?

microRNA在高磷誘導血管平滑肌細胞鈣化早期的動態變化

2016-11-23 02:14杜瑤瑤
北京大學學報(醫學版) 2016年5期
關鍵詞:平滑肌通路變化

肖 洋,杜瑤瑤,高 成,孔 煒

(北京大學基礎醫學院生理學與病理生理學系,教育部分子心血管學重點實驗室, 北京 100191)

?

·論著·

microRNA在高磷誘導血管平滑肌細胞鈣化早期的動態變化

肖 洋,杜瑤瑤,高 成,孔 煒△

(北京大學基礎醫學院生理學與病理生理學系,教育部分子心血管學重點實驗室, 北京 100191)

目的:觀察高磷誘導的血管平滑肌細胞鈣化早期microRNA表達變化,分析其可能參與的信號通路途徑。方法:采用高磷(無機磷 2.6 mmol/L)刺激大鼠血管平滑肌細胞系A7r5鈣化7 d,鄰甲酚酞絡合酮比色法和考馬斯亮藍法檢測細胞內鈣含量,RT-PCR法檢測平滑肌細胞表型和鈣化相關基因的表達變化,茜素紅染色觀察鈣結節。microRNA microarray 法檢測高磷刺激后0、3、12 h,680種microRNA表達變化。采用TAM軟件分析不同時間點間信號激活情況。結果:高磷誘導的A7r5細胞鈣鹽含量升高9.6倍(P<0.05),平滑肌細胞表型mRNA(SM-α actin,SM22)下調(P<0.05), 鈣化相關mRNA(BMP2、MSX2、Runx2)上調(P<0.05),茜素紅染色后可見高磷刺激組有明顯鈣結節。680種microRNA在3個時間點的表達各不相同,只有6種microRNA分別逐級上調或漸漸下調。26種信號通路被明顯激活,其中包括細胞凋亡、分化增殖等已知與鈣化相關的信號通路。結論:microRNA參與調節血管鈣化是一種動態微調的過程,為血管鈣化研究帶來新的思路。

血管鈣化;肌,平滑,血管;微RNA;信號轉導

血管鈣化是動脈粥樣硬化、慢性腎病以及衰老等常見的臨床病理表現,在其發生時血管彈性降低、僵硬化,易形成血栓和出現斑塊破裂,血管鈣化是心腦血管疾病高發病率和高死亡率的重要因素之一。血管鈣化以往被認為是一種被動過程,但近年來研究表明血管鈣化是一種復雜并且高度調控的過程[1]。血管平滑肌細胞(vascular smooth muscle cell,VSMC)在血管鈣化中起關鍵作用,其通過分化成成骨樣細胞,生成基質小泡進而在血管壁形成鈣磷沉積病灶,目前對此過程了解較少。

microRNA是一種內源性表達的非編碼小RNA,其大小長約19~23個核苷酸,剪切加工成熟的microRNA與蛋白質復合物結合形成RNA沉默復合體,與靶mRNA進行不同程度的堿基互補配對,降解靶mRNA或抑制靶mRNA的翻譯。研究證實 microRNA在機體發育、細胞分化、心血管疾病、腫瘤、病毒感染等各種生理或病理過程發揮重要作用[2]。目前對于 microRNA與血管鈣化之間的關系已有初步認識,例如,miR-125b是最早于鈣化人冠狀動脈平滑肌細胞上被發現顯著下調的micro-RNA[3],Wang等[4]觀察到終末期腎病患者相比健康人群循環系統中miR-15b明顯降低,該研究發現其可能參與了磷代謝過程。本課題組于2012年報道[5],miR-29a/b能夠抑制血管平滑肌細胞鈣化。以往對于microRNA參與鈣化機制的研究,多數學者只關注鈣化刺激后某一時間點microRNA的變化,但microRNA參與機體信號調節是一種動態微調的過程,為了能夠對鈣化機制有更深入的理解,本研究檢測給予血管平滑肌細胞鈣化刺激(高磷)后0、3、12 h 3個時間點不同microRNA的表達,以探討在鈣化發生早期microRNA的動態變化,并分析其可能參與激活的信號通路。

