可以用數學公式表達:

式中,W為液滴的重量;R為毛細管的滴頭半徑,其值的大小由測量儀器決定;f為校正系數。一般實驗室中測定液滴體積更為方便,因此式(2)又可寫為:

式中,V為液滴體積;ρ為液體的密度;f為校正因子。

對于特定的測量儀器和被測液體,R和ρ是固定的,在測量過程中,只要測出數滴液體的體積,就可計算出該液體的表面張力。

需要說明的是,測定表面張力的方法都有其應用的局限和缺點,例如上述的滴體積法,其缺點和局限是:

(1)至今為止,滴體積法只是一種經驗方法;

(2)當遇到達到平衡較慢的表面時,滴體積法不能測定其表面張力,同時理論上講,也不能達到完全的平衡;

(3)應用滴體積法,需要準確測定液體體積,還有液滴滴落速度控制等問題。

所以在實際測量時,可以根據要求或者能夠較為容易實現的條件,比如實驗精度或者實驗設備等,再去選擇測定表面張力的方法。

比如說,當需要測定時候的溫度和壓力比較高,可以采用最大氣泡壓力法、震蕩射流法、等方法;而當測量的要求是精度高時,可以采用Wilhelmy吊片法、毛細管上升法等進行測定。

2.2 液-固界面的潤濕作用

滴在固體表面上的少許液體,取代了部分固-氣界面,產生了新的液-固界面。這一過程稱之為潤濕過程。潤濕過程可以分為三類[3],即:粘濕、浸濕和鋪展,這里重點介紹鋪展過程。

鋪展,是指在等溫、等壓的條件下,液固界面取代了氣固界面,然后產生了氣液界面,這樣一個物理過程。等溫、等壓條件下,可逆鋪展單位面積時,Gibbs自由能的變化值為

其中,ΔG為Gibbs自由能的變化值,S為鋪展系數,γg-s為氣-固界面張力,γg-l為氣-液界面張力,γl-s為液-固界面張力。如果若S≥0,說明液體可以在固體表面自動鋪展。

目前,只有γg-l氣-液界面張力可以通過實驗測定,γg-l氣-固界面張力、γl-s液-固界面張力還無法直接測定[6]。所以上述式子不能在實際工作中直接使用。

在實際工作中,通常會用到接觸角結合γg-l氣-液界面張力來判斷鋪展過程是否自動進行。接觸角,是指在固相、液相、氣相這三相的交界點,兩個界面張力(氣-固界面與氣-液界面)之間的夾角,通常用θ表示。如圖1,將水滴滴到玻璃上,接觸角如圖所示。

圖1 接觸角Figure.1 Contact angle

根據楊氏潤濕方程,COSθ×γg-l=γg-s-γl-s,所以鋪展系數S=γg-l(COSθ-1),式子中γg-l,θ都可以測量出來,那么S就可以計算出來。

接觸角的測量方法有多種,包括長度測量法、角度測量法、透過測量法等,都是比較簡便的方法,比如角度測量法中,可以采用顯微鏡,用一安裝有量角器和叉絲的低倍顯微鏡觀察液面,直接可以讀出角度。

由上述可知,水在固體表面的鋪展可以通過實驗測量γg-l,θ來確定,所以水在固體表面的鋪展與否可以判斷固體材料的親水性。

2.3 液-液界面的表面張力和液體親水性的判斷

如前所述,雖然物質極性的強弱可以用以判斷其親水性的強弱,但是在實際中,會遇到一些極性很強而親水性不是那么明顯的物質,或者是一些反應產生的新物質(例如生產版材所需的一些聚合物),那么究竟如何來判斷這類物質或者(這里的物質都是液體)的親水性?生產實踐中經常用的一種方法,就是直接實驗,拿印刷版材的生產來說,就是直接用材料制作版材,然后進行制版實驗來判斷親水性的好壞。毋庸置疑,這樣做確實直接的測試了版材這個體系的親水性,可以說是簡單而有效??墒菍τ谏a基礎材料的研究者來說,這樣的測試對研究材料的親水性幫助不大,對制作材料的原材料的親水性的研究也沒有幫助。下面本文通過研究液-液界面的表面張力,嘗試提出來判斷液體的親水性的方法。

液液界面,顧名思義就是液體之間形成的界面,只要是兩種液體不互溶或者說互溶性不好,兩者相互接觸,就可以而形成的液液界面。根據研究,兩種液體,要形成液液界面,通常通過以下三種方式:黏附方式、鋪展方式和分散方式。

第一種方式,黏附方式。兩種不同的液體,液體A和液體B,互相相接觸后,兩者和氣體形成的表面同時消失,形成液體A和液體B之間的界面,也就是液液界面(AB)的過程,這就是黏附過程。該過程如圖2所示。

圖2 黏附過程Figure.2 Adhesion process

如果液體A和液體B為同一種液體,那么這個黏附過程就稱為內聚過程。在內聚的過程中,液體A和液體B液體的表面消失,內聚功(即該過程的黏附功)WAA=γA+γA+γAA,其中 γAA為 0,WAA=2γA,明顯 WAA> 0,即內聚可以自發進行。

