?

管內單相流強迫對流湍流傳熱關聯式研究

2019-09-10 07:22王莉張立圣方賢德黃永寬莊鳳婷
航空科學技術 2019年3期
關鍵詞:管內湍流

王莉 張立圣 方賢德 黃永寬 莊鳳婷

摘要:管內單相流強迫對流湍流傳熱廣泛應用于各個工業領域。目前有很多管內單相流強迫對流湍流傳熱關聯式,需要對其計算精度進行評價分析,便于選用。本文通過試驗,獲得了46組R134a在水平圓銅管內的單相流強迫對流湍流傳熱數據,從23篇文獻中收集了1220組試驗數據,建立了一個含有1266組數據的管內單相流強迫對流湍流傳熱試驗數據庫。用這個數據庫對14個現有管內單相流強迫對流湍流傳熱關聯式進行了評價分析,鑒別出了預測精度高的關聯式,為管內單相流強迫對流湍流傳熱關聯式的選用提供了依據。

關鍵詞:強迫對流;管內;傳熱;關聯式;湍流;單相流

中圖分類號:TK124??? 文獻標識碼:A???? DOI:10.19452/j.issn1007-5453.2019.03.009

管內單相流強迫對流(簡稱管內強迫對流)湍流傳熱廣泛應用于航空航天、能源建筑、石油化工等各個工業領域,如航空領域的飛機環境控制系統、動力系統、燃油系統等。相關設備和系統的研發設計離不開管內強迫對流湍流傳熱的計算,因此許多研究者提出了管內強迫對流湍流傳熱關聯式。

隨著航空航天技術和微電子技術的發展,大功率高密度電子設備的冷卻提出了兩相流傳熱技術的需求。研究發現,大多數兩相流傳熱模型是在單相流傳熱模型的基礎上發展而來的,最常見的是基于Dittus-Boelter公式的傳熱模型,其次是基于Gnielinski公式的傳熱模型。因此,單相流傳熱關聯式的準確性也直接影響兩相流傳熱計算的準確度。

目前公開報道的管內強迫對流湍流傳熱關聯式很多,這一方面給工程應用帶來了方便,另一方面也給關聯式的選用帶來了困惑。使用者往往不知道該選用哪個關聯式。為此,本文一方面廣泛收集整理管內強迫對流湍流試驗數據,并通過試驗獲得部分數據,建立試驗數據庫;另一方面收集現有傳熱關聯式。在此基礎上,利用試驗數據對關聯式進行評價分析,獲得各關聯式對數據庫的預測精度,為管內強迫對流湍流傳熱關聯式的選用提供依據。

1管內強迫對流湍流傳熱的試驗研究

1.1試驗裝置

試驗裝置如圖1所示,主要由試驗段、冷凝器、儲液罐、過冷器、齒輪栗、流量計以及預熱段組成。試驗段為光滑圓銅管,內徑分別為1.002mm和2.168mm,長200mm,水平放置。

工質為R134a制冷劑。制冷劑由儲液罐被齒輪泵抽出,經過渦輪流量計,進入預熱段。預熱后經過長100mm的發展段,進入試驗段。制冷劑在試驗段中再次被加熱,經過冷凝器,回到儲液罐。如此循環。預熱段和試驗段有均勻纏繞的銅絲,用于通電加熱R134a制冷劑。發展段的管徑與試驗段的管徑一致。溫度用T型熱電偶測量。

1.2試驗結果和不確定度分析

本試驗共獲得46組R134a在水平圓管中的強迫對流湍流傳熱試驗數據。限于篇幅,數據整理過程不予詳述。試驗參數范圍見表1。試驗的不確定度根據Kline和McClintock提出的方法確定,見表2。