1 材料與方法

1.1 細胞培養

大鼠胚胎胸主動脈平滑肌細胞系A7r5購自美國 Type Culture Collection (Manassas, VA)公司。A7r5細胞采用含有10%(體積分數)胎牛血清Dulbecco modified Eagle medium (DMEM)培養基,在37 ℃并含有5%(體積分數) CO2的濕潤環境中培養。鈣化血管平滑肌細胞模型采取給予2.6 mmol/L無機磷刺激7 d的方法,期間每2天換液一次。

1.2 細胞鈣沉積定量實驗

A7r5細胞給予鈣化刺激7 d后,棄掉培養基,用PBS清洗2遍,加入含有6%(體積分數)HCl溶液消化收集細胞,超聲破碎3次,每次3 s,間隔3 s。12 000 r/min,離心15 min,取上清。采用鄰甲酚酞絡合酮比色法測定Ca離子濃度,考馬斯亮藍法測定蛋白質濃度進行標準化,得出細胞內鈣含量。

1.3 細胞茜素紅染色

A7r5細胞給予鈣化刺激7 d后,棄掉培養基,用PBS清洗3遍。加入4%(質量分數)多聚甲醛固定10 min,棄掉多聚甲醛后,PBS清洗3遍,之后加入1%(質量分數)茜素紅溶液1 mL,浸染30 min。光鏡下采集圖像,可見鈣化組平滑肌細胞染成紅色的鈣結節。

1.4 real-time-PCR定量實驗

A7r5細胞給予鈣化刺激48 h后,Trizol法(Invitrogen)提取RNA,再采用逆轉錄試劑盒(Promega)逆轉錄成cDNA,-20℃保存。real-time PCR反應采用美國Mx3000 Multiplex Quantitative PCR System (Stratagene公司, La Jolla, CA)完成。mRNA水平與β-actin進行標準化,引物序列見表1。

表1 大鼠相關mRNA引物序列Table 1 Rats related mRNA primer sequence

1.5 microRNA microarray實驗

A7r5細胞給予2.6 mmol/L無機磷刺激0、3和12 h,用Trizol法(Invitrogen)或miRNeasy minikit (QIAGEN)收集總RNA。采用miRCURYTMHy3TM/Hy5TMPower labeling kit標記,與miRCURYTMLNA Array (v.16.0) (Exiqon, Denmark)雜交,清洗后使用Axon GenePix 4000B microarray scanner掃描芯片。得出原始數據上傳到NCBI-Pubmed-GEO dataset數據庫,GEO accession: GSE39700。microRNA在3個時間點的倍數變化通過不同的熒光強度來顯示,1.5倍以上變化被認為差異有統計學意義。

1.6 microRNA信號通路分析

將上述顯著變化的microRNA數據,帶入TAM軟件進行數據庫分析(www.cuilab.cn/tam),得出激活的信號通路數據,P<0.05認為差異有統計學意義,再將P值進行負的常用對數換算(-lgP),作圖得出分析結果。

