?

植物根際促生菌提高植物耐鹽性研究進展

2023-10-09 08:48陳夢霞
南方農業·上旬 2023年7期
關鍵詞:鹽脅迫耐鹽性研究進展

陳夢霞

摘 要 鹽脅迫是限制農業生產力的主要因素之一,土壤鹽分已成為影響農業發展的一個重大阻礙。植物根際促生菌(PGPR)是附著在植物根部或者土壤的有益菌類,它既可促進植物生長、提高吸收和利用礦物質的效率、抵抗病原菌的侵害,又可增強植物的耐鹽性。為改善鹽漬土環境,促進植物生長,提高作物產量提供參考,主要論述了鹽脅迫環境對植物、土壤微生物的影響,以及PGPR誘導植物耐鹽性的相關機制,并對今后PGPR的發展進行了展望。

關鍵詞 鹽脅迫;植物根際促生菌(PGPR);耐鹽性;研究進展

中圖分類號:S154.38+1 文獻標志碼:C DOI:10.19415/j.cnki.1673-890x.2023.13.004

目前,全球鹽堿土分布范圍與占地面積越來越大,面積已超過8.33億hm2,其中大多分布在非洲、亞洲和拉丁美洲的自然干旱或半干旱地帶。我國鹽漬土面積約為0.99億hm2,占全球1/10以上,這對我國糧食和生態安全造成了嚴重的影響。

土壤鹽漬化形成的原因有很多種,比如海平面上升和熱帶風暴潮導致的氣候變化會增加土壤和水中鹽分[1],地底深部含鹽地下水中的巖鹽和石膏的溶解導致地下水鹽度增加[2],人為活動可以將土壤鹽濃度提高到影響土壤質量、微生物、植物和動物生命的水平[3]。此外,堆肥中含有較高濃度的可溶性鹽,也可導致土壤鹽分含量偏高[4]。研究表明,植物根際促生菌(PGPR)與植物根系相互作用,可以減輕鹽分脅迫以提高作物生產力[5]。PGPR也被用作生物接種劑,用于提高作物產量、防治植物病原體和改善土壤健康[6]。PGPR能很好地適應極端環境,為生物肥料和生物防治劑提供一個未開發的倉庫,以抵御農業生態系統中的鹽脅迫[7]。

1? ?鹽脅迫對植物的影響

鹽脅迫是影響植物生長發育的主要因素,鹽脅迫持續時間越長,植物受損程度越嚴重。在鹽脅迫條件下,細胞內的Na+濃度增加,達到細胞毒性水平,最終導致離子穩態失衡[8]。為了維持自身的離子平衡,植物通過Na+/H+反轉運蛋白將細胞質中多余的Na+去除,以換取更多的H+,位于質膜上的Na+/H+反轉運蛋白將Na+轉運到質外體[9]。鹽脅迫也會影響植物的滲透穩態,比如細胞膨脹壓力縮小,質膜收縮,細胞壁也會發生改變,此時植物則主要依賴于從基因表達和滲透物生物合成酶的激活到水運輸系統的過程的滲透信號通路,以此改變植物細胞的滲透壓。

2? PGPR多樣性研究進展

土壤中含有大量的微生物,包括細菌、真菌、病毒等,與植物根際相關的微生物更是種類繁多,構成了復雜的植物相關微生物群落[10]。其中,PGPR可以促進植物生長或控制病原體,通過接種該類細菌可以促進植物發育并減輕病原體侵害和非生物脅迫[11]。

PGPR分布范圍廣泛,并且具有豐富的多樣性。Sankalp等在印度北方邦農業氣候區分離出了1 125種能夠耐受1M NaCl的細菌,其中有560種以1-氨基環丙烷基羧酸(ACC)作為唯一氮源,經過細菌包被、種子萌發、耐受能力、16S rRNA等實驗與分析,最終確定芽孢桿菌屬(Bacillus)是西部平原地區的優勢屬,對提高水稻幼苗的生物量具有積極作用[12-13]。He等人從中國西北部的甘肅省騰格里沙漠的梭梭樹的根際分離出編號為M30-35的菌株,M30-35是假單胞菌屬(Pseudomonas adaceae)中的一個新種;結果表明M30-35通過增加枝條鮮重和干重、葉綠素含量、根體積、根活性、葉過氧化氫酶活性、可溶性糖和脯氨酸含量顯著增強多年生黑麥草的生長和耐鹽性[14]。除了沙漠和平原,在高原地區也存在一定的鹽堿土,但因其海拔較高、氧氣稀薄、紫外線強等原因,可種植的農作物并不多,故對高原地區PGPR提高植物耐鹽性的研究相對較少。

