?

低聚木糖對低鹽脅迫下凡納濱對蝦生長、免疫及腸道菌落的影響

2023-07-22 02:54朱啟飛賀瑩李云劉紅
南方農業學報 2023年2期
關鍵詞:腸道菌群免疫生長

朱啟飛 賀瑩 李云 劉紅

摘要:【目的】探究低鹽脅迫下低聚木糖(XOS)對凡納濱對蝦(Litopenaeus vannamei)生長性能、抗氧化能力、免疫相關基因表達及腸道菌群結構的影響,為凡納濱對蝦淡化養殖飼料的開發提供理論依據?!痉椒ā繉?50尾凡納濱對蝦按照養殖水體鹽度和XOS添加量分為海水對照組HS0(鹽度30‰+0 mg/kg XOS)及低鹽對照組LS0(鹽度3‰+0 mg/kg XOS)、LS250(鹽度3‰+250 mg/kg XOS)、LS500(鹽度3‰+500 mg/kg XOS)和LS1000(鹽度3‰+1000 mg/kg XOS)。飼養8周后計算生長指標,采用試劑盒測定消化酶活性和抗氧化指標,并通過實時熒光定量PCR檢測免疫相關基因的表達情況?!窘Y果】與HS0組相比,LS0組凡納濱對蝦的生長指標、消化酶活性、抗氧化能力及免疫相關基因相對表達量均有所下降。與LS0組相比,LS500和LS1000組凡納濱對蝦的增重率、特定生長率、存活率及淀粉酶(AMS)活性均呈顯著升高趨勢(P<0.05,下同),丙二醛(MDA)含量則呈顯著降低趨勢;脂肪酶(LPS)、胰蛋白酶(Trp)、超氧化物歧化酶(SOD)和過氧化氫酶(CAT)活性呈上升趨勢,但差異不顯著(P>0.05)。LS500和LS1000組凡納濱對蝦的酚氧化酶原(proPO)、抗脂多糖因子(ALF)、溶菌酶(LZM)、Toll樣受體1(TLR1)、Toll樣受體2(TLR2)和Toll樣受體3(TLR3)基因的相對表達量均顯著高于LS0組凡納濱對蝦。此外,LS1000組凡納濱對蝦的腸道菌群Shannon指數、Chao1指數和ACE指數顯著高于LS0組凡納濱對蝦,Simpson指數顯著低于LS0組凡納濱對蝦;在門分類水平上,變形菌門和擬桿菌門相對豐度顯著降低,而藍細菌門、厚壁菌門和疣微菌門的相對豐度顯著增高;在屬分類水平上,弧菌屬、黃海綿菌屬、斯氏弓型菌屬和希瓦氏菌屬相對豐度顯著降低,而乳酸桿菌屬和不動桿菌屬相對豐度顯著增加?!窘Y論】在基礎飼料中添加500~1000 mg/kg XOS,可顯著提高凡納濱對蝦生長速率、抗氧化性能、免疫相關基因表達及改善腸道菌群組成結構,有效提高對蝦在低鹽脅迫下的養殖效果,即XOS可作為凡納濱對蝦淡化養殖飼料添加劑進一步開發應用。

關鍵詞:凡納濱對蝦;低鹽脅迫;低聚木糖(XOS);生長;免疫;腸道菌群

中圖分類號:S968.229? ? ? ? ? ? ? ? ? ? 文獻標志碼:A 文章編號:2095-1191(2023)02-0618-11

Abstract:【Objective】This study investigated the effects of xylo-oligosaccharide (XOS) on the growth performance, antioxidant capacity, immune-related gene expression and intestinal flora structure of Litopenaeus vannamei under low salinity stress conditions, and provided theoretical basis for the development of desalination culture feeds for L. vannamei. 【Method】According to the salinity of the cultured water and XOS addition, the 450 L. vannamei were divided into seawater control group HS0 (salinity 30‰+0 mg/kg XOS), low salinity control groups LS0 (salinity 3‰+0 mg/kg XOS), LS250 (salinity 3‰+250 mg/kg XOS), LS500 (salinity 3‰+500 mg/kg XOS) and LS1000 (salinity 3‰+1000 mg/kg XOS). Growth indexes were calculated after 8 weeks of feeding, digestive enzyme activities and antioxidant indexes were measured by kits, meanwhile, immune-related gene expression was detected by real-time fluorescence quantitative PCR. 【Result】Compared with the HS0 group, the growth indexes, digestive enzyme activities, antioxidant capacity and the re-lative expression of immune-related genes of L. vannamei in the LS0 group were all decreased. Compared with the LS0 group, the weight gain rate, specific growth rate, survival rate and amylase(AMS) activity of L. vannamei in the LS500 and LS1000 groups showed significant increase trend (P<0.05, the same below), while the malondialdehyde (MDA) content showed a significant decrease trend. Lipase (LPS), trypsin (Trp), superoxide dismutase (SOD) and catalase (CAT) activities also showed an increasing trend, but the difference was not significant (P>0.05). In LS500 and LS1000 groups, the relative expression levels of prophenoloxidase (proPO), anti-lipopolysaccharide factor (ALF), lysozyme (LZM), toll-like receptor 1(TLR1), toll-like receptor 2(TLR2) and toll-like receptor 3(TLR3) genes in LS500 and LS1000 groups were significantly higher than LS0. The intestinal flora Shannon index, Chao1 index, ACE index of LS1000 group L. vannamei were significantly higher than LS0 group,and Simpson index was significantly lower than LS0 group. At the phylum level, the relative abundance of Proteobacteria and Bacteroidetes decreased significantly, while the relative abundance of Cyanobacteria_Chloroplast, Firmicutes and Verrucomicrobia increased significantly. At the genus level, the relative abundance of Vibrio, Spongiimonas, Arcobacter and Shewanella decreased significantly, while the relative abundance of Lactobacillus and Acinetobacter increased significantly. 【Conclusion】Under low salinity stress, the addition of 500-1000 mg/kg XOS to the feed in this study significantly increased the growth rate, antioxidant performance, immune-related gene expression and improved the composition structure of intestinal flora of L. vannamei, effectively improving the culture effect of shrimp under low salitiny stress, so that XOS can be further developed and applied as a feed additive for desalination culture of L. vannamei.