1.7 統計學分析

采用GraphPad Prism 4軟件進行分析,正態分布的連續隨機變量采用平均值±標準誤表示。兩組間比較采用t檢驗,成對數據均采用配對t檢驗(雙側檢驗)。

2 結果

2.1 鈣化血管平滑肌細胞模型的建立

首先在A7r5細胞上驗證鈣化模型是否成立。在給予2.6 mmol/L無機磷刺激7 d后,高磷組(Pi)鈣沉積相比對照組(Ctrl)顯著上調9.6倍[Ctrl (0.23±0.03) mmol/gvs. Pi (2.44±0.34) mmol/g,n=3,P<0.05,圖1A],提示鈣化模型上鈣鹽的沉積。采用茜素紅染色法觀察給予高磷刺激后A7r5細胞鈣化情況,鏡下可見高磷組(Pi)出現明顯紅色鈣結節(圖1B),從組織學角度證實鈣鹽在平滑肌細胞的沉積。進一步研究該模型上平滑肌細胞表型與鈣化相關mRNA的表達變化,通過real-time PCR實驗檢測發現給予高磷刺激48 h后,平滑肌細胞表型分子骨骼肌-α肌動蛋白 (skeletal muscle-α actin, SM-α actin)、平滑肌22 (smooth muscle 22, SM22)均下調(P<0.05),鈣調理蛋白(Calponin)有下降趨勢但差異無統計學意義(P=0.131 5, 圖 1C~E)。相反骨形態發生蛋白2(bone morphogenetic protein-2, BMP2)、骨細胞的同源 2異型蛋白(msh homeobox 2,MSX2)、Runt相關轉錄因子2(runt-related transcription factor 2,Runx2)3種鈣化相關因子均明顯上調(P<0.05,圖 1F~H),以上結果證實在給予高磷刺激后,A7r5細胞向成骨樣細胞轉化,同時證明鈣化模型成立。

*P<0.05, compared with the control (Ctrl) group.

圖1 高磷刺激7 d后,A7r5細胞內鈣含量(A)、茜素紅染色情況(B)和平滑肌細胞表型mRNA[SM-α actin(C)、Calponin(D)和SM22(E)],以及鈣化相關mRNA[BMP2(F)、MSX2(G)和Runx2(H)]表達變化
Figure 1 A7r5 cell were stimulated by high phosphate for 7d. The cell calcium content (A), alizarin red staining (B), smooth muscle cell type mRNA expression of SM-α actin (C),Calponin (D) and SM22 (E),Calcified related mRNA expression of BMP2 (F), MSX2 (G) and Runx2 (H)

2.2 microRNA microarray實驗

采用上述模型,通過microRNA microarray實驗研究給予高磷刺激后0、3和12 h這3個時間點microRNA表達譜變化(圖 2)。原始數據已上傳至NCBI-Pubmed-GEO dataset數據庫,GEO accession: GSE39700(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39700)。

A, scatterplot of miR expression profiles, left panel, 3 h vs. 0 h, right panel, 12 h vs. 3 h; B, hierarchical clustering for microRNA expression profiles in rat VSMCs with high phosphate for 0, 3 or 12 h. Red indicates high relative expression, and green indicates low relative expression.

圖2 給予A7r5細胞高磷刺激后0、3、12 h 3個時間點microRNA表達變化
Figure 2 Microarray profile of time-series change of microRNA in rat VSMCs stimulated with high phosphate for 0, 3, 12 h

實驗共檢測680種microRNA,并分別比較不同microRNA在3 h與0 h點間以及12 h與3 h點間的變化。以變化超過1.5倍認為差異具有統計學意義,統計分析結果見表 2~5。

2.3 給予高磷刺激后0 h與3 h點間所激活的信號通路

有25種microRNA上調以及14種microRNA下調超過33%(表2~3)。為了探尋0 h與3 h點間不同的信號通路活動情況,對上述39種microRNA進行信號通路數據庫分析(圖 3)。下調的microRNA所激活的通路包括細胞運動(miR-128、miR-9)、上皮-間質轉化(epithelial-mesenchymal transition,EMT,包括miR-542、miR-203、miR-29a)和細胞死亡(miR-128、miR-203、let-7f)等;上調的microRNA所激活的通路包括腫瘤抑制基因(let-7b/e、miR-195、miR-29c 等)、脂肪細胞分化(let-7b/e、miR-378、miR-448)、EMT(let-7b/e、miR-448、miR-29c 等)等。

