?

動脈瘤栓塞手術液固兩相流數值模擬分析

2020-12-24 08:01張洋樊俊杰陳盈盈陳廣新王汝良任春娜
軟件 2020年7期
關鍵詞:渦流壁面栓塞

張洋 樊俊杰 陳盈盈 陳廣新 王汝良 任春娜

摘? 要: 不同程度動脈瘤栓塞的紅細胞顆粒運動狀況數值模擬,應用液固兩相流計算流體力學仿真,血液流動采用瞬態,血管壁采用剛性壁模擬。通過仿真計算,最終獲取動脈瘤栓塞程度不同的兩相流的血流狀況:動脈瘤栓塞程度不同,導致動脈瘤內紅細胞體積分數分布不同,血流速度分布、壁面切應力分布不同,栓塞也導致紅細胞聚集現象不同。

關鍵詞: 動脈瘤栓塞;多相流;紅細胞聚集

中圖分類號: TP391.4 ???文獻標識碼: A??? DOI:10.3969/j.issn.1003-6970.2020.07.029

本文著錄格式:張洋,樊俊杰,陳盈盈,等. 動脈瘤栓塞手術液固兩相流數值模擬分析[J]. 軟件,2020,41(07):143-147+169

Numerical Simulation of Liquid-solid Two-phase Flow in Aneurysm Embolization

ZHANG Yang1, FAN Jun-jie2, CHEN Ying-ying3, CHEN Guang-xin3, WANG Ru-liang4, REN Chun-na3

(1. Department of Laboratory Medicine, Second Affiliated Hospital, Mudanjiang Medical College, Heilongjiang, Mudanjiang 157011;2. School of Health Management, Mudanjiang College of Medicine, Heilongjiang, Mudanjiang 157011;3. College of Medical Imaging, Mudanjiang Medical College, Heilongjiang, Mudanjiang 157011;4. Department of Radiology, Red Flag Hospital, Mudanjiang Medical College, Heilongjiang, Mudanjiang 157011)

【Abstract】: The Movement of Red Blood cell particles in different degrees of aneurysm embolization was simulated by liquid-solid flow simulation, transient blood flow simulation and rigid wall simulation, respectively. Finally, the blood flow of two-phase flow with different degrees of aneurysm embolization was obtained by simulation calculation. The different degrees of aneurysm embolization resulted in different distributions of red blood cell volume fraction, blood flow velocity and wall shear stress, embolization also causes different aggregations of red blood cells.

【Key words】: Aneurysm; Embolization; Multiphase flow; Erythrocyte aggregation

0? 引言

顱內動脈瘤(Intracranial aneurysm,IA)是多種因素導致的動脈壁的異常瘤樣擴張,常發生于顱內大動脈的分叉及彎曲處,破裂會導致蛛網膜下腔出血,具有極高的致死率及致殘率。影響動脈瘤生長和破裂的因素主要包括先天生理性、病理性及血流動力學因素。對于IA的治療主要包括開顱夾閉術及血管內介入栓塞兩種方法[1-3]。無論是哪種方法,由于動脈瘤自身的復雜性及不完全閉塞的發生,即使是有經驗的臨床醫生,術后的復發率依舊很高[4-7]。栓塞手術由于創傷小,操作相對簡單等優勢和栓塞材料及技術的不斷發展進步逐漸被廣泛應用于臨床。但同時由于彈簧圈具有可壓縮性使得動脈瘤復發的可能性大大增加,有研究表明栓塞程度是動脈瘤復發的重要影響因素,Brzegowy等人回顧性分析破裂與未破裂前交通動脈瘤的栓塞治療,同樣得出影響顱內動脈瘤復發的最大因素就是栓塞密度,初始栓塞的不完全極易引起動脈瘤的復發[8-9]。栓塞程度低,彈簧圈會隨著血流的沖擊逐漸壓縮,進而向遠側移位、復發。趙慶平等提出瘤腔內的血流速度與瘤腔大小呈負相關,即栓塞程度越低,腔內血流速度加快時,血液對壁面產生的力就可能導致動脈瘤的復發[10]。但這些研究并未明確指明血流動力學因素在不同栓塞程度下的變化。近年來隨著計算機的發展及有限元軟件的開發,尤其是計算流體動力學數值模擬方法的應用,使得血流建模能更好解釋血流動力學在IA發病機制中的作用[11-16]。因此為了探究不同栓塞密度下血流動力學的具體變化,建立了不同栓塞程度的模型,來為臨床醫生制定更好的栓塞策略提供指導。