Key words: Litopenaeus vannamei; low salinity stress; xylo-oligosaccharide(XOS); growth performance; immune; intestinal flora

Foundation items: Shanghai Agriculture Applied Technology Development Project(2019-02-08-00-10-F01111)

0 引言

【研究意義】凡納濱對蝦(Litopenaeus vannamei)原產于墨西哥南部至秘魯的太平洋沿岸,具有適應性廣、生長速度快及肉質鮮美等優點,是目前全球最主要的水產養殖品種之一(王興強等,2004)。為滿足日趨增加的市場需求,以及避免沿岸水質惡化導致新的疾病,凡納濱對蝦養殖范圍已由沿岸水域逐漸擴展到內陸低鹽度水域(Li et al.,2017),但在長期低鹽脅迫下凡納濱對蝦免疫力低下(Xu et al.,2017)、存活率下降(Pinheiro et al.,2019)、生長緩慢(湯上上等,2022)等系列問題已成為制約其淡化養殖發展的重要因素。因此,亟待尋找一種科學有效的方法以緩解這些不良反應,確保凡納濱對蝦淡化養殖業的持續健康發展?!厩叭搜芯窟M展】低聚木糖(Xylo-oligosaccharides,XOS)是由2~7個木糖分子以β-1,4糖苷鍵結合而成的功能性聚合糖,其有效成分以木二糖和木三糖為主。XOS作為新型的動物飼料添加劑具有一些獨特性能,包括耐酸耐熱、有效攝入劑量低、不易被腸道消化酶分解、具有良好配伍性等優點,且能在玉米芯、甘蔗渣等纖維原料中提取獲得(袁鐘宇等,2008)。此外,XOS能通過改善宿主腸道菌群結構,刺激腸道消化酶活性,增強機體的抗氧化性能、免疫力和抗逆性,進而維持其健康水平(胡毅,2007;胡曉偉等,2018;Zhang et al.,2020)。至今,有關XOS對魚類影響的研究已有較多報道。熊沈學(2005)以含XOS的飼料飼喂異育銀鯽(Carassius auratus gibelio)45 d,結果發現添加0.01% XOS能顯著提高增重率及其腸道和肝胰腺的消化酶活性,但超過該水平后各項指標呈下降趨勢。強俊等(2009)研究表明,在飼料中添加0.03% XOS能顯著提高奧尼羅非魚(Oreochromis niloticus×O. aureus)的特定生長率,肝胰臟蛋白酶和腸蛋白酶活力則呈先上升后下降的變化趨勢。龐麗姣(2011)研究證實,以含XOS(添加量在2~4 g/kg)的飼料飼喂草魚(Ctenopharyngodon idellus)56 d后,IL-1β、IFN、TNFα等免疫相關基因在草魚肝臟、腎臟和脾臟中的相對表達量顯著上調。齊志濤等(2011)以含XOS的飼料飼喂斑點叉尾鮰(Ictalurus punctatus)50 d,結果發現添加量在0.05%~0.10%時斑點叉尾鮰血清中的谷丙轉氨酶(ALT)和谷草轉氨酶(AST)活力顯著提高。張榮斌等(2011)研究報道,飼喂奧尼羅非魚含XOS的飼料56 d后,添加量在600~710 mg/kg的奧尼羅非魚血清超氧化物歧化酶(SOD)活力顯著升高,且隨養殖時間的推移,SOD活力呈先升高后降低的變化趨勢。但近10年來有關XOS對甲殼類動物影響的研究報道較少。王國霞等(2010)研究發現添加400 mg/kg XOS能顯著提高凡納濱對蝦幼蝦肝胰腺脂肪酶(LPS)和胃蛋白酶活力,且腸道絨毛的長度和厚度顯著增加,腸道雙歧桿菌數量顯著增加,而弧菌數量顯著下降。陳曉瑛等(2014,2018)研究發現,在基礎飼料中添加200 mg/kg XOS能顯著提高凡納濱對蝦特定生長率、增重率和肝體脂數等各項生長指標,飼料系數顯著降低;添加400 mg/kg XOS能顯著提高凡納濱對蝦血清溶菌酶(LZM)和酚氧化酶活力,有效降低肝胰腺丙二醛(MDA)含量,且腸道中的雙歧桿菌、乳酸菌等益生菌相對豐度顯著增加,弧菌和葡萄球菌相對豐度顯著下降?!颈狙芯壳腥朦c】腸道既是甲殼類動物主要的消化器官,在面對環境脅迫時也是重要的能量來源場所。XOS作為飼料添加劑有利于腸道益生菌生長增殖,提高機體對營養物質的消化吸收能力,進而提高其應對環境脅迫的能力,因此探究XOS是否能有效提高凡納濱對蝦在低鹽環境中的適應能力,對確保對蝦養殖業健康發展具有重要意義?!緮M解決的關鍵問題】在低鹽脅迫條件下,探究基礎飼料中添加XOS對凡納濱對蝦生長性能、抗氧化能力、免疫相關基因表達及腸道菌群結構的影響,為凡納濱對蝦淡化養殖飼料的研發提供理論依據。

1 材料與方法

1. 1 試驗飼料制備

以魚粉、豆粕、花生粕、小麥粉、烏賊膏、蝦殼粉、大豆卵磷脂、魚油及預混料配制的基礎飼料購自廣東恒興飼料科技有限公司,飼料具體配方見表1。XOS(純度99%,浙江一諾生物科技有限公司)先溶于水,再加入基礎飼料攪拌均勻,制成含25、500和1000 mg/kg XOS的3種試驗飼料,置于烘箱中55 ℃烘干24 h后過篩制成1.5~1.8 mm顆粒飼料。試驗飼料含水率低于10%,密封保存備用。

1. 2 凡納濱對蝦飼養管理

供試凡納濱對蝦由上海海洋大學洋山港良種選育基地提供,共設5個處理,每處理設3個平行,每個平行為1個350 L的養殖桶。按照養殖水體鹽度和飼料中的XOS含量,分為海水對照組HS0(鹽度30‰+0 mg/kg XOS)及低鹽脅迫組LS0(鹽度3‰+0 mg/kg XOS)、LS250(鹽度3‰+250 mg/kg XOS)、LS500(鹽度3‰+500 mg/kg XOS)和LS1000(鹽度3‰+1000 mg/kg XOS)。挑選450尾規格均勻、活力強、體重相近(0.30±0.01 g)的幼蝦隨機分到養殖桶中,每桶30尾,飼養8周。每天投喂4次(8:00、12:00、18:00和23:00),飽食投喂,1 h后收集殘餌和糞便。日換水量為總水體的30%,水溫維持在26~28 ℃,pH 7.5~8.0,溶解氧≥5 mg/L,總氨<0.05 mg/L。每天觀察凡納濱對蝦的健康狀況并記錄死亡情況。