2.4 給予高磷刺激后3 h與12 h點間所激活的信號通路

3 h與12 h點間分別有48個 microRNA上調超過1.5倍和116個microRNA下調超過33%(表4~5),數據庫分析后結果見圖 4。下調的microRNA除在前面0 h與3 h兩時點間已激活的通路外,還包括細胞凋亡(miR-15b、miR-221/222、miR-29a 等)、免疫炎癥反應(miR-25、miR-21、miR-126 等)和骨再生(miR-221/222、let-7b/d、miR-24 等)等共計24條信號通路被激活,令人意外的是在此時間段唯一被上調的microRNA明顯激活的信號通路只有腦發育(miR-323、miR-326、miR-9 等)。

2.5 6種逐級變化的microRNA

第2.3和2.4小節展示了在A7r5細胞上給予鈣化刺激后信號通路的活動情況,與預期相符,模擬血管鈣化發生早期進程,能夠幫助理解microRNA參與鈣化機制調節的動態微調作用。將上述結果綜合分析發現,在3個時間點上,只有3種microRNA[miR-183、 miR-664、 miR-9*(*RNA fragment paired with mature microRNA)]逐級上調以及另外3種microRNA(miR-542-5P、let-7f、miR-29a)漸漸下調(圖 5)。

3 討論

本研究首先在大鼠血管平滑肌細胞系A7r5上驗證給予高磷刺激能夠促進血管平滑肌細胞向成骨樣細胞的轉化,確認鈣化模型成立,并進一步在該模型上觀察680種microRNA在0、3、12 h 3個時間點的變化情況,進行信號通路數據庫分析,結果顯示,microRNA在此過程中參與多種信號通路途徑,包括已知與鈣化相關的細胞死亡/凋亡、分化遷移、免疫炎癥反應和骨再生等[6],與預期相符。尤為矚目的是,在這680種microRNA中只有6種是分別逐級上調或下調的,而其他大部分microRNA在3個時間點都呈現各種不同的變化方式,再次證實microRNA參與機體活動是一種動態精細調控的過程。

表2 高磷刺激A7r5細胞 0 h與3 h點間下調的microRNATable 2 List of down-regulated microRNA in high-phosphate stimulated A7r5 cell at 3 h vs. 0 h

* RNA fragment paired with mature microRNA. ID, identification.

表3 高磷刺激A7r5細胞 0 h與3 h點間上調的microRNATable 3 List of up-regulated microRNA in high-phosphate stimulated A7r5 cell at 3 h vs. 0 h

* RNA fragment paired with mature microRNA. ID, identification.

表4 高磷刺激A7r5細胞 3 h與12 h點間下調的microRNATable 4 List of down-regulated microRNA in high-phosphate stimulated A7r5 cell at 12 h vs. 3 h