2從現有文獻中獲得的管內強迫對流湍流傳熱試驗數據

除了通過試驗獲得的46組R134a管內強迫對流湍流傳熱試驗數據外,從23篇已經發表的文獻中收集了1220組試驗數據,見表3。表中的試驗數據參數范圍為:雷諾數Re=3040?651357,普朗特數Pr=0.9?7.3,熱流密度q=2?34468kW/m,質量流速G=139?39832kg/(m·s),水力直徑D=0.25?17.68mm,包含了水、氮、二氧化碳、氬、R134a、RC318和R113等7種工質。

3管內強迫對流湍流傳熱關聯式

研究者提出了很多管內強迫對流湍流傳熱關聯式,本文收集整理了14個,分別是Dittus-Boelter,Gnielinski,Sieder-Tate,Petukhov-Kirillov,Adams,Heta,Kakac,Ghajar-Tam,Hausen,Choi,Yu,Wang-Peng,Debray和Wu-Little等。由于篇幅限制,這里只列出對于本文數據庫預測精度較高的前5個關系式,見表4。表中,f為Moody摩擦因數;D為管內徑或水力直徑,單位為m;L為換熱有效長度與熱入口段長度的和,單位為m;μ為[動力]黏度,單位為Pa·s;下標w表示定性溫度為壁面溫度,其他參數的定性溫度為流體平均溫度。

4管內強迫對流湍流傳熱關聯式的評價

本文采用平均絕對誤差(MAD)作為評價管內強迫對流湍流傳熱關聯式預測精度的標準。MAD越小,預測精度越高。

此外,采用平均相對誤差反映關聯式在總體上是高估(MRD>0%)還是低估(MRD<0%)了數據庫。

利用上述試驗獲得的46組和從文獻中收集到的1220組管內強迫對流湍流試驗數據組成的數據庫,對14個管內強迫對流湍流傳熱關聯式進行評價分析。表5中列出了預測精度最高的前5個關聯式的評價結果。從表中可以看出,預測精度最高的是Gnielinski關聯式,MAD=19.5%。Gnielinski、Sieder-Tate和Ghajar-Tam關聯式對壁溫的影響進行了修正。這種修正有助于提高公式的預測精度,但同時也增加了公式使用的困難。另外,在實際應用中,由于壁溫一般是未知條件,含有與壁溫有關的參數會增加公式預測的不確定性。綜合分析可知,管內強迫對流湍流傳熱關聯式還需進一步深入研究。

圖2和圖3分別是Gnielinski公式和Dittus-Boelter公式傳熱系數計算值與試驗值的比較??梢钥闯?,在傳熱系數大于60kW/(m·K)時,Gnielinski公式的計算精度顯著高于Dittus-Boeltert1]公式的計算精度。

圖4和圖5分別是Gnielinski公式和Dittus-Boelter公式努塞爾數計算值與試驗值的比較??梢钥闯?,當努塞爾數Nu=150?250時,Dittus-Boelter公式預測精度較高,其他情況下,Gnielinski公式預測精度較高。

5結論

本文建立了一個由1266組試驗數據組成的管內強迫對流湍流傳熱試驗數據庫,包括作者試驗獲得的46組和從現有文獻中獲取的1220組。用該數據庫對14個管內強迫對流湍流傳熱關聯式進行了評價分析,可以得出以下結論:

(1)基于本文數據庫,預測準確度最好的前5個關聯式依次為Gnielinski,Dittus-Boelter,Sieder-Tate、Petukhov-Kirillov和Ghajar-Tam關聯式,其MAD分別為19.5%、21.4%、23.3%、23.4%和24.2%。

(2)在本文數據范圍內,在傳熱系數大于60 kW/(m2·K)時,Gnielinski公式的計算精度顯著高于Dittus-Boelter公式的計算精度;當Nu=150?250時,Dittus-Boelter公式預測精度較高,其他情況下,Gnielinski公式預測精度較高。

(3)Gnielinski、Sieder-Tate和Ghajar-Tam關聯式引入了壁溫影響的修正,實際應用中含有與壁溫有關的參數會增加公式預測的不確定性,當壁溫和流體溫度相差不是很大時,可舍去壁溫修正項。

(4)管內強迫對流湍流傳熱關聯式的預測精度仍有待提高。

參考文獻

[1]Dittus F W,Boelter L M K.Heat transfer in automobile radiator of the tubular type[J].International Communications in Heat and Mass Transfer,1985,12(l):3-22.

