?

洛河地區高自然伽馬砂巖識別及主控因素

2023-07-20 03:30師學耀高超利劉偉周志杰安鑫勝李寧孫歡

師學耀 高超利 劉偉 周志杰 安鑫勝 李寧 孫歡

摘 要:為識別洛河區延長組長6與泥巖、凝灰質泥巖具有類似常規測井響應特征的高自然伽馬砂巖,分析高自然伽馬砂巖的成因與主控因素。綜合分析高自然伽馬砂巖的巖性、物性特征及對應測井響應特征,優選測井曲線敏感參數進行曲線重疊處理,快速識別高自然伽馬砂巖,通過多敏感測井參數組合構建新指示參數進行交會,驗證高自然伽馬砂巖。結果表明:與常規砂巖相比高自然伽馬砂巖中釷元素含量相對較高,鈾和鉀元素含量正常;高自然伽馬砂巖縱向隨機分布于三角洲前緣水下分流河道沉積旋回砂體的任何部位;高自然伽馬砂巖平面展布整體與三角洲前緣水下分流河道砂體平面展布特征基本一致,受沉積微相控制。洛河區高自然伽馬砂巖為同沉積期火山事件沉積的凝灰質疊加在三角洲前緣水下分流河道沉積中形成,高放射性主要來自高含量釷元素。

關鍵詞:高自然伽馬砂巖;新指示參數;火山事件沉積;水下分流河道;洛河區

中圖分類號:TE 121文獻標志碼:A

文章編號:1672-9315(2023)03-0530-09

DOI:10.13800/j.cnki.xakjdxxb.2023.0310開放科學(資源服務)標識碼(OSID):

Identification and main controlling factors of method high Gamma sandstone in Luohe Area

SHI Xueyao1,GAO Chaoli1,2,LIU Wei1,ZHOU Zhijie3,AN Xinsheng1,LI Ning1,SUN Huan3

(1.Technology and Information Management Department of Yanchang Oilfield Co.,Ltd.,Yanan 716000,China;2.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China;3.National and Local Joint Engineering Research Center of Carbon Capture and Storage Technology/Department of Geology,Northwest University,Xian 710069,China)

Abstract:In order to effectively identify the sandstone with high gamma ray in the Triassic Yanchang Chang 6 Member,which have similar conventional well logging response characteristics to the surrounding argillaceous rocks and tuffaceous rocks deposited by volcanic events from conventional well logging response characteristics in Luohe Area,are analyzed the possible genesis and main control factors of the sandstone with high gamma ray.A comprehensive study has been made of? the lithology,physical property characteristics and their variations,with well logging curves? optimized to quickly identify the sandstone with high gamma ray.And the cross plots of the well logging response characteristics of the sandstone with high gamma ray,the overlapping processing of sensitive new indicator parameters constructed according to the combination of multi sensitive well logging parameters are compiled to verify the sandstone with high gamma ray.Further,an analysis of the radioactive elements,vertical distribution and plane distribution characteristics of the sandstone with high gamma ray shows that:compared with conventional sandstone,the sandstone with high gamma ray has high thorium content,normal uranium and potassium.Sandstone with high gamma ray is vertically distributed in any part of the underwater distributary channel cycle sand body in the delta front.The plane distribution of the sandstone with high gamma ray is basically consistent with that of underwater distributary channel sand bodies in delta front,which is controlled by sedimentary microfacies.It is inferred that the sandstone with high gamma ray of Chang 6 Member in Luohe Area may be formed by the superposition of the tuff deposited by the contemporaneous volcanic event in the underwater distributary channel sediments of the delta front,and the high gamma ray? comes mainly from the contribution of thorium.

Key words:sandstone with high gamma ray;new indicator parameters;volcanic? sedimentation;underwater distributary channel;Luohe Area