續表microRNAnameIDFoldchange(12hvs.3h)Normalized3hNormalized12hrno-miR-338*178250.6156236280.5345622120.329089128rno-miR-503*1481290.5572391540.1827956990.101860921rno-miR-433428530.6325896330.1950844850.123408423rno-miR-107109230.6506696722.5499231951.659157689rno-miR-25426820.2932730832.8387096770.83251714rno-miR-19b109980.4391193630.8832565280.387855044rno-let-7d1459680.4033811534.0937019971.651322233rno-miR-28*1457140.5045587380.5668202760.285994123rno-miR-34b291530.51415416417.921658999.214495593rno-miR-434*112470.585771960.3778801840.221351616rno-miR-99b111840.6277302275.5514592933.484818805rno-miR-495426760.5395163110.5192012290.280117532rno-miR-379110930.5197124541.2211981570.63467189rno-miR-497428470.2928283820.6221198160.182174339rno-miR-195*427230.655321580.2211981570.144955926rno-miR-19a109970.3658138871.7188940090.628795299rno-miR-24-2*429500.524840421.3809523810.724779628rno-miR-32110530.2176143980.4500768050.097943193rno-miR-107*1475360.4567953570.2058371740.094025465rno-miR-1291486450.5435365520.5622119820.305582762rno-miR-871*1481600.5616621580.554531490.311459354rno-miR-743a*1480170.5877558920.3732718890.219392752rno-miR-384-5p428440.27544760.1920122890.052889324rno-miR-142-3p109470.5208202020.6205837170.323212537rno-miR-222*1481330.3126346720.2380952380.074436827rno-miR-3580-3p1485190.5763015140.1597542240.092066601rno-miR-136*425120.595102840.5299539170.315377081rno-miR-99a427080.5480769972.3410138251.283055828rno-let-7i99380.39186082610.832565284.244857982rno-miR-493*111250.5031950660.2841781870.142997062rno-miR-195131480.6225485282.536098311.57884427rno-let-7c1458200.6171944387.0522273434.352595495rno-miR-741-3p1484550.4215341281.8448540710.777668952rno-let-7f177520.2833823050.5529953920.156709109rno-miR-15b172800.42638007915.491551466.605288932rno-miR-16109670.5284715089.781874045.169441724rno-miR-324-3p1457080.5499091570.4132104450.227228208rno-miR-2901482870.2071657640.4254992320.088148874rno-miR-199a-5p295620.56598004326.909370215.2301665rno-miR-376b-3p143040.6560916410.4239631340.278158668rno-miR-34a272170.3898001333.2764976961.277179236rno-let-7a1471620.4462532472.6513056841.183153771rno-miR-211475060.63486876936.0844854122.90891283rno-miR-466d1485940.386560091.3732718890.530852106rno-miR-181b109720.3480601490.6528417820.227228208rno-miR-145426410.5701424423.672811062.094025465rno-miR-93306870.48155174911.861751155.712047013rno-miR-362*424740.6227820420.2642089090.164544564rno-miR-1001459430.4488085240.9078341010.407443683rno-miR-181d1456360.5529614393.3901689711.874632713rno-miR-4941475140.1879272130.4377880180.082272282rno-miR-4961481130.5672115850.4869431640.276199804rno-miR-301a131430.5060331254.6374807992.346718903rno-let-7a-1*/rno-let-7c-2*178880.0535806880.1827956990.009794319rno-miR-674-3p310530.5256396170.6298003070.331047992rno-miR-411174820.6117879670.4930875580.301665034rno-miR-295*1484380.6376101861.8402457761.173359452

續表microRNAnameIDFoldchange(12hvs.3h)Normalized3hNormalized12hrno-miR-322131500.3639925211.5714285710.571988247rno-miR-214110140.4563069866.5852534563.00489716rno-miR-365110780.6592933326.2334869434.109696376rno-miR-380*112380.5498656650.1674347160.092066601

*RNA fragment paired with mature microRNA. ID, identification.

表5 高磷刺激A7r5細胞 3h與12 h點間上調的microRNATable 5 List of up-regulated microRNA in high-phosphate stimulated A7r5 cell at 12 h vs. 3 h

*RNA fragment paired with mature microRNA. ID, identification.

血管鈣化已知是一種高度復雜、多種信號通路參與調控的主動過程,病理性的血管鈣化與動脈粥樣硬化、糖尿病、心力衰竭這些心血管疾病的預后密切相關。Pasquinelli等[7]最早于2002年在線蟲體內發現microRNA(lin-4和let-7)。目前的研究表明microRNA與眾多調節途徑相關聯,包括生物個體發育、病毒防御、組織分化、細胞增殖和凋亡、脂肪代謝、參與原癌基因作用等。近年來發現,microRNA同樣參與血管鈣化的調控過程,學者們在不同的離體、在體鈣化模型上發現miR-125b、miR-204/205、miR-221/222和miR-29a/b等的表達下調[3,5,8-10], 以及miR-223和miR-135a等的上調[11-12]。后續研究發現過表達或敲低miR-204、miR-205、miR-133a和miR-30b/c會分別抑制或促進鈣化,其機制是通過直接作用并抑制鈣化相關轉錄因子Runx2的表達而完成[8-9,13-14]。miR-125b是目前被研究較多與血管鈣化相關的microRNA,多種鈣化模型上均發現miR-125b表達量明顯降低,研究證實其可能是通過調控鈣化相關信號通路因子SP7(osterix)以及Ets1起到抑制鈣化的作用[3,15]。miR-135a*、miR-762、miR-714以及 miR-712*被發現隨著鈣化發生而表達上調,其可能是以抑制鈣離子外排的方式促進血管鈣化[12]。miR-223亦有促進鈣化的作用,過表達miR-223可以抑制Mef2c和RhoB的表達,提示可能是其作用機制[11]。