由此可知,當液液界面是黏附方式形成的,那么判斷黏附過程自發進行的依據就是黏附功WAB,當WAB>0時黏附過程可以自發進行,也就是說兩種液體之間的吸引強度較大。如果兩種液體之一(例如A)為水,那么黏附功的大小就可以判斷另一種液體(B)親水性的大小。

此外黏附功的計算式中γAB為A和B的液液界面張力,關于這個界面張力的計算,有多重理論,最簡單的一種是Antonoff規則,該規則認為γAB=γA飽和—γB飽和,式子中γA飽和、γB飽和指的是指的是液體A和液體B相互飽和后的表面張力,而不是其各自的表面張力。

第二種方式,鋪展方式。在上述的液-固界面的潤濕作用,液體在固體表面的鋪展也可以引用到液液界面,不過此時的鋪展過程復雜一些。比如在清潔的水面上,滴加不溶性“油”滴,此時的“油”在水面上,可能表現出三種不同的狀態:

第一種狀態,“油”在水面上,形成一層雙重膜,也就是形成了液體水與膜的界面,和膜與空氣的界面,如此一來,“油”在水面上鋪展形成了兩個獨立界面。

第二種狀態,“油”在水面上不鋪展,而是呈“透鏡”狀態。

第三種狀態,“油”在水面上,先鋪展成單分子膜;多余的“油”,則會呈現“透鏡”狀態,并且單分子膜與“透鏡”保持平衡。

這三種狀態如圖3所示。

圖3 鋪展過程Figurre.3 Spreading process

由上述可知,若以A表示水(或水相),以B表示油(或油相),鋪展系數S可改寫成:

其中,WAB代表“油”與水的黏附功;而WBB則是油的內聚功。由此可知,當“油”與水的黏附功比這種“油”的內聚力還強時,“油”就會在水的表面上鋪展。參照水在固體表面的鋪展,此時可以說此種“油”類的親水性較好。

第三種方式,分散。分散是指液體A分散到另外一種與之互不相容的液體B中,形成A、B混合物的過程,過程如圖4所示。

圖4 分散過程Figure.4 Dispersion process

由此可知,當液液界面是分散方式形成的,那么判斷分散過程自發進行的依據就是分散系數F,當F>0時,分散過程可以自發進行,那么在其他條件相同,可以判斷分散過程能夠自發進行的物質親水性好于不能自發進行的物質。

3 結論

為了能夠更加準確地衡量物質(或材料)的的親水性,本文研究了液-固界面和液-液界面的一些性質,探討了使用表面張力為主要工具來衡量物質(或材料)的親水性。相比于簡單的使用極性來判斷物質(或材料)的親水性,使用表面張力這一工具能夠比較好的標示物質(或材料)的親水性。表面張力法(標示親水性)具體應用為:

3.1 液-固界面,鋪展系數S=γg-l(COSθ-1),式子中γg-l,θ都可以測量出來,那么S就可以計算出來。如果若S≥0,說明液體可以在固體表面自動鋪展。說明該固體親水性較好。

3.2 液-液界面。第一種情況,黏附過程形成的界面,黏附功,γA代表液體A的表面張力;γB分別代表液體B的表面張力;γAB為代表液體A和液體B的液液界面張力,WAB則代表為黏附功,黏附功反映的是不同液體間的相互吸引強度。當WAB>0時,黏附過程可以自發進行。此時該液體的親水性較好。第二種情況,鋪展過程形成的界面,則,S為鋪展系數,若S>0,則體系的鋪展過程能自發進行。此時該液體的親水性較好。第三種情況,分散過程形成的液液界面,F=-ΔG=—γAB,F為分散系數,當F>0時,分散過程可以自發進行,那么在其他條件相同,可以判斷分散過程能夠自發進行的物質親水性好于不能自發進行的物質。

值得注意的是,與通過極性判斷親水性不同,本文討論的方法即表面張力法完全是通過實驗測定表面張力(和接觸角)來判定親水性,所以本方法依賴于實驗多過理論,而且親水性的強弱可以由數據直觀地反應出來,可以說是比較可靠的方法。

[1] https://baike.baidu.com,“親水性”詞條.

[2] https://baike.baidu.com,“極性分子”詞條.

[3]騰新榮.表面物理化學[M].化學工業出版社.

[4]李艷紅,王升寶,常麗萍.表(界)面張力測定方法的研究進展[J].日用化學工業,2007,37(2):102—106.

[5]于軍勝,唐季安.表(界)面張力測定方法的進展[J].化學通報,1997,60(11):11-15.

[6]http://www.docin.com/p-203117980.html.

猜你喜歡
親水性表面張力極性
雙負載抗生素親水性聚氨酯泡沫的制備與表征
Al-Mg-Zn 三元合金表面張力的估算
跟蹤導練(四)
一種親水性溫敏聚合物熒光探針的制備及用于農產品中鋁離子的檢測
紅蔥不同極性提取物抑菌活性研究
神奇的表面張力
香椿子不同極性部位對糖尿病周圍神經病變的保護作用
空氣中納秒脈沖均勻DBD增加聚合物的表面親水性
水刺型空氣加濕器濾材的親水性改性研究
基于Butler方程Al-Mg-Er三元合金表面張力的計算
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合