?

茉莉素、生長素和表觀遺傳調控水稻穎花發育的研究進展

2021-03-28 02:57陳睿
福建農業科技 2021年1期
關鍵詞:生長素水稻

陳睿

摘 要:穎花是水稻的繁殖器官和形成籽粒的基礎,其正常發育直接影響稻谷產量和稻米品質。因此,研究水稻穎花發育的分子調控機理,對于水稻發育的基礎理論研究和農業育種具有重要的意義。近年來的研究結果表明茉莉素、生長素和表觀遺傳在水稻穎花發育中具有重要的調控作用。綜述了茉莉素、生長素和表觀遺傳在調控水稻穎花的產生和形態建成等方面的最新研究進展,并提出未來研究需要分離更多相關基因以充實水稻穎花發育調控網絡,促進其分子機制的解析。

關鍵詞:水稻;穎花;茉莉素;生長素;表觀遺傳

中圖分類號:S 511 文獻標志碼:A 文章編號:0253-2301(2021)01-0062-06

DOI:10.13651/j.cnki.fjnykj.2021.01.011

Abstract:The floret are the reproductive organs of rice and the basis of grain formation, and their normal development directly affects the yield and quality of rice. Therefore, it is of great significance to study the molecular regulation mechanism of rice floret development for the basic theoretical research of rice development and agricultural breeding. The research results in recent years have shown that jasmonates, auxin and epigenetics have important regulating effect in rice floret development. In this paper, the recent research progress in the regulation of jasmonates, auxin and epigenetics on the production of rice floret and their morphogenesis were reviewed, and it was suggested that more related genes should be isolated in further studies, thus to enrich the regulatory network of rice floret development and promote the analysis of their molecular mechanisms.Key words:Rice; Floret; Jasmonates; Auxin; Epigenetics

水稻Oryza sativa L.是世界重要的糧食作物之一。穎花是水稻花序的基本結構單位[1],由1個穎花軸、2個退化穎片(副護穎)、2個不育外稃(護穎)和1朵小花組成[2-4]。小花從外向內依次為內外稃(內外穎)、漿片、雄蕊和雌蕊;內外稃包被漿片、雄蕊和雌蕊,共同成為水稻成熟谷粒中的谷殼[5-6]。因此,水稻穎花不僅是繁殖器官,而且是形成籽粒的基礎,其正常發育直接影響稻谷產量和稻米品質,探明水稻穎花發育的分子調控機理具有重要的理論與實際意義[7-8]。

越來越多的證據表明水稻穎花發育是眾多基因參與的復雜而又精細的生物學過程,其與雙子葉擬南芥在花器官形態建成過程中既保守又獨特[9-12]。水稻穎花具有禾本科特有的器官穎殼,即退化穎片、不育外稃和內外稃。近年來,研究結果表明水稻漿片同源于花瓣,與雄雌蕊構成水稻的內輪花器官;內稃可能與花萼同源;退化穎片、不育外稃和外稃可能是苞葉的同源器官。水稻中已克隆多個與擬南芥功能相似的花同源異型

MADS-box基因,建成了調控水稻穎花屬性的ABCDE模型。除了MADS-box家族基因外,研究還發現茉莉素、生長素和表觀遺傳對水稻穎花發育具有重要的調控作用。本文綜述了茉莉素、生長素和表觀遺傳對水稻穎花調控的最新研究進展,以期為水稻穎花發育的分子機理研究提供科學參考。

1 茉莉素調控水稻的穎花發育

茉莉素指茉莉酸(JA)和茉莉酸甲酯(MeJA)、12氧代植物二烯酸(OPDA)等環戊酮的衍生物[13]。已克隆的茉莉素合成及轉導的相關基因EG1[14]、EG2/OsJAZ1[14]、DFO2[15-16]、OsOPR7[16]和OsMYC2[17]在穎花早期發育中發揮著重要的作用。