1. 3 樣品采集及生長指標計算

提前24 h禁食再取樣,記錄各養殖桶中的凡納濱對蝦數量及測量每尾對蝦的體長和體重。每個平行選取15尾對蝦并在冰盤上快速解剖,采集肝胰腺、腸道和鰓組織放入無菌凍存管中。所有組織樣品采集后立即置于液氮中速凍,再轉移至-80 ℃冰箱保存備用。生長指標計算參照陳儉等(2022)的方法:

增重率(WGR,%)=(終末體重-初始體重)/初始體重×100

特定生長率(SGR,%/d)=(ln終末體重-ln初始體重)/試驗天數×100

肥滿度(CF,%)=終末體重/終末體長3×100

肝體指數(HSI,%)=終末肝胰腺重/終末體重×100

存活率(SR,%)=終末尾數/初始尾數×100

1. 4 指標測定

1. 4. 1 消化酶活性和抗氧化指標測定 每個重復選取6尾凡納濱對蝦的肝胰腺和腸道組織樣品,按照南京建成生物工程研究所生產的試劑盒說明制備10%組織勻漿液,取出上清液分裝后置于-80 ℃冰箱保存備用。腸道上清液用于測定消化酶[淀粉酶(AMS)、胰蛋白酶(Trp)和LPS]活性,肝胰腺上清液用于測定抗氧化指標[SOD、過氧化氫酶(CAT)和丙二醛(MDA)]。所有樣品測定總蛋白濃度,具體步驟按試劑盒說明進行操作。

1. 4. 2 免疫相關基因表達量測定 每個重復選取6尾凡納濱對蝦的鰓組織樣品,按照TaKaRa RNAiso Plus試劑盒說明提取總RNA。根據FastQuant RT Kit試劑盒說明將總RNA反轉錄合成cDNA,設計特異性引物(表2),以18S為內參基因,通過TaKaRa相對熒光定量試劑盒檢測免疫相關基因表達情況,每個樣品3次重復,并以2-ΔΔCt法換算且的基因相對表達量。

1. 5 消化道細菌高通量測序分析

凡納濱對蝦腸道樣品送至生工生物工程(上海)股份有限公司進行腸道微生物分析。提取腸道細菌總DNA,并針對細菌16S rRNA序列V3~V4區設計含Barcode的特異性引物515F(5'-GTGCCAGCMG CCGCGGTAA-3')和806R(5'-GGACTACHVGGGTW TCTAAT-3'),進行PCR擴增。通過Illumina Miseq?/HiseqTM測序得到的原始圖像數據文件經堿基識別(Base calling)分析轉化為原始序列(Raw date),結果以FASTQ文件格式存儲(舒迎霜等,2020;郝賀等,2021)。Raw date經質量分析,去除測序接頭、低質量讀段及N比例大于10%的序列及長度過短序列后得到有效序列(Clean date),再利用Uparse v7.0.1001(http://www.drive5.com/uparse/)對Clean date進行OTUs聚類分析;同時選取OTUs代表序列進行物種注釋,通過BLASTn比對篩選出最佳比對結果并過濾(閾值范圍0.9~1.0),不滿足條件的序列則歸為Unclassified。利用QIIME v1.9.1計算凡納濱對蝦腸道菌群Alpha多樣性指數(ACE、Chao1、Simpson和Shannon)(陳儉等,2022),使用GraphPad Prism 8.0對比多個樣本在不同分類水平上的群落結構,并將相對豐度大于1%的物種歸為優勢物種。

1. 6 統計分析

利用SPSS 20.0對試驗數據進行獨立樣本T檢驗、單因素方差分析(One-way ANOVA)及Duncans多重比較。

2 結果與分析

2. 1 XOS對凡納濱對蝦生長性能的影響

在不同XOS添加量和低鹽脅迫條件下,凡納濱對蝦的生長性能指標見圖1。其中,HS0組凡納濱對蝦的各項指標均顯著高于LS0組(P<0.05,下同),各低鹽脅迫組凡納濱對蝦的增重率、特定生長率、肥滿度、肝體指數和存活率均隨飼料中XOS添加量的增加呈上升趨勢。相對于LS0組,LS1000組凡納濱對蝦的各項生長指標均顯著升高,LS500組凡納濱對蝦的增重率、特定生長率和存活率呈顯著升高趨勢,而LS250組凡納濱對蝦的各項指標無顯著變化(P>0.05,下同)。

2. 2 XOS對凡納濱對蝦消化酶和抗氧化指標的影響

在不同XOS添加量和低鹽脅迫條件下,凡納濱對蝦的腸道消化酶活性和肝胰腺抗氧化指標見圖2。與HS0組相比,LS0組凡納濱對蝦的AMS活性和MDA含量顯著升高,而Trp和LPS活性顯著降低。各低鹽脅迫組凡納濱對蝦的消化酶活性及抗氧化性能均隨飼料中XOS添加量的增加而逐漸提高,其中,LS500和LS1000組凡納濱對蝦的AMS活性顯著高于LS0組,LS500組凡納濱對蝦的CAT活性顯著高于LS0組,MDA含量則表現為LS500和LS1000組凡納濱對蝦顯著低于LS0組。

2. 3 XOS對凡納濱對蝦免疫相關基因表達量的影響

在不同XOS添加量和低鹽脅迫條件下,凡納濱對蝦鰓組織中免疫相關基因的表達情況見圖3。與HS0組相比,LS0組凡納濱對蝦鰓組織中的酚氧化酶原(proPO)、抗脂多糖因子(ALF)、溶菌酶(LZM)、Toll樣受體1(TLR1)、Toll樣受體2(TLR2)和Toll樣受體3(TLR3)基因的相對表達量均有所下降,但差異不顯著。各低鹽脅迫組凡納濱對蝦鰓組織中免疫相關基因相對表達量均隨飼料中XOS添加量的增加呈上升趨勢,其中,LS500和LS1000組凡納濱對蝦免疫相關基因的相對表達量均顯著高于LS0組,而LS250組凡納濱對蝦的ALF、LZM、TLR1、TLR2和TLR3基因相對表達量與LS0組無顯著差異。