3? PGPR介導的鹽脅迫耐受機制研究進展

鹽脅迫下,植物會發生各種生化變化,包括抗氧化酶的激活、植物激素的調節、離子吸收的變化、活性氧(ROS)的產生和光合作用途徑的破壞[15],PGPR可以通過多種方式促進植物共生體的生長,從而針對多種脅迫因素提供交叉保護[16]。

3.1? ?激活抗氧化酶

PGPR具有合成代謝抗氧化物的能力,可在植物體內起到緩解植物氧化損傷、增強植物耐鹽能力的作用。此外,PGPR還參與植物體內基因調控,誘導相應基因表達,參與氧化物清除。植物接種PGPR有助于降低水稻在鹽分條件下的植物細胞膜指數、細胞半胱天冬酶樣蛋白酶活性和程序性細胞死亡,從而降低活性氧的毒性,為植物提供耐鹽能力并增加細胞活力,在植物對鹽脅迫的正向適應中發揮重要的生長調節作用[17]??死撞↘lebsiella)的分離菌株SURYA6可以產生高活性的抗氧化酶,如超氧化物歧化酶(SOD)、過氧化氫酶(CAT)和谷胱甘肽氧化酶等,還可以產生各種PGP、鹽等改善和提高抗氧化代謝物的潛力,使其成為鹽分壓力管理的潛在生物接種劑[18]。能產生類胡蘿卜素的耐鹽細菌迪茨氏菌(Dietzia natronolimnaea)的STR1菌株,可以通過調節植物耐鹽性的轉錄機制來保護小麥植物免受鹽脅迫;接種該菌株的小麥植株中各種抗氧化酶(如APX、MnSOD、CAT、POD、GPX和GR)的基因表達增強,有助于提高對鹽脅迫的耐受性[19]。在鹽脅迫條件下,接種腸桿菌屬(Enterobacteriaceae)的菌株UPMR18的秋葵植物中觀察到抗氧化酶活性(SOD、APX和CAT)增加,可能是一種有效的生物資源,可增強鹽脅迫下秋葵植物的耐鹽性和生長能力[20]。玉米接種葡萄球菌菌株SAT-17后,細胞抗氧化酶活性增加,并減輕了鹽誘導的細胞氧化損傷,促進了玉米生長[21]。這些研究表明,PGPR在激活抗氧化酶、調節植物生理生化過程中具有重要作用。

3.2? 植物生長調節劑

PGPR能夠通過產生植物激素[赤霉素(GAs)、脫落酸(ABA)、吲哚-3-乙酸(IAA)]直接定殖根部,增強植物細胞分裂和植物吸收水分及礦物質的能力,并刺激植物內源激素的增加,從而促進種子萌發、根系發達、植株生長和對逆境的抵抗作用。

PGPR在產生IAA中具有重要的促進植物生長的作用,這是由于它是調節植物發育的信號分子。細菌細胞與植物根系結合,以提高水分保持能力和防御系統對抗不同非生物脅迫的能力。研究報道,在鹽脅迫條件下,當棉花接種產生IAA的芽孢桿菌(Bacillus)后,植物的發芽率、根長、枝條長度、葉綠素含量指數、相對含水量、葉面積、K+吸收和Na+的吸收增加[22]。節桿菌(Arthrobacter)菌株SA3在鹽分脅迫下增加了小麥的IAA含量,且幼苗中的DREB2轉錄因子的表達水平升高,以此賦予小麥在非生物脅迫下的耐受性[23]。研究表明,熒光假單胞菌(Pseudomonas fluorescens)是在鹽脅迫條件下維持ACC脫氨酶活性、鐵載體和IAA生產的最佳菌株,可以有效緩解鹽度對黃瓜生長的負面影響[24]。在鹽脅迫下添加ACC導致乙烯信號正調節因子表達增加,抗氧化酶活性增強,從而提高了植物耐鹽性,加速了植物生長。根際細菌合成的細胞分裂素通過減少鉀濃度下降的程度,改善鹽脅迫下番茄的枝條生長[25]。在缺水條件下,將產生細胞分裂素的枯草芽孢桿菌(Bacillus subtilis)接種到萵苣幼苗上會增加枝條生物量的積累并縮短根系,而對根系生物量的影響很小[26]。