A, down-regulated microRNA; B, up-regulated microRNA.

圖3 0 h與3 h點間被顯著激活的信號通路
Figure 3 Signal pathways were significantly activated between 0 and 3 h

本研究觀察到microRNA在給予高磷刺激12 h內,3個時間點上共有26種信號通路被明顯激活。部分信號通路早已被報道參與了鈣化調控過程:(1)miR-15b、miR-221/222、miR-29a等19種microRNA參與了細胞凋亡過程,Liu等[16]在脊髓損傷模型上觀察到miR-15b與促凋亡基因(PTEN、PDCD4、RAS)和抑制凋亡基因Bcl2的表達相關聯,Fu等[17]在腫瘤細胞系上敲低miR-221可以上調Bax并下調Bcl2等凋亡調控基因,并且miR-15b、miR-221/222、miR-29a均存在與鈣化相關的報道;(2)miR-25、miR-21、miR-126等12種microRNA參與了炎癥反應:文獻證實miR-25參與了炎癥因子TNFα誘導的血管平滑肌細胞增殖作用[18],miR-21亦被發現與TGF-β信號通路及纖維化過程相關聯[19];(3)miR-19a、let-7b/d、miR-24等11種microRNA參與了骨再生:Palmieri等[20]在研究P-15促進骨生成的實驗中發現有11種microRNA上調,6種下調,其中包括本研究同樣發現的miR-19a、let-7d、miR-221,但其變化方式不同。本研究還發現在0 h與3 h點間下調和3 h與12 h點間上調的microRNA,包括miR-323、miR-326、miR-133b等前后共8種,均激活了腦發育信號通路,這一似乎與血管鈣化毫無關系的機制。McCartney等[21]發現多種腦發育過程疾病存在血管鈣化,其誘因包括營養不良和血管自身主動鈣化,提示血管鈣化與腦發育存在某種聯系,同時驗證本研究中的信號通路分析結果,但對此機制的理解需要更深入地研究。

A, down-regulated microRNA; B, up-regulated microRNA.

圖4 3 h與12 h點間被顯著激活的信號通路
Figure 4 Signal pathways were significantly activated between 3 and 12 h

本研究發現的6種逐級變化的microRNA中,以往工作已證實miR-29a/b可以通過抑制高磷誘導的ADAMTS-7表達的增加,調控血管鈣化[5],ADAMTS-7(a disintegrin-like and metalloproteinase with thrombospondin type 1 motifs-7)是一種含Ⅰ型血小板反應蛋白基序和解聚素的金屬蛋白酶,其在離體或在體的血管鈣化模型明顯上調。過表達或敲低ADAMTS-7能夠分別加重或減輕鈣化,人類GWAS研究同樣證實ADAMTS-7是血管鈣化和冠心病的致病基因。ADAMTS-7參與鈣化調控機制是通過調節一種叫做軟骨寡聚基質蛋白(cartilage oligomeric matrix protein,COMP)的降解來完成的,過表達ADAMTS-7可以促進COMP降解。COMP是一種內源性的血管平滑肌細胞鈣化抑制因子,其減少或缺失將導致血管平滑肌細胞失去穩態,造成病理性結果。本課題組曾證實miR-29a/b可以直接作用于ADAMTS-7的3′UTR,抑制其表達,與本研究microRNA microarray結果相一致,驗證了結果的可信性,同時提示其他5種microRNA是否同樣在鈣化調控中起作用。

A, miR-183; B, miR-664; C, miR-9; D, miR-542-5P; E, let-7f; F, miR-29a.