2. 4 XOS對凡納濱對蝦腸道菌群結構組成及多樣性的影響

高通量測序分析結果顯示,每個樣本序列平均長度為420.66 bp。由表3可知,LS1000組凡納濱對蝦腸道菌群的Shannon指數、Chao1指數和ACE指數均顯著高于LS0組凡納濱對蝦,Simpson指數顯著低于LS0組凡納濱對蝦,而LS250和LS500組凡納濱對蝦的腸道菌群物種多樣性及豐富度與LS0組凡納濱對蝦無顯著差異。對比各低鹽脅迫組的凡納濱對蝦腸道樣品發現,在門分類水平下凡納濱對蝦腸道中的優勢菌群依次為變形菌門(Proteobacteria)、擬桿菌門(Bacteroidota)、藍細菌門(Cyanobacteria_Chloroplast)、厚壁菌門(Firmicutes)、放線菌門(Actinobacteriota)、疣微菌門(Verrucomicrobia)和浮霉菌門(Planctomycetes)。與LS0組相比,LS500和LS1000組凡納濱對蝦腸道變形菌門和擬桿菌門的相對豐度顯著降低,LS1000組凡納濱對蝦腸道藍細菌門、厚壁菌門和疣微菌門的相對豐度顯著增高,LS500組凡納濱對蝦腸道藍細菌門和放線菌門的相對豐度也顯著增高(圖4)。在屬分類水平上,凡納濱對蝦腸道菌群中排名前10的優勢菌群分別為弧菌屬(Vibrio,占30.92%)、黃海綿菌屬(Spongiimonas,占6.04%)、斯氏弓型菌屬(Arcobacter,占5.23%)、希瓦氏菌屬(Shewanella,占5.21%)、葡萄球狀菌屬(Staphylococcus,占2.14%)、腸球菌屬(Enterococcus,占1.87%)、鏈霉菌屬(Streptophyta,占1.69%)、節桿菌屬(Arthrobacter,占0.65%)、乳酸桿菌屬(Lactobacillus,占0.17%)和不動桿菌屬(Acinetobacter,占0.17%)。與LS0組相比,LS1000組凡納濱對蝦腸道弧菌屬、黃海綿菌屬、斯氏弓型菌屬、希瓦氏菌屬的相對豐度顯著降低,乳酸桿菌屬和不動桿菌屬的相對豐度則顯著增加(圖5)。

3 討論

3. 1 XOS對凡納濱對蝦生長性能和消化酶的影響

甲殼動物通過食物獲取的能量主要用于自身生長、繁殖和基礎代謝。據報道,淡化養殖的凡納濱對蝦增重率和存活率較低(Li et al.,2007),可能是由于機體需要更多能量用于調節自身滲透壓平衡,而導致其生長速率降低。腸道作為機體的重要消化器官,其分泌的消化酶對各種營養物質的消化、吸收和轉化起決定性作用,即消化酶活性反映著機體的消化水平,與機體的生長指數呈正相關(Ziaei-Nejad et al.,2006)。已有研究表明,在飼料中添加XOS,異育銀鯽(熊沈學,2005)、凡納濱對蝦(陳曉瑛等,2014)、刺參(Apostichopus japonicas Selenka)(梁超,2011)、草魚(Zhang et al.,2020)和奧尼羅非魚(Poolsawat et al.,2021)等生物的生長性能及消化酶活性均有所提高。本研究通過在基礎飼料中添加XOS,經過56 d的飼養試驗,結果發現凡納濱對蝦的生長性能指標隨著XOS添加量的增加而逐漸提高,其中LS1000組凡納濱對蝦的增重率、特定生長率、肥滿度、肝體指數及存活率均顯著高于LS0組凡納濱對蝦,接近于海水對照組(HS0)凡納濱對蝦。此外,LS1000組凡納濱對蝦腸道AMS活性顯著高于LS0組凡納濱對蝦,Trp和LPS活性也隨XOS添加量的增加呈上升趨勢,說明XOS能有效提高低鹽脅迫下凡納濱對蝦的生長性能。

3. 2 XOS對凡納濱對蝦抗氧化性能和免疫相關基因表達量的影響

低鹽脅迫可誘導對蝦機體氧化應激而產生過量活性氧(ROS)及免疫力下降等問題(Claus et al.,2016),過量的ROS易導致細胞遺傳物質和機體功能損傷(Soleimani et al.,2012)。SOD是生物體內的一種抗氧化金屬酶,能分解ROS生成O2和H2O2,避免ROS對機體造成損傷(Fletcher,1986);CAT能促進H2O2分解成H2和自由氧,維持體內活性氧的動態平衡(Viarengo et al.,1991);H2O2易導致機體形成脂質過氧化物而進一步分解生成MDA,因此MDA含量可反映細胞受損及脂質過氧化程度(Zheng et al.,2020)。本研究結果表明,低鹽脅迫顯著降低了凡納濱對蝦的抗氧化性能,通過在飼料中添加XOS,凡納濱對蝦的抗氧化性能逐漸升高,其中LS500和LS1000組凡納濱對蝦的CAT活性顯著高于LS0組凡納濱對蝦,而MDA含量顯著低于LS0組凡納濱對蝦。陳曉瑛等(2014)研究發現,在正常鹽度條件下,飼料中添加400或600 mg/kg XOS可顯著降低凡納濱幼蝦血清MDA含量,有效提高肝胰腺中的抗超氧陰離子自由基(Anti-O2-·)活力。在類似結論還有報道,飼料中添加XOS同樣能有效提高異育銀鯽(熊沈學,2005)和奧尼羅非魚(張榮斌等,2011)的抗氧化能力??梢?,飼料中添加500或1000 mg/kg XOS能有效提高凡納濱幼蝦在低鹽脅迫中應對氧化應激的能力,緩解低鹽脅迫導致肝胰腺脂質過氧化造成的機體細胞損傷。