EG1屬于磷脂酶A1家族Ⅰ類,同源于擬南芥DAD1和DGL基因,是JA生物合成途徑在葉綠體內的重要酶;EG2/OsJAZ1是JA信號抑制因子。兩基因單突變均導致不育外稃伸長,額外穎片狀結構產生;內稃邊緣區缺失,主體結構具有5個維管束等外稃特征;漿片向穎片-漿片鑲嵌結構轉化;雄雌蕊數目減少。雙突變穎花產生更多的額外穎片狀結構,花器官喪失特性轉化為穎片狀或雙生花穗狀結構。EG1和EG2/OsJAZ1基因單雙突穎花的異常表明水稻花分生組織決定性和花器官的特性,首次證實JA在水稻穎花發育的重要作用。JA通過OsCO1b介導的蛋白酶體途徑促進OsJAZ1降解。OsJAZ1與OsMYC2相互作用并抑制OsMYC2,觸發OsMADS1的轉錄活性,從而直接調控OsMADS1的表達。同時突變體中OsMADS1、OsMADS7和OsMADS8表達量均下調,推測JA可能通過激活OsMADS1、OsMADS7和OsMADS8的表達來調控穎花的早期發育[14]。

DFO2編碼過氧化物酶體靶向序列1受體蛋白OsPEX5,功能缺失水稻產生異常穎花:不育外稃缺失或伸長,額外穎片、側生小花以及內外稃異常;漿片轉化為穎片狀結構;雄蕊數量1~7個或轉化成雌雄蕊嵌合體,雌蕊多個柱頭或心皮。DFO2/OsPEX5負責過氧化物酶體蛋白OsOPR7的定位。OsOPR7編碼12氧植物二烯酸還原酶,在JA生物合成中負責催化OPDA生成OPC8:0[15];基因敲除突變體表現出開放穎殼的異常穎花,花序內源JA和JAIle水平均顯著下降,外源施加外源MeJA挽救部分穎花表型,證實OsPEX5通過調節OsOPR7的過氧化物酶體輸入從而調控JA生物合成,進而影響穎花發育[16]。

堿性螺旋環螺旋轉錄因子OsMYC2是早期JA信號的正調控因子[17]。Osmyc2突變體表現出比dfo2更嚴重的穎花異常表型,同時dfo2中OsMYC2表達下調,這些再次證實JA在調節水稻穎花發育中的關鍵作用。但OsPEX5和OsOPR7基因在Osmyc2和野生型植株內的表達水平沒有差異,說明OsPEX5、OsOPR7和OsMYC2之間不存在反饋調節。OsMYC2與OsJAZ1、OsJAZ3和OsJAZ6相互作用,可能是以上3個基因的共同直接靶標;OsMADS1、OsMADS7和OsMADS14是OsMYC2的直接下游靶基因。

2 生長素調控水稻穎花發育

隨著生長素(IAA)合成、信號傳遞和極性運輸相關基因OsARF1[18]、OsARF18[19]、OsARF19[20]、TDD1[21]和OsPID[22-25]功能的解析證實生長素在調控水稻穎花花生分組織及花器官屬性過程中起關鍵作用[10,13]。

生長素反應由一類稱為生長素反應因子(Auxin response factors,ARFs)的轉錄因子介導,在缺乏生長素的情況下,這些轉錄因子會被Aux/IAA蛋白質抑制[26]。水稻中有25個生長素反應因子,其中OsARF1主要表達于幼穗和愈傷組織。抑制OsARF1表達導致轉基因植株生長矮小,無花、開花延遲或不育等生殖發育缺陷[18]。OsARF18是OsmiR160的靶基因。mOsARF18植株中OsARF18基因產生OsmiR160抗性,表達明顯上調;植株矮化,分蘗較少,葉子短且卷曲,內外稃突變無法封閉保護內輪花器官,雄蕊異常衰老且結實率降低。OsmiR160解除對OsARF18的調控使生長素合成、信號傳導和極性運輸的相關基因,以及體內OsmiR160主要來源的OsMIR160a、OsMIR160b基因表達下調,表明該突變表型是由于OsmiR160以負反饋環路方式微調生長素信號途徑遭破壞,從而造成水稻生長發育異常[19]。