3.3? 滲透保護劑

在應對鹽脅迫時,植物會積累有機滲透物,例如脯氨酸、甘氨酸、甜菜堿等以減輕對植物的傷害。具有固氮能力的耐鹽PGPR可以產生滲透物以保持鹽漬土壤中細胞的膨脹和新陳代謝[27]。Chen等發現Bacillus subtilis可以增強擬南芥中脯氨酸的合成[27-28]。鹽脅迫下,腸桿菌(Enterobacteriaceae)使擬南芥葉片中與脯氨酸合成相關基因P5CS1和P5CS2均表達上調[29]。此外,PGPR通過增加植物可溶性糖(TSS)含量抵御鹽脅迫。用Bacillus subtilis接菌小麥,不僅增加了脯氨酸的濃度,也增加了組織中可溶性糖的含量,兩者共同促成了植物的高耐鹽性[30]。接種芽孢桿菌(Bacillus)HL3RS14菌株的植物根干重和枝條長度增加,且顯示出高濃度的脯氨酸、甘氨酸甜菜堿和丙二醛[31]。利用鳥槍法分析大豆組織中的蛋白質組表明,在接種慢生根瘤菌后,鹽脅迫下應激反應蛋白如過氧化氫酶和谷胱甘肽S-轉移酶(抗氧化劑)、富含脯氨酸的前體蛋白(滲透劑)和NADP依賴性蘋果酸酶(與ABA信號傳導相關)增加[32]。

4? PGPR在不同作物中的應用

惡臭假單胞菌(Pseudomonas putida)[33]、解淀粉芽孢桿菌(Bacillus amyloliquefaciens)[19,27]、陰溝腸桿菌(Enterobacter cloacae)[34]、鏈霉菌(Streptomyces)[35]等對于在鹽脅迫下提高作物生產力有著至關重要的作用。Amna等人探究了暹羅芽孢桿菌(Bacillus siamensis)菌株PM13、芽孢桿菌屬(Bacillus)菌株PM15、甲基營養芽孢桿菌(Bacillus methylotrophicus)菌株PM19在鹽脅迫下對小麥幼苗的影響,結果表明,PGPR施用對小麥幼苗的發芽率、根和莖長、光合色素等具有非常積極的影響[36]。Yin等人從中國東營鹽堿土中分離出一株新型PGPR菌株BY2G20,是一種變形芽孢桿菌(Metabacillus dongyingensis),可以提高鹽脅迫下玉米的耐受性[37]。Ali等人在玉米上接種陰溝腸桿菌(Enterobacter cloacae)菌株PM23,增強了其自由基清除能力、相對水含量、可溶性糖、蛋白質、總酚和類黃酮含量[38]。Abdel等在油菜根際分離出2種PGPR菌株:褐色球形固氮菌(Azotobacter chroococcum)和糞產堿菌(Alcaligenes faecalis),二者共接種增強了鹽脅迫下植物的生長參數和光合色素,提出共接種可能是解決鹽漬化的優質方法[39]。Khare等人評估了熒光假單胞菌(Pseudomonas fluorescens)的EKi菌株在鹽脅迫下產生生物防治和促進植物生長代謝物的能力,表明鹽脅迫下EKi菌株促進鷹嘴豆的生長并抑制炭腐病[40]。Sapre等從小麥植物的根際分離出耐鹽PGPR菌株IG3,發現接種IG3菌株可增強鹽脅迫條件下的植物生長[41]。利用全基因組測序也可分離鑒定PGPR。Liu等對克雷伯氏菌(Klebsiella)的D5A菌株的基因組進行鑒定,揭示了耐鹽基因的存在。這些基因具有廣泛的pH適應性和PGP性狀,包括磷酸鹽溶解、IAA生物合成等[42]。事實上,功能宏基因組學為鑒定微生物耐鹽性的各種基因提供了一種極好的方法。