無脊椎動物無特異性免疫系統,先天免疫系統是其防止外源致病菌入侵的重要防線(Li and Xiang,2013)。酚氧化酶系統是無脊椎動物先天免疫防御中的重要組成部分,而proPO基因是酚氧化酶系統中的上游關鍵基因,活化的proPO最終導致黑色素及有毒活性中間體產生,其中中間體參與無脊椎動物的先天免疫防御(Cerenius et al.,2008;Amparyup et al.,2013;Charoensapsri et al.,2014)。ALF作為抗菌肽在凡納濱對蝦的先天免疫中發揮重要作用,不僅可抵御外來病原體的入侵,還能排解自身的代謝產物(Nam et al.,2018;Zhou et al.,2019)。LZM同樣在無脊椎動物免疫防御系統中扮演著重要角色,通過溶解致病菌細胞壁的不溶性黏多糖而促進致病菌分解(Sotelo-mundo et al.,2003)。Toll樣受體(TLR)是先天免疫系統中主要的模式識別受體(PRR)之一(Akira et al.,2006),可幫助細胞識別外源或內源遺傳物質,從而啟動機體的免疫反應,調控下游干擾素分泌,促進促炎細胞因子產生,抵抗細菌或病毒的侵染(Takeshita and Ishii,2008)。本研究結果表明,低鹽脅迫降低了凡納濱對蝦的免疫能力,通過在飼料中添加XOS,其免疫相關基因的相對表達量逐漸提高,其中LS1000組凡納濱對蝦鰓組織proPO、ALF、LZM、TLR1、TLR2和TLR3基因的相對表達量顯著高于海水對照組(HS0)。有研究表明,飼料中添加8.0或10.0 mg/g低聚果糖(Fructo oligosaccharide,FOS)可提高克氏原鰲蝦(Procambarus clarkii)的proPO基因相對表達量(Dong and Wang,2013);飼料中添加5 mg/g菊粉和甘露寡糖(Mannan oligosaccharide,MOS)可顯著提高凡納濱對蝦的proPO、ALF和Toll基因相對表達量(Li et al.,2018)。此外,Cabrera-Stevens等(2022)通過高通量測序發現,在飼料中添加0.02 g/kg姜黃和瑪咖也可提高凡納濱對蝦Toll基因相對表達量??梢?,在飼料中添加1000 mg/kg XOS能有效提高凡納濱對蝦在低鹽脅迫下的免疫能力,降低病原體侵染風險,最終維持對蝦在低鹽脅迫下的健康狀態。

3. 3 XOS對凡納濱對蝦腸道菌群多樣性及組成結構的影響

宿主腸道菌群多樣性易受周圍環境條件、健康狀況及食物種類等因素的影響,而腸道菌群結構又影響宿主的能量代謝和免疫應答等功能(Claus et al.,2016;Hou et al.,2018;王飛飛等,2022)。由于凡納濱對蝦缺乏特異性免疫,擁有較高的Alpha多樣性說明機體具有對外界病原菌的高免疫能力及環境變化的高適應性(Xiong et al.,2018)。在本研究中,LS1000組凡納濱對蝦腸道菌群Alpha多樣性顯著高于LS0組凡納濱對蝦,即在飼料中添加1000 mg/kg XOS能有效提高凡納濱對蝦腸道菌群物種多樣性及豐富度,在異育銀鯽(謝芳等,2020)的相關研究中也得出相似結論。低鹽脅迫后凡納濱對蝦腸道菌群結構發生顯著變化,LS500和LS1000組凡納濱對蝦腸道中的變形菌門相對豐度顯著低于LS0組凡納濱對蝦,而厚壁菌門和疣微菌門相對豐度顯著高于LS0組凡納濱對蝦。已有研究表明,變形菌門相對豐度的增加通常出現在生長緩慢和染病的凡納濱對蝦腸道中,而疣微菌門和厚壁菌門能降解腸道中不易消化的多糖并提高腸道結合力(黃曉飛和陸穎理,2014)。在水產養殖行業中,弧菌屬的部分細菌是造成疾病的致病菌,而乳酸桿菌屬可促進蝦蟹新陳代謝,為機體提供必需氨基酸及各種維生素,改善消化酶活性,進而促進其生長(王國霞等,2010);乳酸桿菌還具有免疫調節作用,包括促進細胞分裂、促進抗體產生及活化巨噬細胞等功能(章文明等,2012)。本研究結果顯示,隨著XOS添加量的增加,凡納濱對蝦腸道益生菌的相對豐度逐漸升高,而致病菌相對豐度顯著降低,其中LS1000組凡納濱對蝦腸道的乳酸桿菌屬相對豐度顯著升高、弧菌屬相對豐度顯著下降,與胡曉偉等(2018)的研究結果相似。陳曉瑛(2012)研究發現,在飼料中添加600 mg/kg XOS,凡納濱對蝦腸道細菌種類總數和雙歧桿菌數量顯著高于對照組,弧菌數量則顯著降低。綜上所述,XOS可抑制凡納濱對蝦淡化養殖過程中致病菌的生長,同時刺激益生菌生長,進而提高宿主免疫能力。

4 結論

低鹽脅迫下在基礎飼料中添加500~1000 mg/kg XOS,可顯著提高凡納濱對蝦生長速率、抗氧化性能、免疫相關基因表達及改善腸道菌群組成結構,有效提高對蝦在低鹽脅迫下的養殖效果,即XOS可作為凡納濱對蝦淡化養殖飼料添加劑進一步開發應用。

參考文獻:

陳儉,代冰濤,王紅明,宋守鋼,譚北平,章雙. 2022. 飼料中添加β-葡聚糖對珍珠龍膽石斑魚生長性能、免疫指標、轉錄組及腸道菌群的影響[J]. 南方農業學報,53(5):1434-1447. [Chen J,Dai B T,Wang H M,Song S G,Tan B P,Zhang S. 2022. Effects of adding β-glucan to feed on the growth performance, immune indexes, transcriptome and intestinal flora of Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus [♂][J]. Journal of Southern Agriculture,53(5):1434-1447.] doi:10.3969/j.issn.2095-1191.2022. 05.026.