TDNA插入阻斷OsARF19基因轉錄導致水稻穎花產生3種異常類型且育性降低:內稃同側增生1個外稃狀器官,彎曲頂部的增大狀內稃導致開穎,從輕微退化到完全喪失的退化內稃。RNAi突變體表現出與T-DNA插入相似表型,證實OsARF19下調或缺失表達造成花器官的異常發育。OsARF19優勢表達于葉片、葉片接合部、基部節間、幼穗、雄蕊和根。osarf19突變體中參與生長素合成的基因上調,參與生長素失活基因下調,而異?;ㄆ鞴僦蠴sMDAS22、OsMDAS29表達顯著上調,OsMADS3、CFO1/OsMDAS32表達輕微上調。上調的MADS-box基因啟動子均含有生長素應答元件(AuxREs,TGTCTC),暗示基因功能可能受到ARF的影響[20]。鑒于OsMADS22和OsMADS29的異位表達同樣呈現osarf19相似的內稃紊亂表型,表明花器官的異??赡苁怯捎诓灰巹t的局部生長素濃度及其反應引起的[20,27-28]。

色氨酸生物合成途徑是植物IAA生物合成的關鍵步驟之一。TDD1編碼OASB1基因,是色氨酸生物合成的限速酶。tdd1突變體在色氨酸生物合成中存在部分缺陷,胚胎致死,其上皮細胞的胚性愈傷組織能夠再生整個植株。再生植株矮化,葉片和花器官形態異常?;蔚膬韧怙g形成了一個不正常的間隙,漿片位置偶爾出現外稃狀器官,雄蕊數目0~7個,漿片與雄蕊、雄蕊與雌蕊均可形成融合狀器官,育性極低。通過過表達Trp依賴的IAA合成途徑的關鍵酶OsYUCCA1提高生長素的內源性水平部分挽救tdd1表型,證實生長素調控水稻花器官發育[21]。

OsPID是生長素極性運輸基因。該基因過表達雌蕊柱頭數增加,雄蕊數降低;缺失則造成內外稃、漿片異常發育,雌蕊柱頭和花柱發生不同程度退化,毛刷狀結構稀疏,雄蕊數目增加,結實率下降或不育[22-25]。最新研究首次提出OsPID調控水稻花器官的形成和發育的分子機制[25]:通過磷酸化OsPIN1a和OsPIN1b調控生長素的運輸,改變生長素的極性分布,同時與OsMADS16、LAX1等轉錄因子相互作用調控水稻花器官的形成和發育;另外,OsPID與LAX1/LAX2互作,通過控制水稻的分枝和分蘗而影響產量。

穎花異常突變體中生長素相關重要基因表達量下調則從另一層面表明生長素對水稻穎花發育具有重要的調控作用。ASP1編碼一個轉錄共抑制因子,突變導致水稻發育過程中的多效性表型,如不規則的分枝模式、異常的穎花形態、葉序排列紊亂和腋芽休眠解除。asp1中生長素響應因子OsIAA20表達水平顯著上調,表明asp1中OsIAA20表達對生長素的響應較野生型高,推測在野生型植株OsIAA20表達受反饋調節的控制,目的是防止生長素的過度反應,但這種調節可能在asp1中被破壞[29]。osmads1突變體的轉錄組分析顯示生長素響應基因如OsARF-GAP、OsETTIN2、OsARF9、OsARF16、OsARF18和生長素極性運輸基因OsPIN1等表達水平均產生明顯改變,推測在小花發育過程中OsMADS1對生長素信號轉導有直接的調節作用[30]。OsMADS29過表達產生異?;ㄐ?,僅有4朵小花。內稃顯著縮小,漿片基本正常,雄蕊無花藥,雌蕊失去羽狀外觀且柱頭無毛變形。過表達植株中參與生長素信號傳導的OsSAUR10、OsSAUR12基因表達量上調,OsIAA24等相關基因表達下調,表明生長素信號通路被破壞[31]。

3 表觀遺傳調控水稻穎花發育

表觀遺傳修飾包括DNA甲基化、組蛋白修飾和非編碼RNA調控等,目前研究表明其調控水稻穎花發育[32-34]。JMJ706功能的闡明首次證實表觀遺傳修飾調控水稻穎花的發育。該基因編碼一種異染色質相關的H3K9去甲基化酶,T-DNA插入導致植株穎花部分內稃或外稃缺失,部分增生1個額外內稃;雌雄蕊數目增多;部分穎花生成玻璃狀結構或產生畸形種子。Sun等[35-36]發現JMJ706特異性清除水稻中組蛋白H3K9me2和H3K9me3,推測JMJ706可能是花器官發育相關基因OsMADS47和DH1的靶向基因。