0 引 言

碎屑巖中陸續發現高自然伽馬砂巖,如珠江口盆地珠一坳陷古近系[1]、海拉爾盆地烏南凹陷南一段[2]、川西坳陷須家河組、鄂爾多斯盆地的中生界三疊系延長組和上古生界二疊系山西組[3-7]、準噶爾盆地二疊系夏子街組[8]、烏爾禾區三疊系百口泉組中均發現存在高自然伽馬砂巖[9]。一般認為高自然伽馬砂巖自然伽馬測井值相對較高,甚至高于圍巖泥質巖石的自然伽馬值,運用自然伽馬相對值法計算的砂巖視泥質含量>30.0%,特別是視泥質含量≥40.0%的砂巖。區分相對高自然伽馬砂巖的主要依據是自然伽馬相對值,即統一換算為自然伽馬相對值法求取的視泥質含量[4]。不同學者從巖石學特征、主量及微量元素、物源特征、沉積微相特征、成巖作用、深部熱液活動、火山事件沉積等方面開展了大量高自然伽馬砂巖成因的研究,歸納為以下4種:①來源于深部的高鈾離子放射性流體在砂體中富集[1],或深部熱液溶解碎屑中鈾同位素后再次富集沉淀導致[8];②同沉積期火山事件凝灰巖及其成巖蝕變產物所導致[2,4,6-7];③物源供給物放射性差異及沉積微相差異導致[5,9];④成巖作用導致砂巖放射性元素相對富集具有高自然伽馬特征。向巧維等認為珠江口盆地古近系高自然伽馬砂巖形成機制為地下流體攜帶的放射性元素鈾離子在氧化—還原面處富集后導致地層的自然伽馬值偏高,在具有連通基底大斷裂旁的圈閉中鈾元素富集所導致[1]。毛志強等認為準噶爾盆地夏子街組的特殊巖性段是由深部熱液沿斷裂上升至沉積層而形成的熱液蝕變體,特殊巖性段內異常高自然伽馬是熱液溶解母巖碎屑中鈾同位素后沿熱液活動通道運移并再次富集沉淀的結果[8]。珠江口盆地古近系高自然伽馬砂巖、準噶爾盆地夏子街組高自然伽馬砂巖的成因與深部熱液活動密切相關。馮春珍、黃建松、張小莉、于振鋒等通過對鄂爾多斯盆地中生界三疊系延長組、上古生界二疊系山西組高自然伽馬砂巖成因研究,提出高自然伽馬砂巖主要成因為同沉積期火山凝灰巖添加及其成巖蝕變產物,即沉積過程中火山事件沉積物添加導致砂巖的自然伽馬值高[2,4,6-7]。LIU等和周俊林等認為物源供給的母巖中富含鈾或凝灰質巖石等高放射性物質,同時沉積物粒度變化、搬運距離和沉積相帶展布控制了砂巖自然伽馬異常的空間變化,砂巖物源供給差異及沉積微相差異導致砂巖自然伽馬高[5,9]。劉國強認為成巖作用過程中生成伊利石、蒙脫石等富含放射性元素的黏土礦物富集,導致砂巖放射性增強,具有高自然伽馬的特征[10]。

鄂爾多斯盆地中生界三疊系延長組不斷發現高自然伽馬砂巖且普遍含油,從上向下包括長2至長10段都取得一定的勘探效果[11-21]。但由于高自然伽馬砂巖層位多、分布范圍廣,縱橫向非均質性強,對成因特征、主控因素及分布模式認識整體不足,導致識別與評價困難。其中鄂爾多斯盆地中部洛河區延長組長6高自然伽馬砂巖取得良好勘探效果,對洛河區長6段高自然伽馬砂巖主控因素分析與重點解剖,有助于把握高自然伽馬砂巖成因特征與分布模式。

1 洛河地區長6地質特征

洛河地區處于鄂爾多斯盆地伊陜斜坡中部(圖1),三疊系延長組長6段屬于安塞—志丹三角洲前緣沉積范圍(圖2)[22]。根據長6沉積特征等劃分為長63、長62、長61亞段,長62、長61期主要為三角洲前緣水下分流河道、分流河道間。水下分流河道砂體發育,多期河道沉積疊置形成連片砂體,并且長61、長62中存在相對高自然伽馬砂巖且普遍含油。

結合常規砂巖、泥巖自然伽馬特征,認為洛河區延長組長6自然伽馬大于90API的砂巖屬于相對高自然伽馬砂巖。長61、長62沉積旋回砂體中,高自然伽馬砂巖以間互式、夾層式等與具有常規測井響應特征的砂巖共生或獨立成層出現,高自然伽馬砂巖段累計厚度0.5~10.1 m(圖3)。除自然電位測井響應外,高自然伽馬砂巖的測井響應特征與泥巖、凝灰質泥巖的測井響應特征類似,容易被誤解釋為泥巖、凝灰質泥巖而導致巖性劃分的混亂[23]。厘清高自然伽馬砂巖地質特征及測井響應,有助于探討識別方法、成因機制及展布。