陳曉瑛,曹俊明,黃燕華,王國霞,莫文艷,陳冰,趙紅霞,付晶晶. 2014. 飼料中添加低聚木糖對凡納濱對蝦幼蝦生長性能、非特異性免疫力、抗氧化功能及抗對蝦白斑綜合征病毒能力的影響[J]. 動物營養學報,26(8):2379-2407. [Chen X Y,Cao J M,Huang Y H,Wang G X,Mo W Y,Chen B,Zhao H X,Fu J J. 2014. Xylo-oligosaccharides supplementation affects growth performance, non-specific immunity, antioxidant function and anti-white spot syndrome virus capacity of juvenile Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition,26(8):2379-2407.] doi:10.3969/j.issn.1006-267x.2014.08.047.

陳曉瑛,王國霞,孫育平,陳冰,莫文艷,趙紅霞,曹俊明,黃燕華. 2018. 飼料中添加低聚木糖對凡納濱對蝦幼蝦消化酶活力、腸道形態及細菌數量的影響[J]. 動物營養學報,30(4):1522-1529. [Chen X Y,Wang G X,Sun Y P,Chen B,Mo W Y,Zhao H X,Cao J M,Huang Y H. 2018. Effects of dietary xylo-oligosaccharides on digestive enzymes activities,intestinal morphology and bacteria numbers of juvenile Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition,30(4):1522-1529.] doi:10. 3969/j.issn.1006-267x.2018.04.037.

陳曉瑛. 2012. 低聚木糖對凡納濱對蝦(Litopenaeus vannamei)生長、免疫功能和腸道菌群的影響[D]. 廣州:華南農業大學. [Chen X Y. 2012. Effects of xylose oligosaccharides on growth, immune function and intestinal microbiota of Litopenaeus vannamei[D]. Guangzhou:South China Agricultural University.] doi:10.7666/d.Y2246243.

郝賀,鐘翠紅,李欣澤,王海英,武亞南,王風申,劉冠慧,石玉祥,張永英. 2021. 發酵中藥對熱應激肉雞腸道菌群結構的影響[J]. 河南農業科學,50(9):135-142. [Hao H,Zhong C H,Li X Z,Wang H Y,Wu Y N,Wang F S,Liu G H,Shi Y X, Zhang Y Y. 2021. Effect of fermented traditional Chinese medicine on intestinal flora structure of broilers under heat stress[J]. Journal of Henan Agricultural Sciences,50(9):135-142.] doi:10.15933/j.cnki. 1004-3268.2021.09.016.

胡曉偉,上官靜波,黎中寶,楊敏,徐安樂. 2018. 低聚木糖對花鱸幼魚生長性能,血清生化和免疫指標及腸道菌群組成的影響[J]. 動物營養學報,30(2):734-742. [Hu X W,Shangguan J B,Li Z B,Yang M,Xu A L. 2018. Effects of xylooligosaccharide on growth performance,serum biochemical and immune indices and intestinal microflora composition of juvenile Japanese seabass (Lateolabrax maculatus)[J]. Chinese Journal of Animal Nutrition,30(2):734-742.] doi:10.3969/j.issn.1006-267x.2018.02.039.

胡毅. 2007. 凡納濱對蝦飼料配方優化及幾種飼料添加劑的應用[D]. 青島:中國海洋大學. [Hu Y. 2007. Optimum feed formula selection and some feed additive application on juvenile Litopenaeus vannamei[D]. Qingdao:Ocean University of China.] doi:10.7666/d.y1112245.

黃曉飛,陸穎理. 2014. 腸道菌群與肥胖關系的研究進展[J]. 醫學綜述,20(1):82-84. [Huang X F,Lu Y L. 2014. Research progress of the relationship between gut microbiota and obesity[J]. Medical Recapitulate,20(1):82-84.] doi:10.3969/j.issn.1006-2084.2014.01.029.

梁超. 2011. 飼料中添加二甲酸鉀、低聚木糖和菊粉對刺參的生長、免疫和抗燦爛弧菌感染能力的影響[D]. 青島:中國海洋大學. [Liang C. 2011. Effects of dietary potassium diformate, xylo-oligosaccharides and inulin on growth, immune responses and resistance against V. splendidus of Sea Cucumber Apostichopus japonicas Selenka[D]. Qingdao:Ocean University of China.] doi:10.7666/d.y1926685.

龐麗姣. 2011. 低聚木糖對草魚非特異性免疫功能及免疫相關基因表達的影響[D]. 武漢:華中農業大學. [Pang L J. 2011.? Effects of xylooligosaccharide on the non-specific immunity function and the expression of immune related genes on Ctenopharyngodon idellus[D]. Wuhan:Huazhong Agricultural University.] doi:10.7666/d.y2004171.

齊志濤,張啟煥,仇明,封功能,呂富,王愛民. 2011. 低聚木糖對斑點叉尾鮰生長及血液指標的影響[J]. 水產科學,30(12):785-788. [Qi Z T,Zhang Q H,Qiu M,Feng G N,Lü F,Wang A M. 2011. Effect of xylooligosaccharides on growth performance and blood parameters in Ictalu-rus punctatus[J]. Fisheries Science,30(12):785-788.] doi:10.3969/j.issn.1003-1111.2011.12.014.

強俊,王輝,李瑞偉,彭俊. 2009. 低聚木糖對奧尼羅非魚幼魚生長、體成分和消化酶活力的影響[J]. 淡水漁業,39(6):63-68. [Qiang J,Wang H,Li R W,Peng J. 2009. Effects of xylo-oligosaccharides on growth,body composition and digestive enzyme activities of juvenile tilapia (Oreochromis niloticus×O. aureus)[J]. Freshwater Fishe-ries,39(6):63-68.] doi:10.3969/j.issn.1000-6907.2009. 06.011.

舒迎霜,賀濛初,桂雪兒,夏曉冬,馮士彬,李玉,王希春,吳金節. 2020. 黃芪多糖對犬盲腸菌群的影響[J]. 甘肅農業大學學報,55(2):1-8. [Shu Y S,He M C,Gui X E,Xia X D,Feng S B,Li Y,Wang X C,Wu J J. 2020. Effect of Astragalus polysaccharide on cecal flora in canines[J]. Journal of Gansu Agricultural University,55(2):1-8.] doi:10.13432/j.cnki.jgsau.2020.02.001.