PcG是表觀遺傳抑制因子,形成PRC2介導組蛋白H3K27me3調控水稻穎花的發育。OsVIL2同源于擬南芥VIN3,是PRC2的組成部分。OsVIL2與OsEMF2b互作,在穎花發育的早期起作用,是穎花正常發育所必需的[37-38]。OsEMF2b與OsLFL1啟動子區結合,維持OsLFL1的H3K27me3,正調控水稻開花。同時OsEMF2b直接靶向H3K27me3標記的OsMADS4,調控水稻花的形態[32]。OsFIE1與擬南芥中PRC2的核心成分FIE同源,含有WD40結構域。突變體Epi-df植株矮化,分蘗增多,小花呈現一系列缺陷,包括額外內稃或外稃的形成,伸長的漿片,雄雌蕊數目的改變,結實率顯著降低;FIE1啟動子和5′區域表現出低甲基化,H3K9me2減少,H3K4me3增加;數百個基因的H3K27me3水平受到干擾,表明DNA甲基化、H3K9me2和H3K27me3之間互相協調,共同調控水稻的穎花發育[39]。

MicroRNAs(miRNAs)是水稻穎花發育的重要調控因子,通過與靶mRNA的互補配對,造成mRNA的降解或翻譯抑制[34,39]。水稻miR172家族有4個成員(miR172a-d)。miR172通過靶向AP2基因調控花器官的特性和花分生組織的確定性,特別是外稃/內稃的伸長[40-41]。miR172家族過表達植株均顯示嚴重的花器官異常,內外稃扭曲均無法閉合,內外稃間的連鎖結構缺失。同時OsMADS1對miR172具有抑制作用,OsMADS1-miR172-AP2形成調控網絡參與花器官的發育[42]。OsmiR396d及其靶基因OsGRFs對于維護內外稃間的連鎖是必不可缺的。 OsmiR396d負調控OsGRFs,OsGRFs與其輔激活子OsGIF1相互作用直接激活包括OsJMJ706和OsCR4在內的靶基因的表達,從而影響穎殼的開放和不育外稃長度等[43-45]。

siRNAs介導的DNA甲基化(RdDM)途徑在水稻穎花發育過程也扮演重要角色。OsDRM2編碼水稻主要的DRM1/2型甲基轉移酶基因,定向破壞該基因產生嚴重生長缺陷和異常DNA甲基化。osdrm 2不抽穗或抽穗延遲,形成小且未成熟圓錐花序,穎花異常,多稃且鮮少開穎,有雌蕊和花藥但無花粉,完全不育。進一步研究發現OSDRM2受損細胞缺失RdDM過程的從頭甲基化[46]。另一個參與RdDM途徑的相關基因OsFDML1,同源于擬南芥IDN 2/RDM 12基因,優勢表達于花序和穎花。osfdml 1穎花數量劇減,內稃缺失邊緣區域,主體部分轉化為外稃狀,漿片數目增多、柱頭和心皮融合數量增加,分生組織不確定。OsMADS6直接靶向OsFDML1基因,OsFDML1蛋白與近親同源物OsFDML2形成異源二聚體調控水稻花發育[47]。

4 展望

正常的水稻穎花是后代繁育和稻谷產值的重要保證,因此其調控機制的研究一直備受植物學家和育種工作者的關注。近年來,在退化穎片、不育外稃及內外稃的建成和屬性,高階蛋白復合物、激素和表觀遺傳調控等方面的研究取得了顯著進展,讓學者們意識到穎花發育調控的復雜性。隨著一系列控制水稻穎花發育基因的克隆,包含MADS-box和非MADS-box基因,有關水稻穎花發育的分子機制已有較為深入的了解,但相比于人們對雙子葉植物擬南芥花發育分子機制的研究還顯不足,尤其是對內源激素的合成、信號轉導以及表觀遺傳修飾如何調控水稻MADS-box基因,進而控制穎花發育進程仍知之甚少。隨著三代測序技術及CRISPR/Cas9介導的定點編輯技術的應用,結合轉錄組學、代謝組學和蛋白質組學等多組學整合分析,將有助于分離并鑒定更多有關水稻穎花發育突變體及其調控基因,進而全面闡明水稻穎花發育的分子機制。

參考文獻:

[1]JUN-ICHI I,KEN-ICHI N,KYOKO I,et al.Rice Plant Development:from Zygote to Spikelet[J].Plant Cell Physiology,2005,46(1):23-47.

