?

動力總成質心及慣量合成原理研究

2018-08-29 07:21宮振興蘇少博任爽
汽車實用技術 2018年15期
關鍵詞:慣量轉動慣量張量

宮振興,蘇少博,任爽

(華晨汽車工程研究院底盤集成工程室,遼寧 沈陽 110141)

前言

隨著現代社會的發展,人們對汽車的使用要求越來越嚴格,近些年尤其體現在整車 NVH及駕駛性上,主機廠則順應市場需求,逐步加強該領域能力的建設與開發,其中懸置作為整車重要的零部件之一,對提升整車 NVH及駕駛性起到尤為關鍵的作用。

懸置的作用是支撐動力總成、限制動力總成運動位移和隔離發動機振動的作用。懸置在設計開發過程中,首選需要對動力總成的質量、質心及轉動慣量進行合成并轉換到整車坐標系上。以往在合成轉換過程中,通常利用Adams進行仿真計算,但建模工作相對繁瑣,容易疏忽出錯。而本文將公式編輯到Excel中計算,避免Adams建模,節省時間的同時將出錯率降到最低,最終達到降低計算難度,提升工作效率的目的。

1 輸入測量參數

合成發動機和變速器的質心及慣量所需測量的參數如表1。

表1 測量參數

2 質心的合成

首先根據在測量坐標系下測量的質心坐標,結合測量坐標系與整車坐標系的方向關系,對測量質心進行坐標變換,求出整車坐標系下的質心坐標,然后再進行質心合成。根據向量空間與基的變換原則可知:

式中:[Ce]為發動機質心在整車坐標系下的坐標矩陣。

變速器質心在整車坐標系下的坐標矩陣同理,并記為[Ct]。根據力矩平衡,可知合成后的動力總成質心坐標為:

式中:[C]為合成質心在整車坐標系下的坐標矩陣。

3 慣量的坐標轉換與合成

3.1 慣量的方向轉換

方向轉換矩陣[θe]定義如下:

其中θexX為發動機測量坐標系x軸與整車坐標系X軸的夾角,其余同理。測量坐標系下發動機相對其質心的慣性張量矩陣如下:

由式(3)、(4)對慣性張量進行方向轉換,公式為:

式中:[IE]為發動機在整車坐標系下相對質心的慣性張量矩陣。

式(5)將發動機相對質心的慣量由測量坐標系方向轉換為整車坐標系方向,同理可得整車坐標系下變速器相對質心的慣性張量矩陣并記為[IT]。

3.2 慣量的位置轉換

發動機和變速器裝配后,合成質心的位置發生變化,所以還要求出發動機和變速器相對于合成質心的慣量,之后進行慣量合成。

平行軸定理:設通過剛體質心的軸線為Z軸,剛體相對于這個軸線的轉動慣量為Jc。如果有另一條軸線 Z’與通過質心的軸線Z平行,剛體對通過Z’軸的轉動慣量為J=Jc+md2。式中m為剛體的質量,d為兩平行軸之間的距離。根據上述平行軸定理,可以從對于一個以質心為原點的坐標系統的慣性張量,轉換至另外一個平行的坐標系統。

設發動機質心與合成質心的相對位置

在整車坐標系發動機相對質心的慣性張量

由式(7)~(12),總結得出公式

式中:[E]為單位矩陣。

同理可求得在整車坐標系變速器相對合成質心的慣性張量[TOT]。

3.3 慣量合成

以上求出了發動機和變速器在整車坐標系相對合成質心的慣量,進行相加合成即為動力總成在整車坐標系的慣量,如下

式中:[TPT]為動力總成在整車坐標系下的慣性張量。

4 某車型實例計算及Adams驗證

以某車型動力總成轉動慣量為實例,用Excel進行公式編輯和計算,并用Adams/View模塊進行驗證。

4.1 輸入參數

表2、表3列出了合成動力總成質心及轉動慣量所需測量參數。

表2 發動機測量參數

表3 變速器測量參數

4.2 計算結果

通過輸入以上數據,輸入到Excel中,得到計算結果,見表4。

表4 Excel計算結果

用相同輸入數據進行Adams合成計算,結果見圖1。

圖1 Adams合成計算過程

以上兩組數據結果一致,證明了理論公式的準確性。

5 結論

本文對動力總成質心及轉動慣量的合成方法進行了推導,用Excel進行計算并用Adams進行驗證,證明了公式推導的準確性。Excel軟件操作簡單,系統占用資源低,簡化了工作難度,提高了工作效率。

猜你喜歡
慣量轉動慣量張量
虛擬同步機慣量及阻尼系數協調優化方法
均質剛體轉動慣量的幾種算法
虛擬慣量控制響應延時對控制效果的影響分析
淺談張量的通俗解釋
四元數張量方程A*NX=B 超對稱極小范數最小二乘解2
風機用拖動大轉動慣量電動機起動過程分析
嚴格對角占優張量的子直和
變速箱中不同輪系等效轉動慣量的計算方法
一類非負張量譜半徑的上下界
雙饋風電機組基于非最大風功率跟蹤的虛擬慣量控制
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合