?

基于新型材料的柔性生物電干電極的研究進展

2021-08-09 02:41馬美靜劉麗妍高新華劉皓
現代紡織技術 2021年4期

馬美靜 劉麗妍 高新華 劉皓

摘 要:柔性生物電干電極是可穿戴健康監控系統的重要組成部分,近幾年,研究領域對于生物電干電極的關注逐漸增多。為探討基于柔性材料的生物電干電極的研究進展,首先對干電極的幾個基本性能進行了介紹,生物電干電極常用的性能表征有導電性能、界面阻抗性能、運動偽影和信號噪聲,并與濕電極性能進行對比。然后從界面材料方面對柔性生物電干電極進行了分類總結,銀納米線、PEDOT:PSS、聚吡咯、碳納米管和石墨烯等新型材料的應用,為柔性生物電干電極的長期使用和規?;a提供了可能。最后對柔性生物電干電極的研究進展進行了總結和展望。

關鍵詞:干電極;長期監測;生物電信號;智能可穿戴;導電材料

中圖分類號: TB333

文獻標志碼:A

文章編號:1009-265X(2021)04-0018-09

Abstract: Flexible biopotential dry electrode is an important part of wearable health monitoring system. In recent years, biopotential dry electrodes have received more and more attention in the research field. In order to discuss the research progress of biopotential dry electrodes based on flexible materials, the basic properties of dry electrodes are introduced first. The common properties of biopotential dry electrodes are characterized by conductivity, interfacial impedance, motion artifacts and signal noise, and are compared with the properties of wet electrodes. Then, the flexible biopotential dry electrodes are classified and summarized in terms of interface materials. The application of new electrode materials such as silver nanowires, PEDOT: PSS, polypyrrole, carbon nanotubes and graphene provides the possibility for the long-term use and large-scale production of flexible biopotential dry electrodes. In the end, the research progress of flexible biopotential dry electrodes is summarized and prospected.

Key words: dry electrode; long-term monitoring; biopotential signal; smart wearable; conductive material

心血管疾?。–VD)作為一種在高齡人群中具有高患病率的疾病,及早預防和治療具有重要意義?!吨袊难懿蟾妗罚?018)的數據顯示,中國CVD患病率處于持續上升階段,推算CVD現患人數2.9億,心血管病死亡占城鄉居民總死亡原因的首位[1]。通過便攜式可穿戴式遠程生物電監護系統[2],可以降低醫院護理費用,實現對生物電信號的日常采集[3]。生物電信號主要有心電信號(ECG),腦電信號(EEG),肌電信號(EMG)和眼電信號(EOG)等[4]。

生物電信號醫療檢測用電極多為一次性Ag/AgCl凝膠濕電極,易對皮膚造成刺激,長時間使用時凝膠變干還會影響到信號質量[5],不適合集成到可穿戴設備上使用。傳統干電極采用硬質金屬板[6-8]、硅片[9-13]、陶瓷[14]和印刷電路板(PCB)[15]等為基底,并通過刻蝕、濺射等方法制作,這些電極通常舒適性較差,也不適合在服裝上集成。柔性生物電干電極[16]具有良好的柔韌性和生物相容性,不使用凝膠、不需要皮膚準備,容易和服裝相結合等特點,適合長期監測使用。為探討基于柔性材料的生物電干電極的研究進展,本文從干電極的基本性能出發,介紹柔性生物電干電極的常用表征方法,并對柔性生物電干電極的新型界面材料和制備方法進行分類,最后進行總結和展望。

1 柔性干電極的基本性能

1.1 導電性能

導電性能是電極材料的一項基本性能,生物電干電極的界面材料通常要求具有優良的導電性能[17],通過測量干電極材料的電導率、電阻率和表面方阻等可以表征干電極的導電性能。干電極的導電性能與電極的材料有關。金(Au)、銀(Ag)、銅(Cu)等是導電性能優異的金屬材料,但是Au、Ag作為貴金屬價格昂貴,Ag和Cu長期接觸電解質容易氧化[18]。一些導電高聚物和碳基材料具有良好的生物相容性、導電性和環境穩定性,在生物電干電極領域具有廣泛應用[19-20]。通過測試電極受到折疊、壓縮和拉伸前后的電阻變化,可以評價電極長期的機械穩定性和柔韌性。Choi等[21]討論了銀納米線(AgNW)電極折疊前后的電阻變化,電極的電阻在對折時增加,釋放時減小,但是,電阻變化的幅度很小,即使折疊后,電極的電阻也僅比折疊前的樣品高3 %。Del等[22]討論了聚(3,4-乙撐二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)涂層紡織品在空氣和水中拉伸時的電阻變化,通過使用二乙烯基砜(DVS)交聯劑可以改善PEDOT:PSS涂層織物電阻的穩定性。為了提高聚吡咯棉織物的導電性,Zhou等[23]通過先化學聚合然后再次電化學聚合的方法,將織物電阻從1297 Ω降到了325 Ω,以用于生物電信號的采集。