[2]KELLOGG E A.Evolutionary History of the Grasses[J].Plant Physiology,2001,125(3):1198-1205.

[3]LOMBARDO F,YOSHIDA H.Interpreting lemma and palea homologies:a point of view from rice floral mutants[J].Frontiers in Plant Science,2015,6(61):61.

[4]TANAKA W,TORIBA T,HIRANO H Y.Flower development in rice[J].Advances in Botanical R- esearch,2014,72(8):221-262.

[5]楊弘遠.水稻生殖生物學[M].杭州:浙江大學出版社,2005:19-23.

[6]王忠.水稻的開花與結實[M].北京:科學出版社,2015:13-44.

[7]YOSHIDA H,NAGATO Y.Flower development in rice[J].Journal of Experimental Botany,2011,62(14):4719-4730.

[8]ALI Z,RAZA Q,ATIF R M,et al.Genetic and molecular control of floral organ identity in cereals[J].International Journal of Molecular Sciences,2019,20(11):2743.

[9]SIYI G,BO S,LIANG-SHENG L,et al.Co-ordination of flower development through epigenetic regulation in two model species:rice and arabidopsis[J].Plant Cell Physiol,2015,56(5):830-842.

[10]吳迪,袁政,張大兵.水稻小穗器官發生分子調控機制的研究進展[J].生命科學,2018,30(11):1173-1183.

[11]CINDY C,TUCKER M R,DABING Z,et al.Dissecting the role of MADS-box genes in monocot floral development and diversity[J].Journal of Experimental Botany,2018,69(10):2435-2459.

[12]SHIGE-HIRO S,YUKIKO Y,SUZUHA O,et al.Rice Flower Development Revisited:Regulation of Carpel Specification and Flower Meristem Determinacy[J].Plant and Cell Physiology,2019,60(6):1284-1295.

[13]沈衛平,蔡強,周鋒利,等.植物激素調控水稻花器官發育分子機制的研究進展[J].植物生理學報,2015,51(5):593-600.

[14]CAI Q,YUAN Z,CHEN M,et al.Jasmonic acid regulates spikelet development in rice[J].Nature Communications,2014,5:3476.

[15]TANI T,SOBAJIMA H,OKADA K,et al.Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J].Planta,2008,227(3):517-526.

[16]YOU X M,ZHU S S,ZHANG W,et al.OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis[J].The New Phytologist,2019,224(2):712-724.

[17]UJI Y,TANIGUCHI S,DAISUKE TAMAOKI D,et al.Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice[J].Plant and Cell Physiology,2016,57(9):1814-1827.

[18]ATTIA K A,ABDELKHALIK A F,AMMAR M H,et al.Antisense phenotypes reveal a functional expression of OsARF1,an auxin response factor,in transgenic rice[J].Current Issues in Molecular Biology,2009,11(S1):29-34.

[19]HUANG J,LI Z,ZHAO D.Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice[J].Scientific Reports,2016,6(1):29938.

[20]ZHANG S,WU T,LIU S,et al.Disruption of OsARF19 is Critical for Floral Organ Development and Plant Architecture in Rice(Oryza sativa L.)[J].Plant Molecular Biology Reporter,2016,34(4):748-760.

[21]SAZUKA T,KAMIYA N,NISHIMURA T,et al.A rice tryptophan deficient dwarf mutant,tdd1,contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J].The Plant Journal,2010,60(2):227-241.

[22]MORITA Y,KYOZUKA J.Characterization of OsPID,the Rice ortholog of PINOID,and its possible involvement in the control of polar auxin transport[J].Plant Cell Physiology,2007,48(3):540-549.

[23]HE Y,YAN L,GE C,et al.PINOID is required for formation of the stigma and style in rice[J].Plant Physiology,2019,180(2):926-936.

[24]XU M,TANG D,CHENG X,et al.OsPINOID regulates stigma and ovule initiation through maintenance of the floral meristem by auxin signaling[J].Plant Physiology,2019,180(2):952-965.

[25]WU H M,XIE D J,TANG Z S,et al.PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice[J].Plant Biotechnology Journal,2020,18(8):1778-1795.

[26]GUILFOYLE T J,HAGEN G.Auxin response factors[J].Current Opinion in Plant Biology,2007,10(5):453-460.