1? 材料與方法

1.1 ?個體化模型構建

本文研究采用牡丹江醫學院附屬紅旗醫院影像科提供的一例真實基底動脈頂端動脈瘤患者的DICOM格式的頭部CTA影像資料。動脈瘤CTA影像顯示位置如圖1所示。

在MIMICS軟件(Materialise公司,比利時)中,對DICOM格式數據進行閾值分割、三維重建,然后利用3-matic(Materialise公司,比利時)軟件對獲取的初步模型去除細小分支血管、保留載瘤動脈血管,截取出、入口平面,最后對三角面片進行光滑,獲取動脈瘤的理想模型[17-18](圖2)。

為了比較不完全栓塞、完全栓塞、栓塞手術前的動脈瘤血流動力學參數的差異,本文在栓塞數千的動脈瘤模型基礎上構建了中度栓塞和完全栓塞的模型(圖3)。

1.2 ?網格劃分

利用ANSYS FLUNET MESHING軟件對術前動脈瘤模型、不完全栓塞動脈瘤模型、完全栓塞動脈瘤模型進行四面體網格劃分,為保證計算精度,邊界層6層加密。

1.3 ?血液兩相流控制方程

血液為有形成分與血漿組成。血漿占血液總體積的55%,而懸浮在血漿中的有形成分主要是紅細胞、白細胞、血小板三類,其中紅細胞占95%[19-20]。在液固兩相流模型中,考慮到血細胞中絕大部分是紅細胞而在計算中忽略其它有形成分的影響,假設血液是由紅細胞懸浮于血漿構成的兩相流系統。液相(連續相):血漿設為不可壓縮的牛頓流體。固相(離散相):紅細胞設定為球形剛性顆粒,顆粒液固兩相流的控制方程為[21-25]

1.4 ?邊界條件與參數設定

利用ANSYS FLUENT計算流體力學分析軟件進行瞬態仿真計算。邊界條件設定為:入口為速度入口,液相與固相采用相同的速度波形。速度入口曲線如圖4所示。

2 ?計算結果

2.1 ?紅細胞體積分數

圖5為動脈瘤入口紅細胞速度達到峰值時刻圖,選取紅細胞速度達到峰值時刻的動脈瘤0度栓塞、50%栓塞、100%栓塞的動脈瘤紅細胞體積分數圖進行分析(圖6、圖7、圖8)。由圖可見,在動脈瘤栓塞0度時,動脈瘤的紅細胞在瘤頸處出現局部、少量的聚集現象,這一點符合真實臨床診斷,動脈瘤50%栓塞在瘤壁頂端形成較明顯的聚集情況,而動脈瘤100%栓塞在瘤壁頂端形成更為明顯的聚集情況。動脈瘤的紅細胞聚集則形成血栓。

2.2 ?血液速度場

本文通過計算,比較了三種不同程度栓塞的動脈瘤流場分布,如圖9、10、11所示,動脈瘤0度栓塞、動脈瘤50%栓塞、動脈瘤100%栓塞均出現不同程度的渦流,流體從載瘤管方向沖向瘤頸遠端,然后順著瘤壁形成渦流,渦流的中心偏向瘤頸的遠端,載流管內的有形顆粒進入流體內部并在渦流中心停留堆積,最終形成血栓。50%程度栓塞時,瘤內的速度相較于0程度栓塞較快,說明栓塞起到了提高瘤內的血液流動能力,而相較于100%栓塞程度的動脈瘤,50%不完全栓塞的動脈瘤的流線存在不穩定現象。

2.3 ?壁面剪切應力分布

為便于觀察,在瘤頸處選擇一點為觀察點。圖12、圖13、圖14為動脈瘤0度栓塞、動脈瘤50%栓塞、動脈瘤100%栓塞的觀察點壁面切應力隨時間變化曲線。由三個圖可見,動脈瘤瘤壁的壁面壓力隨時間變化,但隨著動脈瘤的栓塞程度變化為栓塞程度越大,壁面壓力越大,說明栓塞有助于改變壁面壓力程度。瘤頂附近的剪切應力不足 , 將導致了血管內皮 細胞出現變形和功能退化, 所以瘤頂區域為高危易破裂的區域,栓塞手術可降低破裂風險。