[2]Gnielinski V.New equations for heat and mass transfer in turbulent pipe and channel flow[J].International Chemical Engineering,1976,16(2):359-368.

[3]Kline S J,Me Clintock F A.Describing uncertainties in singlesample experiments[J].Mechanical Engineering,1953,75:3-8.

[4]Liang Z H,Wen Y,Gao C,et al.Experimental investigation on flow and heat transfer characteristics of single-phase flow with simulated neutronic feedback in narrow rectangular channel[J].Nuclear Engineering&Design,2012,248:82-92.

[5]Wang C C,Chiou C B,Lu D C.Single-phase heat transfer and flow friction correlations for micro fin tubes[J].International Journal of Heat&Fluid Flow,1996,17(5):500-508.

[6]Liu N,Li J.Experimental study on pressure drop of R32,R152a and R22 during condensation in horizontal minichannels[J].Experimental Thermal&Fluid Science,2016,71:14-24.

[7]Qi S L,Zhang P,Wang R Z,et al.Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes[J].International Journal of Heat&Mass Transfer,2007,50(9-10):1993-2001.

[8]Ma J,Li L,Huang Y,et al.Experimental studies on singlephase flow and heat transfer in a narrow rectangular channel[J].Nuclear Engineering&Design,2011,241(8):2865-2873.

[9]Adams T M,Dowling M F,Abdel-Khalik S I,et al.Applicability of traditional turbulent single-phase forced convection correlations to non-circular microchannels[J].International Journal of Heat&Mass Transfer,1999,42(42):4411-4415.

[10]Tian W,Cao X,Yan C,et al.Experimental study of singlephase natural circulation heat transfer in a narrow,vertical,rectangular channel under rolling motion conditions[J].International Journal of Heat&Mass Transfer,2017,107:592-606.

[11]Wang C,Gao P,Tan S,et al.Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J].Experimental Thermal&Fluid Science,2013,44(1):490-497.

[12]Ducoulombier M,Colasson S,Haberschill P,et al.Charge reduction experimental investigation of C02,single-phase flow in a horizontal micro-channel with constant heat flux conditions[J].International Journal of Refrigeration,2011,34(4):827-833.

[13]Grohmann S.Measurement and modeling of single-phase and flow-boiling heat transfer in microtubes[J].International Journal of Heat&Mass Transfer,2005,48(19):4073-4089.

[14]Meyer J P,Mckrell T J,Grote K.The influence of multi-walled carbon nanotubes on single-phase heat transfer and pressure drop characteristics in the transitional flow regime of smooth tubes[J].International Journal of Heat&Mass Transfer,2013,58(1-2):597-609.

[15]Aroonrat K,Jumpholkul C,Leelaprachakul R,et al.Heat transfer and single-phase flow in internally grooved tubes[J].International Communications in Heat&Mass Transfer,2013,42(3):62-68.

[16]Fernando P,Palm B,Ameel T,et al.A minichannel aluminium tube heat exchanger-Part I:Evaluation of single-phase heat transfer coefficients by the Wilson plot method[J].International Journal of Refrigeration,2008,31(4):669-680.

[17]Man C,Lv X,Hu J,et al.Experimental study on effect of heat transfer enhancement for single-phase forced convective flow with twisted tape inserts[J].International Journal of Heat&Mass Transfer,2016,106:877-883.

[18]Bang I C,Chang S H,Baek W P.Visualization of the subcooled flow boiling of R-134a in a vertical rectangular channel with an electrically heated wall[J].International Journal of Heat&Mass Transfer,2004,47(19):4349-4363.

[19]Sarwar M S,Jeong Y H,Chang S H.Subcooled flow boiling CHF enhancement with porous surface coatings[J].International Journal of Heat&Mass Transfer,2007,50(17):3649-3657.