[27]SARASWATI N,RITA S,KUMAR T A,et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J].Journal of Experimental Botany,2013,64(14):4239-4253.

[28]SENTOKU N,KATO H,KITANO H,et al.OsMADS22,an STMADS11-like MADS-box gene of rice,is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy[J].Molecular Genetics and Genomics,2005,273(1):1-9.

[29]YOSHIDA A,OHMORI Y,KITANO H,et al.ABERRANT SPIKELET AND PANICLE1,encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice[J].The Plant Journal,2012,70(2):327-339.

[30]KHANDAY I,YADAV S R,VIJAYRAGHAVAN U.Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J].Plant Physiology,2013,161(4):1970-1983.

[31]SARASWATI N,RITA S,KUMAR T A,et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis

[J].Journal of Experimental Botany,2013,64(14):4239-4253.

[32]XIE S,CHEN M,PEI R,et al.OsEMF2b acts as a regulator of flowering transition and floral organ identity by mediating H3K27me3 deposition at OsLFL1and OsMADS4 in rice[J].Plant Molecular Biology Reporter,2015,33(1):121-132.

[33]BANERJEE A,ROYCHOUDHURY A.The gymnastics of epigenomics in rice[J].Plant Cell Reports,2017,37(S4):1-25.

[34]WAHEED S,LI H,ZENG L H.The Critical Role of miRNAs in Regulation of Flowering Time and Flower Development[J].Genes,2020,11(3):319.

[35]SUN Q,ZHOU D X.Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(36):13679-13684.

[36]LI A,ZHANG Y,WU X,et al. Dh1,a lob domain-like protein required for glume formation in rice[J].Plant Molecular Biology,2008,66(5):491-502.

[37]YOON H Y,YANG J L,LIANG W Q,et al.OsVIL2 regulates spikelet development by controlling regulatory genes in Oryza sativa[J].Frontiers in Plant Science,2018,9:102.

[38]CONRAD L J,KHANDAY I,JOHNSON C,et al.The Polycomb Group Gene EMF2B is essential for maintenance of floral meristem determinacy in rice[J].The Plant Journal,2014,80(5):883-894.

[39]ZHANG L,CHENG Z,QIN R,et al.Identification and characterization of an Epi-Allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice[J].The Plant Cell,2012,24(11):4407-4421.

[40]ZHU Q H,UPADHYAYA N M,GUBLER F,et al.Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice(Oryza sativa)[J].BMC Plant Biology,2009,9:149.

[41]LEE Y S,LEE D Y,CHO L H,et al.Rice miR172 induces flowering by suppressing OsIDS1 and SNB,two AP2 genes that negatively regulate expression of Ehd1 and florigens[J].Rice,2014(7):31.

[42]DAI Z Y,WANG J,ZHU M,et al.OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice[J].Frontiers in Plant Science,2016(7):1891.

[43]PU C X , MA Y,WANG J,et al.Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma,and fertility in rice,by promoting epidermal cell differentiation[J].Plant Journal,2012,70(6):940-953.

[44]LIU H,GUO S,XU Y,et al.OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J].Plant Physiology,2014,165(1):160-174.

[45]LI Y F,ZHENG Y,ADDO-QUAYE C,et al.Transcriptome-wide identification of microRNA targets in rice[J].Plant Journal,2010,62:742-759.

[46]MORITOH S,EUN C H,ONO A,et al.Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2,OsDRM2,impairs the growth of rice plants by abnormal DNA methylation[J].The Plant Journal,2012,71(1):85-98.

[47]TAO J,LIANG W,AN G,et al.OsMADS6 controls flower development by activating rice FACTOR OF DNA METHYLATION LIKE 1[J].Plant Physiol,2018,177:713-727.

(責任編輯:柯文輝)

猜你喜歡
生長素水稻
生長素的兩重性剖析
中國水稻栽培現狀、存在問題及改進措施
水稻種子
為什么向日葵能夠不停地向著太陽轉
揭示獨腳金內酯抑制PIN依賴性的生長素轉運渠化(2020.7.18 Plant Biotechnology Journal)
水稻栽培現狀與高產栽培技術建議
水稻栽培現狀與高產栽培技術建議
“生長素的極性運輸”開放性實驗探究和改進
黔北山鄉水稻飄香
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合