3 ?結論與展望

本文通過對動脈瘤0度栓塞、50%栓塞、100%栓塞進行了多項流顆粒物數值模擬,得出以下結論:

(1)動脈瘤栓塞程度越高越有利于紅細胞在動脈瘤中的濃度極化,形成血栓。

(2)動脈瘤栓塞程度越高,越降低流場的渦流程度。

(3)動脈瘤的栓塞程度越高,可提高瘤壁的壁面剪切應力,降低動脈瘤破裂風險。

本文的創新之處在于在動脈瘤數值模擬中考慮了紅細胞顆粒運動的影響,分析了紅細胞運動在動脈瘤栓塞手術中的濃度極化現象。本文不足之處在于樣本量不足,因此,在下一步研究中應增加臨床樣本量;此外,考慮到實驗技術條件所限,本文計算采用的時血管剛性壁,血管壁實際為彈性壁,在下一步研究中,將拓展到超彈性結構的血管壁與血液雙向流固耦合分析。

參考文獻

  1. Wang Hua-Wei, Sun Zheng-Hui, Wu Chen et al. Surgical management of recurrent aneurysms after coiling treat?ment[J]. Br J Neurosurg, 2017, 31: 96-100.

  2. Phan Kevin, Huo Ya R, Jia Fangzhi et al. Meta-analysis of stent-assisted coiling versus coiling-only for the treatment of intracranial aneurysms[J]. J Clin Neurosci, 2016, 31: 15-22.

  3. Gawlitza Matthias, Soize Sebastien, Januel Anne-Christine et al. Treatment of recurrent aneurysms using the Woven EndoBridge(WEB): anatomical and clinical results[J]. J Neurointerv Surg, 2018, 10: 629-633.

  4. Huang De-Zhang, Jiang Bin, He Wei et al. Risk factors for the recurrence of an intracranial saccular aneurysm following endovascular treatment[J]. Oncotarget, 2017, 8: 33676- 33682.

  5. Yu Le-Bao, Fang Zhi-Jun, Yang Xin-Jian et al. Management of Residual and Recurrent Aneurysms After Clipping or Coiling: Clinical Characteristics, Treatments, and Follow-Up Outcomes[J]. World Neurosurg, 2019, 122: e838-e846.

  6. Zhang Donghuan, Wang Honglei, Liu Tianyi et al. Re-Recurrence of Intracranial Aneurysm with Proximal Vascular Stenosis After Primary Clipping and Secondary Endovascular Embolization: A Case Report and Literature Review[J]. World Neurosurg, 2019, 121: 28-32.

  7. Kim S-T, Baek J W, Jin S-C et al. Coil Embolization in Patients with Recurrent Cerebral Aneurysms Who Previously Underwent Surgical Clipping[J]. AJNR Am J Neuroradiol, 2019, 40: 116-121.

  8. Brzegowy Pawe?, Kucyba?a Iwona, Krupa Kamil et al. Angiographic and clinical results of anterior communicating artery aneurysm endovascular treatment[J]. Wideochir Inne Tech Maloinwazyjne, 2019, 14: 451-460.

  9. Chueh Ju-Yu, Vedantham Srinivasan, Wakhloo Ajay K et al. Aneurysm permeability following coil embolization: packing density and coil distribution[J]. J Neurointerv Surg, 2015, 7: 676-81.

  10. Zhao Qingping, Chen Guangzhong, Li Tielin, Zhao Wei, Yuan Yuan, Feng Yanqiu. Hemodynamic analysis of embolization density and recurrence of intracranial aneurysm[J]. Chinese Journal of neuropsychiatric diseases, 2013, 39(06): 339-343

  11. Liang Li, Steinman David A, Brina Olivier et al. Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture-a systematic review and novel parameter- ranking tool[J]. J Neurointerv Surg, 2019, 11: 153-158.

  12. Valen-Sendstad Kristian, Bergersen Aslak W, Shimogonya Yuji et al. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge[J]. Cardiovasc Eng Technol, 2018, 9: 544-564.