2 高自然伽馬砂巖特征

洛河區長61、長62高自然伽馬砂巖的自然伽馬值一般90~115 API,個別高達130 API左右,自然電位曲線負異常明顯,聲波時差中—較高值,主要分布在220~ 250 μs/m,深、淺電阻率偏低,主要分布為5.8~26.0 Ω·m(圖4)。

根據元素俘獲譜測井、自然伽馬能譜、核磁共振、中子—密度測井組合能夠較好識別高自然伽馬砂巖并計算泥質含量[3,6],洛河區長6測井資料包括自然電位、自然伽馬、井徑、聲波時差、雙感應—八側向、視電阻率,個別井中測有自然伽馬能譜、補償密度、補償中子、陣列感應等。如何利用洛河區常規測井系列資料有效識別高自然伽馬砂巖是一個必須解決的問題[24]。

2.1 敏感測井曲線重疊

長6厚層泥巖、常規純砂巖部位自然電位、自然伽馬進行最大程度擬合重疊,其他部位如果存在自然電位明顯負異常、自然伽馬大于90 API,兩曲線間存在明顯幅度差,可能為相對高自然伽馬砂巖發育部位(圖3),上述可能的高自然伽馬砂巖段對應自然電位與聲波時差兩曲線重疊之間如存在明顯幅度差,反映物性較好。自然電位與自然伽馬、聲波時差與自然電位敏感測井曲線重疊處理可快速識別高自然伽馬砂巖。

2.2 構建新指示參數

洛河區長6取芯、試油段測井參數表明高自然伽馬砂巖自然電位異常幅度明顯,聲波時差值比常規砂巖偏高,深感應電阻率偏低,各項測井參數變化范圍較大。

為了利用多敏感測井參數有效識別驗證高自然伽馬砂巖,利用高自然伽馬砂巖各項測井參數特征,構建由敏感測井響應參數如自然伽馬、自然電位異常幅度系數組合生成的新指示參數(GR×GR×kusp/1 000)與深感應電阻率的交會圖(圖5),識別驗證高自然伽馬砂巖,高自然伽馬砂巖資料點分布相對集中,主要分布于圖中標注的①區。因此,構建由多敏感測井參數組合的新指示參數,能有效驗證高自然伽馬砂巖。

3 高自然伽馬砂巖成因

3.1 同期或準同期火山事件沉積疊加

三疊紀長6期鄂爾多斯盆地周緣火山事件頻繁[25],大量火山灰或沉積于湖盆,或由河流帶入,火山凝灰質添加到三角洲前緣砂體中,導致砂巖的自然伽馬值相對高、電阻率相對低。高自然伽馬砂巖為砂體沉積與火山事件沉積共同作用,砂巖中的凝灰質成分后期容易溶蝕,導致次生孔隙發育,物性較好,自然電位曲線特征為明顯負異常,聲波時差值相對較高[5,26-27]。

3.2 深部流體活動

通過對鄂爾多斯盆地三疊系延長組高自然伽馬砂巖及鄰近常規砂巖薄片、X光衍射及黏土礦物、電子探針及質譜儀化學元素以及沉積分布特征分析,劉行軍等認為與常規砂巖相比,高自然伽馬砂巖鉀長石、綠泥石、鐵泥質黏土雜基含量明顯上升,石英含量明顯減少,長石高嶺石化強烈,巖屑含量較高,且巖屑假雜基化較普遍;釷、鈾、鉀元素含量較高,其中釷元素含量上升最為顯著,主要存在于獨居石、金紅石、鐵泥質黏土、鉀長石及部分鋯石、磷灰石、黑云母、巖屑中;鈾元素主要存在于大多數鋯石、部分磷灰石、黑云母及含鎂方解石中;鉀元素主要存在于鉀長石、黑云母、金紅石、鐵泥質粘土、部分鈉長石及巖屑中,認為深部熱液活動可能導致形成了高自然伽馬砂巖[28-30]。

3.3 物源供給差異性

鄂爾多斯盆地三疊紀相對高自然伽馬砂巖的成因主要與物源有關,由于物源供給特征差異性導致[5],如物源供給中火山物質較多,物源母巖相對富含放射性物質,導致砂巖的放射性強自然伽馬值高。

洛河地區長6高自然伽馬砂巖段的自然伽馬能譜測井反映,釷元素含量相對高,鈾、鉀元素含量與常規砂巖的特征類似,高自然伽馬砂巖自然伽馬能譜測井曲線特征與長6中的凝灰質巖層的自然伽馬能譜測井曲線特征類似,F557井的井深1 790 m、1 797 m附近的高自然伽馬砂巖,明顯具有釷含量高的特征(圖6)。