圖5 芯片結果中6種在3個時間點逐級上調或下調的microRNA
Figure 5 6 miRs level in A7r5 cell stimulated by high phosphate for 0,3 and 12 h by miR chip screening

[1]唐朝樞,齊永芬. 關注血管鈣化發病新機制的研究[J]. 中國醫學前沿雜志, 2010, 2(3): 5-8.

[2]朱明燕, 莫中成, 曾高峰. 血管平滑肌細胞增殖相關 micro-RNA 的研究進展[J]. 實用醫學雜志, 2013, 29(21): 3610-3612.

[3]Goettsch C, Rauner M, Pacyna N, et al. miR-125b regulates calcification of vascular smooth muscle cells[J]. Am J Pathol, 2011, 179(4): 1594-1600.

[4]Wang H, Peng W, Ouyang X, et al. Reduced circulating mi-R-15b is correlated with phosphate metabolism in patients with end-stage renal disease on maintenance hemodialysis[J]. Ren Fail, 2012, 34(6): 685-690.

[5]Du Y, Gao C, Liu Z, et al. Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification[J]. Arterioscler Thromb Vasc Biol, 2012, 32(11): 2580-2588.

[6]Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications[J]. Circ Res, 2006, 99(10): 1044-1159.

[7]Pasquinelli AE, Ruvkun G. Control of developmental timing by micrornas and their targets[J]. Annu Rev Cell Dev Biol, 2002, 18: 495-513.

[8]Cui RR, Li SJ, Liu LJ, et al. MicroRNA-204 regulates vascular smooth muscle cell calcificationinvitroandinvivo[J]. Cardiovasc Res, 2012, 96(2): 320-329.

[9]Qiao W, Chen L, Zhang M. MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells[J]. Cell Physiol Biochem, 2014, 33(6): 1945-1953.

[10]Mackenzie NC, Staines KA, Zhu D, et al. miRNA-221 and mi-RNA-222 synergistically function to promote vascular calcification[J].Cell Biochem Funct, 2014, 32(2): 209-216.

[11]Rangrez AY, M’Baya-Moutoula E, Metzinger-Le Meuth V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223[J]. PLoS One, 2012, 7(10): e47807.

[12]Gui T, Zhou G, Sun Y, et al. MicroRNAs that target Ca(2+) transporters are involved in vascular smooth muscle cell calcification[J]. Lab Invest, 2012, 92(9): 1250-1259.

[13]Liao XB, Zhang ZY, Yuan K, et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells[J]. Endocrinology, 2013, 154(9): 3344-3352.

[14]Balderman JA, Lee HY, Mahoney CE, et al. Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification[J]. J Am Heart Assoc, 2012, 1(6): e003905.

[15]Wen P, Cao H, Fang L, et al. miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascularsmooth muscle cells in a high-phosphate environment[J]. Exp Cell Res, 2014, 322(2): 302-312.

[16]Liu G, Keeler BE, Zhukareva V, et al. Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats[J]. Exp Neurol, 2010, 226(1): 200-206.

[17]Fu B, Wang Y, Zhang X, et al. MiR-221-induced PUMA silencing mediates immune evasion of bladder cancer cells[J]. Int J Oncol, 2015, 46(3): 1169-1180.

[18]Qi L, Zhi J, Zhang T, et al. Inhibition of microRNA-25 by tumor necrosis factor α is critical in the modulation of vascular smooth muscle cell proliferation[J]. Mol Med Rep, 2015, 11(6): 4353-4358.

[19]Dattaroy D, Pourhoseini S, Das S, et al. Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(4): G298-312.