1.2 界面阻抗性能

生物電電極是將人體中的離子電流轉換為電極中的電子電流的換能器,而電極—皮膚界面阻抗是電荷轉移效率的一種指標[24]。電極的界面阻抗性能對采集的生物電信號的質量至關重要,通常阻抗越低生物電位越精確[18]。生物電信號被認為是一種低頻信號,不同生物電信號的頻率分布不同[25]。為了降低阻抗失配,生物電干電極應在低頻區域具有較低的阻抗值,濕電極阻抗值一般分布在180 kΩ(20 Hz)左右[26]。界面阻抗性能的評價主要有兩種方式,如圖1[27]所示,一種是表征不同頻率下的界面阻抗,另一種是表征特定頻率下界面阻抗隨時間的變化。電極和人體皮膚界面的阻抗性能除了與電極材料本身的性質有關外,還易受電極與皮膚接觸狀態的影響,主要影響因素有以下幾種:

a)皮膚表面角質層的影響:不同部位或不同人體的皮膚角質層厚度具有明顯差異,會顯著影響界面阻抗[27]。

b)干電極結構和尺寸的影響:表皮接觸式電極會受到角質層高阻抗的影響,而穿透式微針電極因為穿透角質層,會顯著降低界面阻抗[28]。電極與皮膚之間較大接觸面積將導致較低的接觸阻抗,但是太大的接觸面積會影響舒適性并限制記錄的分辨率[29]。

c)汗液等電解質的影響:干電極與皮膚剛接觸時,界面阻抗較高,接觸一段時間皮膚表面出汗后,界面阻抗會顯著降低,皮膚表面汗液會充當電解質[30]。

d)壓力和固定方式的影響:電極的固定方式會影響干電極與皮膚的接觸壓力,一定范圍內電極—皮膚界面壓力的增加會使阻抗降低[31],壓力變化還會影響電極—皮膚界面的有效接觸面積[32]和皮膚表面的水分變化[18]。

1.3 運動偽影和信號噪聲性能

運動偽影和信號噪聲是評價生物電電極在動靜態采集信號質量的重要指標。濕電極通過凝膠和皮膚穩定接觸,受到的環境噪聲和產生的運動偽影較少,干電極和皮膚之間無法良好接觸不可避免地存在氣泡或縫隙,受到的環境噪聲和產生的運動偽影較大[33]。實驗時干電極的偽影水平在開始時明顯高于濕電極,但隨著測試時間的延長,汗液會在界面聚集,導致偽影水平降低[34]。而濕電極隨著試驗時間延長,凝膠電解質變干,信號質量會有下降的趨勢[35]。干電極噪聲可分為環境噪聲和接觸噪聲[36]。環境噪聲有采集電路的噪聲和周圍用電器50/60 Hz工頻干擾[37],這些噪聲可以通過開發的屏蔽技術降低。接觸噪聲主要由皮膚和干電極表面之間的最小運動產生的電荷擾動造成,電荷的重新分布會引入影響ECG信號的電位變化[18]。為進一步分析信號質量,通常需要對采集的信號進行頻譜分析,信號能量可以通過功率譜密度(PSD)[38-39]來表示,因此可以通過計算信號的功率譜密度來表示噪聲水平和運動偽影,并與濕電極進行比較。信號噪聲和有效信號的關系可以通過信噪比(SNR)來表示,具體見式(1)[40-41]:

SNR=PsignalPnoise(1)

式中:Psignal為有效信號的總功率,W;Pnoise為噪聲的總功率,W。

干電極信號質量的評價方法目前沒有統一的規定,除了分析運動偽影和信號噪聲外,還會與濕電極的性能進行比較,濕電極的性能被認為是參考標準[42],通過分析兩種電極的信號相關度來評價干電極。

1.4 其他性能

除了上述性能,一些其他性能也被用于表征生物電干電極。根據一次性凝膠濕電極的標準ANSI/AAMI EC12—2000,直流偏置電壓是評價一對電極化學性能的重要指標,干電極可以通過測量開路電壓進行表征,開路電壓表示兩個測試端之間的電位總和,與生物電信號的運動偽影和噪聲相關[43-44],對生物電信號采集的準確性具有影響。為了滿足集成可穿戴設備長期監測或循環使用的需求,柔性生物電干電極還要滿足耐水洗和可重復使用等性能。材料上還要無毒,生物相容。更進一步的電極評價還應該考慮電極的臨床應用可靠性,作為濕電極的替代品,通過臨床應用的檢驗將更具說服力。

2 柔性生物電干電極的新型界面材料和制備方法

柔性生物電干電極由基底材料和界面材料兩部分組成,基底材料主要提供良好的力學和機械性能,用于支撐界面材料,而界面材料用于和皮膚接觸,采集表皮生物電信號,需要具有良好的生物相容性和電荷傳輸能力。為了減小干電極的運動偽影,延長干電極的有效監測時間,提高干電極的生物相容性和信號采集質量,一些新型界面材料的應用取得了很大進展,如銀納米線等金屬納米材料、聚(3,4-乙撐二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)和聚吡咯等導電高聚物、碳納米管和石墨烯等碳基材料,下面對基于這幾類材料的柔性干電極進行詳細介紹。