由于釷元素相對穩定,主要依靠機械搬運遷移而不容易隨流體遷移。洛河地區長6砂體同沉積期添加的富含釷元素的凝灰質成分,后期凝灰質成分溶蝕形成次生孔隙,釷元素留存在砂巖中,對放射性貢獻導致砂巖自然伽馬值相對高[5,27]。

洛河地區長61、長62中,單井高自然伽馬砂巖縱向分布于旋回砂體的中下部、中部、中上部、上部或呈互層狀與常規砂巖共生,或單獨成層出現(圖3、圖6)。高自然伽馬砂巖累計厚度平面展布特征與三角洲前緣水下分流河道沉積砂巖累計總厚度展布特征一致(圖7),長61高自然伽馬分布相對廣泛,連片分布,主要成因可能為水下分流河道沉積過程中火山事件沉積的凝灰質添加導致砂巖放射性增強。

4 結 論

1)自然電位與自然伽馬曲線重疊處理,可快速識別高放射性砂巖,自然電位與聲波時差曲線重疊處理,核定高自然伽馬砂巖發育段。

2)根據敏感測井參數組合所構建的新指示參數與敏感測井參數交會處理,有效驗證高自然伽馬砂巖發育段。

3)洛河地區長6高自然伽馬砂巖由三角洲前緣水下分流河道沉積過程中火山事件沉積的凝灰質導致,高放射性主要來自于高含量釷元素。

參考文獻(References):

[1] 向巧維,李小平,丁琳,等.珠江口盆地珠一坳陷古近系高自然伽馬砂巖形成機制及油氣地質意義[J].巖性油氣藏,2021,33(2):93-103.

XIANG Qiaowei,LI Xiaoping,DING Lin,et al.Formation mechanism and petroleum geological significance of Paleogene sandstone with high natural gamma value in Zhuyi Depression,Pearl River Mouth Basin[J].Litho-logic Reservoirs,2021,33(2):93-103.

[2]于振鋒,程日輝,趙小青,等.海拉爾盆地烏南凹陷南一段高伽馬砂巖成因與識別[J].中國石油大學學報(自然科學版),2012,36(3):76-83.

YU Zhenfeng,CHENG Rihui,ZHAO Xiaoqing,et al.Genesis and identification of high gamma sandstone in the first member of Nantun Formation of Wunan Depression in Hailar Basin[J].Journal of China University of Petroleum(Natural Science Edition),2012,36(3):76-83.

[3]李高仁,郭清婭,石玉江,等.鄂爾多斯盆地高自然伽馬儲層識別研究[J].測井技術,2006,30(6):511-515,586.

LI Gaoren,GUO Qingya,SHI Yujiang,et al.Identification of high gamma ray reservoir in Ordos Basin[J].Well Logging Technology,2006,30(6):511-515,586.

[4]張小莉,馮喬,孫佩,等.鄂爾多斯盆地延長組高自然伽馬砂巖儲層特征[J].地球物理學報,2010,53(1):205-213.

ZHANG Xiaoli,FENG Qiao,SUN Pei,et al.Characteristics of high gamma ray reservoir of Yanchang Formation in Ordos Basin[J].Chinese Journal of Geophysics,2010,53(1):205-213.

[5]LIU H Q,LI X B,LIAO J B,et al.Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin,China[J].Petroleum Science,2013,10(1):50-54.

[6]馮春珍,林偉川,梁重陽,等.低滲透巖性氣藏高自然伽馬砂巖識別方法[J].石油天然氣學報(江漢石油學院學報),2005(S1):201-203,7.

FENG Chunzhen,LIN Weichuan,LIANG Chongyang,et al.Mrthods for recognizing natural gamma sandstones in low permeability and lithologic gas reservoirs[J].Journal of Oil & Gas Technology,2005(S1):201-203,7.

[7]黃建松,安文武,白武厚.陜北榆林氣田山2段高自然伽馬儲集層特征及其成因分析[J].錄井工程,2007,12(4):74-79,84.

HUANG Jiansong,AN Wenwu,BAI Wuhou.Characte-ristics and genesis of high natural gamma reservoir in Shan2 member of Yulin Gas Field,northern Shaanxi[J].Mudlogging Engineering,2007,12(4):74-79,84.