[20]Hua S,Huang R,Li Z,et al.Experimental study on the heat transfer characteristics of subcooled flow boiling with cast iron heating surface[J].Applied Thermal Engineering,2015,77:180-191.

[21]Vlachou M C,Lioumbas J S,David K,et al.Effect of channel height and mass flux on highly subcooled horizontal flow boiling[J].Experimental Thermal&Fluid Science,2017,83:157-168.

[22]Yan J,Bi Q,Cai L,et al.Subcooled flow boiling heat transfer of water in circular tubes with twisted-tape inserts under high heat fluxes[J].Experimental Thermal&Fluid Science,2015,68:11-21.

[23]Belyaev A V,Varava A N,Dedov A V,et al.An experimental study of flow boiling in minichannels at high reduced pressure[J].International Journal of Heat&Mass Transfer,2017,110:360-373.

[24]Hata K,Masuzaki S.Subcooled boiling heat transfer for turbulent flow of water in a short vertical tube[J].ASME Journal of Heat Transfer,2009,132(1):011501.

[25]Hata K,Masuzaki S.Critical heat fluxes of subcooled water flow boiling in a short vertical tube at high liquid Reynolds number[J].Nuclear Engineering&Design,2010,240(10):3145-3157

[26]Papell S S.Subcooled boiling heat transfer under forced convection in a heated tube[Z].Lewis Research Center,1963.

[27]Sieder E N,Tate G E.Heat transfer and pressure drop of liquids in tubes[J].Industrial&Engineering Chemistry,1936,28(12):1429-1435.

[28]Petukhov B S,Kirillov V V.On heat exchange at turbulent flow of liquid in pipes[J].Teploenergetika,1958(4):63-68.

[29]Adams T M,Abdel-Khalik S I,Jeter S M,et al.An experimental investigation of single-phase forced convection in microchannels[J].International Journal of Heat&Mass Transfer,1998,41(6-7):851-857.

[30]Hata K,Kai N,Shirai Y,et al.Transient turbulent heat transfer for heating of water in a short vertical tube[J].Journal of Power&Energy Systems,2008,2(3):318-329.

[31]Kakac S,Shah R K,Aung W.Handbook of single-phase convective heat transfer[M].New York:John Wiley and Sons,1987.

[32]Ghajar A J,Tam L M.Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations[J].Experimental Thermal&Fluid Science,1992,8(4):79-90.

[33]Rohsenow R W,Hartnett J P,Cho Y I.Handbook of heat transfer[M].McGraW-Hill,1998.

[34]Choi S B,Barron R F,Warrington R O.Fluid flow and heat transfer in microtubes[C]//Micromechanical Sensors,Actuators and Systems:Proceedings of 1991 ASME Winter Annual Meeting,1991:123-134.

[35]Hao P F,He F,Zhu K Q.Flow characteristics in a trapezoidal silicon microchannel[J].Journal of Micromechanics&Microengineering,2005,15(15):1362-1368.

[36]Wang B X,Peng X F.Experimental investigation on liquid forced-convection heat transfer through microchannels[J].International Journal of Heat&Mass Transfer,1994,37(94):73-82.

[37]Debray F,Franc J P,Maitre T,et al.Mesure des coefficients de transfert thermique par convection forcee en mini-canaux[J].Mecanique&Industries,2001,2(5):443-454.

[38]Wu P,Little W A.Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J].Cryogenics,1983,23(5):273-277.

猜你喜歡
管內湍流
與托里拆利實驗有關的題型解析
為什么快速關水龍頭時,會產生很大的噪聲?
自然對流對吸熱管內熔鹽對流傳熱的影響
年輕恒牙的根管內血運重建
作為一種物理現象的湍流的實質
湍流的多尺度與多分辨方法
湍流十章
旋轉分層與導電液體中的湍流
磁流體動力學湍流
均相湍流動力學
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合