湯上上,韓鳳祿,周利,劉世譽,徐暢,陳立僑,李二超. 2021. 甘露寡糖對低鹽脅迫下凡納濱對蝦生長、健康及腸道菌群的影響[J]. 水產學報,45(12):2044-2060. [Tang S S,Han F L,Zhou L,Liu S Y,Xu C,Chen L Q,Li E C. 2021. Effects of dietary mannan oligosaccharide supplementation on growth,health and intestinal microbiota of Pacific white shrimp Litopenaeus vannamei at low salinity[J]. Journal of Fisheries of China,45(12):2044-2060.] doi:10.11964/jfc.20210312698.

王飛飛,王夏雯,金倩,張智慧,王澤平,田勝營,王信海. 2022. 溫度對克氏原螯蝦腸道菌群結構的影響[J]. 江蘇農業學報,38(1):157-164. [Wang F F,Wang X W,Jin Q,Zhang Z H,Wang Z P,Tian S Y,Wang X H. 2022. Effects of temperature on gut microbiota structure of Procambarus clarkii[J]. Jiangsu Journal of Agricultural Scien-ces,38(1):157-164.] doi:10.3969/j.issn.1000-4440.2022. 01.019.

王國霞,黃燕華,周曄,董尚智,黃文慶,嚴琴. 2010. 乳酸菌對凡納濱對蝦幼蝦生長性能、消化酶活性和非特異性免疫的影響[J]. 動物營養學報,22(1):228-234. [Wang G X,Huang Y H,Zhou Y,Dong S Z,Huang W Q,Yan Q. 2010. Effects of lactobacillus on growth performance,digestive enzyme activities and non-specific immunity of Litopenaeus vannamei[J]. Chinese Journal of Animal Nutrition,22(1):228-234.] doi:10.3969/j.issn.1006-267x. 2010.01.035.

王興強,馬甡,董雙林. 2004. 凡納濱對蝦生物學及養殖生態學研究進展[J]. 海洋湖沼通報,(4):94-100. [Wang X Q,Ma S,Dong S L. 2004. Studies on the biology and cultural ecology of Litopenaeus vannamei: A review[J]. Transaction of Oceanology and Limnology,(4):94-100.] doi:10.3969/j.issn.1003-6482.2004.04.016.

謝芳,張海波,幸清鳳,黎力之,關瑋琨,郭冬生,劉小高. 2020. 低聚木糖對動物腸道屏障的影響及其在動物生產中應用的研究進展[J]. 中國畜牧雜志,56(10):7-12. [Xie F,Zhang H B,Xing Q F,Li L Z,Guan W K,Guo D S,Liu X G. 2020. Advances in effect of xylo-oligosaccharide mediated intestinal flora and its metabolites on animal intestinal barrier[J]. Chinese Journal of Animal Science,56(10):7-12.] doi:10.19556/j.0258-7033.2020 0516-06.

熊沈學. 2005. 飼料中添加低聚木糖對異育銀鯽增重率、消化酶活性及免疫性能的影響[D]. 南京:南京農業大學. [Xiong S X. 2005. Effects of xylo-oligosaccharides in diets on the weight gain ratio,digestive enzyme activity and immune performance of Allogynogenetic crucian carp[D]. Nanjing: Nanjing Agricultural University.] doi:10. 7666/d.Y748884.

袁鐘宇,張石蕊,張建社. 2008. 寡糖在水產養殖中的應用[J]. 飼料研究,(8):65-68. [Yuan Z Y,Zhang S R,Zhang J S. 2008. Application of oligosaccharides in aquaculture[J]. Feed Research,(8):65-68.] doi:10.13557/j.cnki.issn1002-2813.2008.08.022.

張榮斌,曹俊明,黃燕華,王國霞,陳曉瑛,嚴晶,周婷婷,孫智武. 2011. 飼料中添加低聚木糖對奧尼羅非魚生長性能和血清生化指標的影響[J]. 動物營養學報,23(11):2000-2008. [Zhang R B,Cao J M,Huang Y H,Wang G X,Chen X Y,Yan J,Zhou T T,Sun Z W. 2011. Effects of dietary xylooligosaccharides on growth performance and serum biochemical indices of tilapia (Oreochromis niloticus×O. aureus)[J]. Chinese Journal of Animal Nutrition,23(11):2000-2008.] doi:10.3969/j.issn.1006-267x. 2011.11.022.

章文明,汪海峰,劉建新. 2012. 乳酸桿菌益生作用機制的研究進展[J]. 動物營養學報,24(3):389-396. [Zhang W M,Wang H F, Liu J X. 2012. Mechanism of action of probiotic function of Lactobacilli[J]. Chinese Journal of Animal Nutrition,24(3):389-396.] doi:10.3969/j.issn. 1006-267x.2012.03.001.

Akira S,Uematsu S,Takeuchi O. 2006. Pathogen recognition and innate immunity[J]. Cell,124(4):783-801. doi:10. 1016/j.cell.2006.02.015.

Amparyup P,Charoensapsri W,Tassanakajon A. 2013. Prophenoloxidase system and its role in shrimp immune responses against major pathogens[J]. Fish & Shellfish Immunology,34(4):990-1001. doi:10.1016/j.fsi.2012. 08.019.

Cabrera-Stevens M J,Sánchez-Paz A,Mendoza-Cano F,Es-cobedo-Fregoso C,Encinas-García T,Elizondo-González R,Pe?a-Rodríguez A. 2022. Transcriptome analysis reveals differential gene expression associated with white spot syndrome virus resistance in the shrimp Litopenaeus vannamei fed on functional diets[J]. Aquaculture,547:737434. doi:10.1016/j.aquaculture.2021.737434.

Cerenius L,Lee B L,S?derhall K. 2008. The proPO-system:Pros and cons for its role in invertebrate immunity[J]. Trends in Immunology,29(6):263-271. doi:10.1016/j.it. 2008.02.009.

Charoensapsri W,Amparyup P,Suriyachan C,Tassanakajon A. 2014. Melanization reaction products of shrimp display antimicrobial properties against their major bacterial and fungal pathogens[J]. Developmental & Comparative Immunology,47(1):150-159. doi:10.1016/j.dci.2014.07.010.

Claus S P,Guillou H,Ellero-Simatos S. 2016. Erratum:The gut microbiota:A major player in the toxicity of environmental pollutants?[J]. NPJ Biofilms and Microbiomes,(2):16003. doi:10.1038/npjbiofilms.2017.1.