[20]Palmieri A, Pezzetti F, Brunelli G, et al. Peptide-15 changes miRNA expression in osteoblast-like cells[J]. Implant Dent, 2008, 17(1): 100-108.

[21]McCartney E, Squier W. Patterns and pathways of calcification in the developing brain[J]. Dev Med Child Neurol, 2014, 56(10): 1009-1015.

(2015-03-17收稿)

(本文編輯:王 蕾)

Dynamic alteration of microRNA in high phosphorus induced calcification of vascular smooth muscle cell

XIAO Yang, DU Yao-yao, GAO Cheng, KONG Wei△

(Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences; China and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China)

Objective:To study the change of microRNA during the early stage of high phosphorus induced vascular smooth muscle cell (VSMC) calcification and its related mechanism.Methods:Theinvitrocalcification model was created through stimulating VSMC cell line A7r5 with high Pi (2.6 mmol/L) for 7 d. The calcification was validated through ocresolphthalein complexone colorimetry to detect the cellular calcium content, real-time PCR to measure the calcification-related gene expression and alizarin red staining to observe the formation of calcium nodules. Based on the cell calcification model, micro-RNA microarray array was applied to screen the profiles of microRNA expression in VSMC following high Pi stimulation for different periods (0, 3 and 12 h). The array data were analyzed by TAM tool to explore the activated signaling pathway.Results: The calcium content of A7r5 cells induced by high Pi was increased 9.6 times high as cells without Pi treatment (P<0.05). VSMC contractile phenotype genes (SM-α actin, SM22) were down-regulated (P<0.05), while calcification-related genes (BMP2, MSX2, Runx2) were up-regulated (P<0.05) in VSMC stimulated by high Pi. The calcium nodules were obviously formed in cells after 7 d high Pi treatment. In microarray experiment, 680 individual microRNAs were detected in high Pi-treated VSMCs at different time points (0, 3 and 12 h). Among these genes, miR-183, miR-664 and miR-9*were increased whereas miR-542-5P, let-7f and miR-29a were decreased in time-dependent manners. Twenty-six kinds of signaling pathways, including cell apoptosis, differentiation and proliferation, were significantly activated. All these activated pathways were associated with calcification. Conclusion:This study implies that microRNA changed in high Pi-induced VSMCs may involve in the process of calcification.

Vascular calcification; Muscle, smooth, vascular; microRNA; Signal transduction

國家基金委重大國際合作項目 (81220108004)、國家重點基礎研究發展計劃(973計劃,2012CB518002)、 國家自然科學基金 (81070243、81121061、91339000)和國家杰出青年基金 (81225002)資助Supported by the Foundation of Major International Cooperation (81220108004),the National Basic Research Program of China (973 Program, 2012CB518002), the National Natural Science Foundation of China(81070243, 81121061, 91339000) and the National Science Fund for Distinguished Young Scholars (81225002)

時間:2016-5-15 13:25:04

http://www.cnki.net/kcms/detail/11.4691.R.20160515.1325.006.html

R331.3

A

1671-167X(2016)05-0756-10

10.3969/j.issn.1671-167X.2016.05.002

△ Corresponding auther’s e-mail, kongw@bjmu.edu.cn

猜你喜歡
平滑肌通路變化
大蒜素抑制家兔離體小腸平滑肌收縮及機制的實驗研究
小檗堿治療非酒精性脂肪肝病相關通路的研究進展
Wnt/β-catenin信號轉導通路在瘢痕疙瘩形成中的作用機制研究
白芍總苷調控Sirt1/Foxo1通路對慢性心力衰竭大鼠的保護作用研究
ALOX15對血管平滑肌細胞鐵死亡的影響
從9到3的變化
瘦素對人腦血管平滑肌細胞活性及ROS表達的影響
ANO1抑制劑對AngⅡ誘導血管平滑肌細胞增殖影響
這五年的變化
喜看猴年新變化
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合