[8]毛志強,申波,匡立春,等.夏子街組特殊巖性段地球物理特征及其成因[J].新疆石油地質,2013,34(1):98-100.

MAO Zhiqiang,SHEN Bo,KUANG Lichun,et al.The special lithologic sections of Permian Xiazijie Formation in Junggar Basin:geophysical characteristics and origin[J].Xinjiang Petroleum Geology,2013,34(1):98-100.

[9]周俊林,王仲軍,丁超,等.準噶爾盆地烏爾禾油田高自然伽馬砂礫巖特征及其沉積微相研究—以烏36井區百口泉組為例[J].沉積學報,2014,32(4):734-743.

ZHOU Junlin,WANG Zhongjun,DING Chao,et al.High GR glutinite feature and micro-sedimentary facies in Wuerhe Oil-field,Junggar Basin:Taking the Baikouquan Group in Wu 36 area as an example[J].Acta Sedimentologica Sinica,2014,32(4):734-743.

[10]劉國強.巖性油氣藏的測井評價方法與技術[M].北京:石油工業出版社,2005.

[11]趙虹,黨犇,姚涇利,等.鄂爾多斯盆地姬塬地區延長組長2低阻油層成因機理[J].石油試驗地質,2009,31(6):588-592.

ZHAO Hong,DANG Ben,YAO Jingli,et al.Forming mechanism of Chang 2 low resistivity oil layer Yanchang Formation,Jiyuan region,Ordos Basin[J].Petroleum Geology and Experiment,2009,31(6):588-592.

[12]申怡博,張小莉,孫佩,等.定邊東韓長2油層組復雜油水層識別技術[J].西北大學學報(自然科學版),2010,40(1):121-125.

SHEN Yibo,ZHANG Xiaoli,SUN Pei,et al.Recognition technology of the complicated oil and water layers in Chang 2 oil-bearing formation of Donghan area in Dingbian oilfield[J].Journal of Northwest University(Natural Science Edition),2010,40(1):121-125.

[13]石玉江,張小莉,申貽博,等.鄂爾多斯盆地東南部長6儲層巖電關系特征[J].地球物理學進展,2010,25(5):1716-1722.

SHI Yujiang,ZHANG Xiaoli,SHEN Yibo,el al.Rock-logging relation of Chang 6 Formation,southeast of Ordos Basin[J].Progress in Geophysics,2010,25(5):1716-1722.

[14]郭順,王震亮,張小莉,等.陜北志丹油田樊川區長61低阻油層成因分析與識別方法[J].吉林大學學報(地球科學版),2012,42(1):18-24.

GUO Shun,WANG Zhenliang,ZHANG Xiaoli,et al.Origin analysis on Chang 61reservoir with low resistivity and its identificating methods from Fanchuan area,Zhidan Oilfield,Northern Shaanxi,Ordos Basin[J].Journal of Jilin University(Earth Science Edition),2012,42(1):18-24.

[15]張小莉,馮喬,馮強漢,等.鄂爾多斯盆地中東部長6復雜低滲儲層測井評價[J].地球物理學進展,2012,27(4):1519-1524.

ZHANG Xiaoli,FENG Qiao,FENG Qianghan,et al.Logging evaluation of low permeability reservoirs in Chang 6,east-central Ordos Basin[J].Progress in Geophysics,2012,27(4):1519-1524.

[16]郭浩鵬,石玉江,王長勝,等.鄂爾多斯盆地延安組低對比度油藏飽和度分布模式與測井評價[J].測井技術,2016,40(5):556-563.

GUO Haopeng,SHI Yujiang,WANG Changsheng,et al.Saturation distribution and log interpretation method of low-contrast reservoir in Mesozoic Yanan Formation of Ordos Basin[J].Well Logging Technology,2016,40(5):556-563.

[17]郭蘭,張小莉,丁超,等.川口油田川46井區長61低阻油層成因機理分析[J].國外測井技術,2012,33(3):19-22,3.

GUO Lan,ZHANG Xiaoli,DING Chao,et al.Research on the formation mechanism of Chang 61low-resistivity oil reservoir of Chuan 46 well block in Chuankou Oilfield[J].World Well Logging Technology,2012,189(3):19-22,3.

[18]張少華,石玉江,陳剛,等.鄂爾多斯盆地姬塬地區長61低對比度油層識別方法與產水率分級評價[J].中國石油勘探,2018,23(1):71-80.