5? 結論

在PGPR的長期進化下,植物已發展出各種機制應對鹽脅迫,除了上述所提到的機制外,還有調控ACC脫氨酶的活性,產生胞外多糖(EPS)、調節Na+和K+等離子平衡等。在鹽脅迫下,一些基因或代謝物會參與維持細胞完整性和植物與微生物間的相互作用。在對植物產生鹽分壓力時,PGPR可以通過相應途徑提高植物的耐鹽性,但對于PGPR是通過何種通道或途徑感受到植物處于高鹽環境下的生理生化現象還有待探索。此外,PGPR在修復和提高鹽脅迫條件下農業生態系統的生產力方面具有積極作用,但對于PGPR的基因和功能還有待深入研究,以為將來利用PGPR實現鹽漬土復墾提供依據。

參考文獻:

[1]? ISLAM M A, HOQUE M A, Ahmed K M, et al. Impact of Climate Change and Land Use on Groundwater Salinization in Southern Bangladesh-Implications for Other Asian Deltas[J]. Environ Manage,2019,64:640-649.

[2]? MIRZAVAND M, SADEGHI S, BAGHERI R. Groundwater and soil salinization and geochemical evolution of Femenin-Ghahavand plain, Iran[J]. Environ Sci Pollut Res Int,2020,27:43056-43066.

[3]? LITALIEN A, ZEEB B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. Sci Total Environ,2020,698:134235.

[4]? LIM S L, WU T Y, LIM P N, et al. The use of vermicompost in organic farming: overview, effects on soil and economics[J]. J Sci Food Agric,2015,95:1143-1156.

[5]? BHAT M A, KUMAR V, BHAT M A, et al. Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress[J]. Front Microbiol,2020,11:1952.

[6]? EGAMBERDIEVA D, WIRTH S, BELLINGRATH-KIMURA S D, et al. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils[J]. Front Microbiol,2019,10:2791.

[7]? ALSHARIF W, SAAD M M, HIRT H. Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments[J]. Front Microbiol,2020,11:1666.

[8]? TORANJ S, ALIABAD K K, ABBASPOUR H, et al. Effect of salt stress on the genes expression of the vacuolar H+ -pyrophosphatase and Na+/H+ antiporter in Rubia tinctorum[J]. Molecular Biology Reports,2020,47:235-245.

[9]? ZHANG M H, CAO J F, ZHANG T X, et al. A Putative Plasma Membrane Na+/H+ Antiporter GmSOS1 Is Critical for Salt Stress Tolerance in Glycine max[J]. Front. Plant Sci., 2022,13:870695.

[10] BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends Plant Sci,2012,17(8):478-486.

[11] ARIF I, BATOOL M, SCHENK P M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience[J]. Trends Biotechnol,2020,38:1385-1396.

[12] KING W L, KAMINSKY L M, GANNETT M, et al. Soil salinization accelerates microbiome stabilization in iterative selections for plant performance[J]. New Phytol,2022:2101-2110.

[13] MISRA S, DIXIT V K, KHAN M H, et al. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid(ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria[J]. Microbiol Res,2017,205:25-34.

[14] HE A L, NIU S Q, ZHAO Q, et al. Induced Salt Tolerance of Perennial Ryegrass by a Novel Bacterium Strain from the Rhizosphere of a Desert Shrub Haloxylon ammodendron[J]. Int J Mol Sci,2018:19.

[15] YOON J Y, HAMAYUN M, LEE S K, et al. Methyl jasmonate alleviated salinity stress in soybean[J]. Journal of Crop Science and Biotechnology,2009,12:63-68.

[16] SARKAR A, GHOSH P K, PRAMANIK K, et al. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress[J]. Res Microbiol,2018,169:20-32.

[17] JHA Y, SUBRAMANIAN R B. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity[J]. Physiol Mol Biol Plants,2014,20:201-207.

[18] KUSALE S P, ATTAR Y C, SAYYED R Z, et al. Production of Plant Beneficial and Antioxidants Metabolites by under Salinity Stress[J]. Molecules,2021:26.

[19] BHARTI N, PANDEY S S, BARNAWAL D, et al. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress[J]. Sci Rep,2016,6:34768.

[20] HABIB S H, KAUSAR H, SAUD H M. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes[J]. BioMed Res Int,2016,2016(2):6284547-6284556.