Dong C H,Wang J. 2013. Immunostimulatory effects of dietary fructooligosaccharides on red swamp crayfish,Procambarus clarkii (Girard)[J]. Aquaculture Research,44(9):1416-1424. doi:10.1111/j.1365-2109.2012.03146.x.

Fletcher T C. 1986. Modulation of nonspecific host defenses in fish[J]. Veterinary Immunology and Immunopathology,12(1-4):59-67. doi:10.1016/0165-2427(86)90110-8.

Hou D W,Huang Z J,Zeng S Z,Liu J,Wei D D,Deng X S,Weng S P,Yan Q Y,He J G. 2018. Intestinal bacterial signatures of white feces syndrome in shrimp[J]. Applied Microbiology and Biotechnology,102(8):3701-3709. doi:10.1007/s00253-018-8855-2.

Li E C,Chen L Q,Zeng C,Chen X M,Yu N,Lai Q M,Qin J G. 2007. Growth,body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp,Litopenaeus vannamei,at different salinities[J]. Aquaculture,265(1-4):385-390. doi:10.1016/j.aquaculture.2007.02.018.

Li E C,Wang X D,Chen K,Xu C,Qin J G,Chen L Q. 2017. Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity[J]. Reviews in Aquaculture,9(1):57-75. doi:10.1111/raq.12104.

Li F H,Xiang J H. 2013. Signaling pathways regulating innate immune responses in shrimp[J]. Fish & Shellfish Immunology,34(4):973-980. doi:10.1016/j.fsi.2012. 08.023.

Li Y,Liu H,Dai X L,Li J J,Ding F J. 2018. Effects of die-tary inulin and mannan oligosaccharide on immune rela-ted genes expression and disease resistance of Pacific white shrimp,Litopenaeus vannamei[J]. Fish & Shellfish Immunology,76:78-92. doi:10.1016/j.fsi.2018.02.034.

Nam B H,Park E H,Shin E H,Kim Y O,Kim D G,Kong H J,Park J Y,Seo J K. 2018. Development of novel antimicrobial peptides derived from anti-lipopolysaccharide factor of the swimming crab,Portunus trituberculatus[J]. Fish & Shellfish Immunology,84:664-672. doi:10.1016/j.fsi.2018.10.031.

Pinheiro I,Carneiro R F S,do Nascimento Vieira F,Gonzaga L V,Fett R,de Oliveira Costa A C,Magallón-Barajas F J,Seiffert W Q. 2019. Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities[J]. Aquaculture,519:734918. doi:10. 1016/j.aquaculture.2019.734918.

Poolsawat L,Li X Q,Xu X Y,Rahman M M,Boonpeng N,Leng X J. 2021. Dietary xylo-oligosaccharide improved growth, nutrient utilization,gut microbiota and disease resistance of tilapia (Oreochromis niloticus×O. aureus)[J]. Animal Feed Science and Technology,275(1):114872. doi:10.1016/j.anifeedsci.2021.114872.

Soleimani N,Hoseinifar S H,Merrifield D L,Barati M,Abadi Z H. 2012. Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response,stress resistance,digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry[J]. Fish & Shellfish Immunology,32(2):316-321. doi:10.1016/j.fsi. 2011.11.023.

Sotelo-Mundo R R,Islas-Osuna M A,de-la-Re-Vega E,Hernández-López J,Vargas-Albores F,Yepiz-Plascencia G. 2003. cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei[J]. Fish & Shellfish Immuno-logy,15(4):325-331. doi:10.1016/s1050-4648(02)00176-6.

Takeshita F,Ishii K J. 2008. Intracellular DNA sensors in immunity[J]. Current Opinion in Immunology,20(4):383-388. doi:10.1016/j.coi.2008.05.009.

Viarengo A,Canesi L,Pertica M,Livingstone D R. 1991. Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels[J]. Comparative Biochemistry and Physiology. Part C:Comparative Pharmacology,100(1-2):187-190. doi:10.1016/0742-8413(91)90151-i.

Xiong J B,Dai W F,Qiu Q F,Zhu J Y,Yang W,Li C H. 2018. Response of host-bacterial colonization in shrimp to developmental stage, environment and disease[J]. Molecular Ecology,27(18):3686-3699. doi:10.1111/mec. 14822.

Xu C,Li E C,Liu Y,Wang X D,Qin J G,Chen L Q. 2017. Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress[J]. Journal of Proteomics,162:1-10. doi:10.1016/j.jprot.2017.04.013.

Zhang Z H,Chen M,Xie S W,Chen X Q,Liu Y J,Tian L X,Niu J. 2020. Effects of dietary xylo-oligosaccharide on growth performance,enzyme activity and immunity of juvenile grass carp,Ctenopharyngodon idellus[J]. Aquaculture Reports,18:100519. doi:10.1016/j.aqrep.2020. 100519.

Zheng L,Xie S W,Zhuang Z X,Liu Y J,Tian L X,Niu J. 2020. Effects of yeast and yeast extract on growth performance, antioxidant ability and intestinal microbiota of juvenile Pacific white shrimp (Litopenaeus vannamei)[J]. Aquaculture,530:735941. doi:10.1016/j.aquaculture.2020. 735941.

Zhou L,Li G Q,Jiao Y,Huang D Q,Li A G,Chen H R,Liu Y,Li S M,Li H,Wang C G. 2019. Molecular and antimicrobial characterization of a group G anti-lipopolysaccharide factor (ALF) from Penaeus monodon[J]. Fish & Shellfish Immunology,94:149-156. doi:10.1016/j.fsi. 2019.08.066.

Ziaei-Nejad S,Rezaei M H,Takami G A,Lovett D L,Mirvaghefi A R,Shakouri M. 2006. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus[J]. Aquaculture,252(2-4):516-524. doi:10.1016/j.aquaculture.2005.07.021.

(責任編輯 蘭宗寶)

猜你喜歡
腸道菌群免疫生長
碗蓮生長記
生長在哪里的啟示
生長
高鉛血癥兒童腸道菌群構成變化研究
氣相色譜法快速分析人唾液中7種短鏈脂肪酸
藏藥對免疫系統調節作用的研究
早期腸內營養對急性重型顱腦外傷患者免疫及炎癥指標的影響
運動與機體免疫能力關系研究綜述
大鼠腸道菌群對芍藥苷體外代謝轉化的研究
腸道菌群與非酒精性脂肪性肝病
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合