ZHANG Shaohua,SHI Yujiang,CHEN Gang,et al.Identification methods and water productivity classification evaluation of low contrast Chang 61oil reservoirs in Jiyuan area,Ordos Basin[J].China Petroleum Exploration,2018,23(1):71-80.

[19]安思謹,馮張斌,何斌,等.鄂爾多斯盆地志丹地區長6儲層“四性關系”研究[J].非常規油氣,2020,7(3):37-45.

AN Sijin,FENG Zhangbin,HE Bin,et al.Study on four property relationship of Chang 6 reservoir in Zhidan area,Ordos Basin[J].Unconventional Oil &Gas,2020,7(3):37-45.

[20]謝青,楊興科,梁莉.陜北志丹地區長6低電阻率油層成因機制研究[J].西安科技大學學報,2015,35(2):214-220.

XIE Qing,YANG Xingke,LIANG Li.Genetic mechanism research of Chang 6 low resistivity oil layer in Zhidan region,Northern Shaanxi[J].Journal of Xian University of Science and Technology,2015,35(2):214-220.

[21]楊春梅,周燦燦,程相志.低電阻率油層成因機理分析及有利區預測[J].石油勘探與開發,2008,35(5):600-605.

YANG Chunmei,ZHOU Cancan,CHENG Xiangzhi.Origin of low resistivity pays and forecasting of favorable prospecting areas[J].Petroleum Exploration and Development,2008,35(5):600-605.

[22]李玉宏,李文厚,張倩,等.鄂爾多斯盆地及周緣沉積相圖冊[M].北京:地質出版社,2019.

[23]賴錦,龐小嬌,趙鑫,等.測井地質學研究中的典型誤區與科學思維[J].天然氣工業,2022,42(7):31-44.

LAI Jin,PANG Xiaojiao,ZHAO Xin,et al.Typical misunderstandings and scientific ideas in well logging geology research[J].Natural Gas Industry,2022,42(7):31-44.

[24]LI Y J,ZHANG X L,YAN Y Z.Quantitative identification of relatively high-level radioactive sandstone in the Upper Triassic Yanchang Formation of the Ordos Basin,China[J].Applied Geophysics,2019,16(3):314-320.

[25]呂強.鄂爾多斯盆地西南部晚三疊世長6期沉積體系與油藏富集規律研究[D].成都:成都理工大學,2009.

LYU Qiang.The study on the sedimentary systems and enrichment laws of oil reservoirs during the depositional period of interval 6 of Late-Triassic in southwestern Ordos Basin[D].Chengdu:Chengdu University of Technology,2009.

[26]孫佩,張小莉,郭蘭,等.相對高放射性砂巖成因及儲集性能定性評價——以鄂爾多斯盆地志丹油田長6油層組為例[J].西安石油大學學報(自然科學版),2010,25(2):18-21.

SUN Pei,ZHANG Xiaoli,GUO Lan,et al.Genesis of the sandstone with higher radioactivity and the qualitative evaluation of its reservoir property:Taking Chang 6 oil bearing strata in Zhidan oilfield,Ordos Basin as an example[J].Journal of Xian Shiyou University(Natural Science Edition),2010,25(2):18-21.

[27]ZHANG X L,FENG Q,FENG Q H,et al.Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin,China:A reply[J].Petroleum Science,2013,10(1):55-57.

[28]劉行軍,柳益群,周鼎武,等.鄂爾多斯盆地深部流體示蹤:三疊系延長組高自然伽馬砂巖特征及成因分析[J].地學前緣,2013,20(5):149-165.

LIU Xingjun,LIU Yiqun,ZHOU Dingwu,et al.Deep fluid tracer in Ordos Basin:Characteristics and origin of high natural gamma sandstone in Triassic Yanchang Formation[J].Earth Science Frontiers,2013,20(5):149-165.

[29]劉行軍,馮春珍,柳益群,等.陜北長6段高自然伽馬砂巖地球化學特征及意義[J].成都理工大學學報(自然科學版),2013,40(4):445-456.

LIU Xingjun,FENG Chunzhen,LIU Yiqun,et al.Geochemical characteristics and significance of high natural gamma-ray sandstone in Chang 6 member of northern Shanxi[J].Journal of Chengdu University of Technology(Science & Technology Edition),2013,40(4):445-456.

[30]ZHENG Q H,LIU X J,YOU J Y,et al.Discovery and prediction of high natural gamma sandstones in Chang 73submember of Triassic Yanchang Formation in Ordos Basin,China[J].Journal of Central South University,2019,26(7):1840-1855.

(責任編輯:李克永)

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合