[21] AKRAM M S, SHAHID M, TARIQ M, et al. Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize (Zea mays L.)[J]. Front Microbiol,2016,7:867.

[22] SALEEM S, IQBAL A, AHMED F, et al. Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum[J]. Saudi J Biol Sci,2021,28(9):5317-5324.

[23] BARNAWAL D, BHARTI N, PANDEY S S, et al. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression[J]. Physiol Plant,2017,161:502-514.

[24] NADEEM S M, AHMAD M, NAVEED M, et al. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance[J]. Arch Microbiol,2016,198:379-387.

[25] ARKHIPOVA T N, PRINSEN E, VESELOV S U, et al. Cytokinin producing bacteria enhance plant growth in drying soil[J]. Plant and Soil,2007,292:305-315.

[26] GHANEM M E, ALBACETE A, SMIGOCKI A C, et al. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants[J]. J Exp Bot,2011,62:125-140.

[27] CHEN M, WEI H, CAO J, et al. Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis[J]. J Biochem Mol Biol,2007,40:396-403.

[28] FRASER M W, GLEESON D B, GRIERSON P F, et al. Metagenomic Evidence of Microbial Community Responsiveness to Phosphorus and Salinity Gradients in Seagrass Sediments[J]. Front Microbiol,2018,9:1703.

[29] KIM K, JANG YJ FAU-LEE S-M, LEE SM FAU-OH B-T, et al. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants[J]. Molecules and Cells,2014,37:109-117.

[30] UPADHYAY S K, SINGH J, SAXENA A K, et al. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions[J].Plant biology,2012,14(4):605-611.

[31] MUKHTAR S, ZAREEN M, KHALIQ Z, et al. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions[J]. Journal of Applied Microbiology,2020,128:556-573.

[32] ILANGUMARAN G, SUBRAMANIAN S, SMITH D L. Soybean Leaf Proteomic Profile Influenced by Rhizobacteria Under Optimal and Salt Stress Conditions[J].Frontiers In Plant Science,2022,13:809906.

[33] JATAN R, CHAUHAN P S, LATA C. Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.)[J]. Genomics,2019,111:509-519.

[34] SINGH R P, RUNTHALA A, KHAN S, et al. Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8[J]. PLoS One,2017,12:e0183513.

[35] NOZARI R M, ORTOLAN F, ASTARITA L V, et al. Streptomyces spp. enhance vegetative growth of maize plants under saline stress[J]. Braz J Microbiol,2021,52:1371-1383.

[36] AMNA, UD DIN B, SARFRAZ S, et al. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress[J]. Ecotoxicol Environ Saf,2019,183:109466.

[37] YIN Z, WANG X, HU Y, et al. sp. nov. Is Represented by the Plant Growth-Promoting Bacterium BY2G20 Isolated from Saline-Alkaline Soil and Enhances the Growth of L. under Salt Stress[J]. mSystems,2022:e0142621.

[38] ALI B, WANG X, SALEEM M H, et al. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes[J]. Plants (Basel),2022,11:345.

[39] ABDEL LATEF A A H, OMER A M, BADAWY A A, et al. Strategy of Salt Tolerance and Interactive Impact of and/or Inoculation on Canola ( L.) Plants Grown in Saline Soil[J]. Plants (Basel),2021,10:110.

[40] KHARE E, SINGH S, MAHESHWARI D K, et al. Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition[J]. Curr Microbiol,2011,62:1548-1553.

[41] SAPRE S, GONTIA-MISHRA I, TIWARI S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa)[J]. Microbiol Res,2018,206:25-32.

[42] LIU W, WANG Q, HOU J, et al. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A[J]. Sci Rep,2016,6:26710

猜你喜歡
鹽脅迫耐鹽性研究進展
MiRNA-145在消化系統惡性腫瘤中的研究進展
郁金香耐鹽性鑒定方法研究
離子束拋光研究進展
獨腳金的研究進展
外源NO對NaCl脅迫下高粱幼苗生理響應的調節
花生Clp家族成員的篩選、聚類和鹽脅迫響應分析
源于大麥小孢子突變體的苗期耐鹽性研究
三個大豆品種萌發期和苗期的耐鹽性比較
EGFR核轉位與DNA損傷修復研究進展
甜菜種質資源耐鹽性的初步篩選
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合