  13. Roloff Christoph, Stucht Daniel, Beuing Oliver et al. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD[J]. J Neurointerv Surg, 2019, 11: 275-282.

  14. Frolov S V, Sindeev S V, Liepsch D et al. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids[J]. Technol Health Care, 2016, 24: 317-33.

  15. Botti Lorenzo, Paliwal Nikhil, Conti Pierangelo et al. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes[J]. Int J Numer Method Biomed Eng, 2018, 34: e3111.

  16. Xiang J, Tutino V M, Snyder K V et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment[J]. AJNR Am J Neuroradiol, 2014, 35: 1849-57.

  17. Resnick Nitzan, Yahav Hava, Shay-Salit Ayelet et al. Fluid shear stress and the vascular endothelium: for better and for worse[J]. Prog. Biophys. Mol. Biol., 2003, 81: 177-99.

  18. Davies Peter F, Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology[J]. Nat Clin Pract Cardiovasc Med, 2009, 6: 16-26.

  19. Shojima Masaaki, Oshima Marie, Takagi Kiyoshi et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms[J]. Stroke, 2004, 35: 2500-5.

[20]??? Boussel L, Rayz V, Mcculloch C, et al. Aneurysm Growth Occurs at Region of Low Wall Shear Stress: Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study[J]. Stroke, 2008, 39(11): 2997-3002.

[21]??? Reneman Robert S, Arts Theo, Hoeks Arnold P G, Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory[J]. J. Vasc. Res., 2006, 43: 251-69.

[22]??? Yeow Siang Lin, Leo Hwa Liang, Is Multiple Overlapping Uncovered Stents Technique Suitable for Aortic Aneurysm Repair?[J]. Artif Organs, 2018, 42: 174-183.

[23]??? Suzuki Tomoaki, Stapleton Christopher J, Koch Matthew J et al. Decreased wall shear stress at high-pressure areas predicts the rupture point in ruptured intracranial aneurysms[J]. J. Neurosurg., 2019, undefined: 1-7.

[24]??? Omodaka Shunsuke, Sugiyama Shin-Ichirou, Inoue Takashi et al. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis[J]. Cerebrovasc. Dis., 2012, 34: 121-9.

[25]??? Dabagh Mahsa, Nair Priya, Gounley John et al. Hemo-

dynamic and morphological characteristics of a growing cerebral aneurysm[J]. Neurosurg Focus, 2019, 47: E13.

[26]??? Zhang Yisen, Jing Linkai, Zhang Ying et al. Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review.[J]. BMC Neurol, 2016, 16: 231.

[27]??? Liu Xiuxian. Hemodynamic study of surgical treatment of intracranial aneurysm[D]. Southeast University, 2017

[28]??? Chang Yu, Liu Chang, Zhang Qi, Shi Yue, Gao Bin. Hemodynamic study on the influence of Subarachnoid Aneurysm on the risk of cerebral aneurysm rupture[J]. Journal of Beijing University of technology, 2017, 43(07): 1079-1085. Computational fluid dynamics analysis[J]. Cerebrovasc. Dis., 2012, 34: 121-9

[29]??? Murayama Yuichi, Fujimura Soichiro, Suzuki Tomoaki et al. Computational fluid dynamics as a risk assessment tool for aneurysm rupture.[J]. Neurosurg Focus, 2019, 47: E12.

[30]??? Sheng Bin, Wu Degang, Yuan Jinlong et al. Hemodynamic Characteristics Associated With Paraclinoid Aneurysm Recurrence in Patients After Embolization[J]. Front Neurol, 2019, 10: 429.

猜你喜歡
渦流壁面栓塞
二維有限長度柔性壁面上T-S波演化的數值研究
基于CFD仿真分析的各缸渦流比一致性研究
水蛭破血逐瘀,幫你清理血管栓塞
渦流傳感器有限元仿真的研究與實施
壁面溫度對微型內燃機燃燒特性的影響
介入栓塞治療腎上腺轉移癌供血動脈的初步探討
體外膜肺氧合在肺動脈栓塞中的應用
關于CW-系列盤式電渦流測功機的維護小結
電渦流掃描測量的邊沿位置反演算法研究
顆?!诿媾鲎步Ec數據處理
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合