2.1 AgNW柔性干電極

AgNW不僅具有金屬銀的優良導電性,還具有透光性和可撓性,在柔性傳感器[45-48]方面具有廣泛應用。因為銀離子的抗菌性能,AgNW材料也被用于研究抗菌產品。AgNW分散液通過表面涂層或沉積,可以附著在柔性基底上,實現對生物電信號的采集。

Lee等[45]將AgNW溶液通過涂層工藝賦予聚氨酯納米網導電性,方阻為0.873 Ω/sq,干燥后制成AgNW干電極,成功采集到ECG信號,并與濕電極的心電圖波形進行對比沒有顯著差異,但該電極的耐久性和耐洗性需要進一步研究。Qin等[47]將AgNW/乙醇溶液固化到聚二甲基硅氧烷(PDMS)柔性基底上,制備了用于非侵入式和可穿戴式的ECG電極,與織物電極相比該電極具有一定的附著力,可以部分減少電極在皮膚上的運動,使用AgNW和Ag/AgCl電極同時采集動靜態ECG信號,分析結果顯示高度相關(靜態ρ=1.000 0,動態ρ=0.999 8)。AgNW也被用于改善彈性體復合材料的導電性,Lee等[48]通過向碳納米管(CNT)中添加適量AgNW制成AgNW/CNT/PDMS彈性導電納米復合材料,與只有相同含量的CNT的彈性體的值相比,其阻抗降低了3個數量級。表1對文獻中提到的AgNW柔性干電極進行了歸納整理。

2.2 PEDOT:PSS柔性干電極

PEDOT:PSS柔性干電極具有高導電性、親水性、低楊氏模量和生物相容性,適合作為生物醫學電極材料使用[49-51]?;赑EDOT:PSS的柔性生物電干電極的研究報道較多,這種電極的制備方法相對簡單,多采用絲網印刷[19]、浸涂[52]等方法將PEDOT:PSS溶液涂覆或填充到柔性基底上,然后晾干制成柔性干電極,非常適合在可穿戴服裝上的集成,其制造成本低,有利于大規模生產。

Bihar等[53]在商業用紙上印刷PEDOT:PSS涂層制備出一種心電圖紙,將兩個手指放在心電圖紙上就可以采集ECG,并對比了印刷層數(1層,2層和3層)對信號采集的影響,持續3個月的心電測試(每周采集1次)結果顯示印刷3層的電極平均信噪比可達(11.01±0.41) dB。通過對PEDOT:PSS的摻雜和改性可以實現更高的導電性和穩定性。Leleux等[51]探討了不同第二摻雜物(山梨醇,乙二醇,丙三醇)的PEDOT:PSS對棉織物和滌綸織物導電性的影響,根據測試結果丙三醇摻雜的滌綸織物的電導率最高(575±70 mS/cm,厚度為400 μm)。表2對文獻中提到的PEDOT:PSS柔性干電極進行了歸納。

2.3 聚吡咯柔性干電極

聚吡咯具有良好的環境穩定性、生物相容性[54]、導電性和高比電容特性,被用于柔性傳感器和柔性電容器的研究。

Zhou等[23]討論了化學聚合和電化學聚合吡咯兩種方法,提出了兩步聚合工藝,在棉織物上先化學聚合,然后再電化學聚合吡咯,結果表明經電化學聚合后,電極的導電性提高(3.55 kPa壓強下,樣品電阻由1 297 Ω下降到325Ω),電信號的傳輸質量得到改善。Jiang等[55]使用聚吡咯無紡布制作了表面肌電圖(sEMG)傳感器,將PPy電極縫在松緊帶上,以確保與皮膚緊密接觸,幫助殘疾人控制假肢,與濕式Ag/AgCl電極進行比較表明,信號質量非常相似。除了用于界面導電材料,Abu-Saude等[56]還將聚吡咯涂層用于改善CNT與不銹鋼基板結合的機械穩定性,制備了基板上垂直排列的碳納米管(pvCNT)電極。Zhang等[57]采用化學聚合的方法,以三氯化鐵為摻雜劑,對甲苯磺酸為摻雜劑在山羊皮上原位聚合了聚吡咯,制備了一種抗菌、適合長期使用的ECG電極。表3對PPy柔性干電極進行了總結。

2.4 碳納米管柔性干電極

碳納米管(CNT)具有良好的導電性能、柔韌性和出色的機械穩定性[58-60]。CNT纏結并隨機組裝,這使得它們在聚合物彎曲或拉伸時能夠更好地相互接觸[61]。因為碳納米管的毒性在醫療領域一直具有爭議,所以一些文獻對碳納米管的毒性進行了體內研究[62-65],但是需要更深入的了解。

碳納米材料可以通過簡單的“浸漬和干燥”工藝將導電涂料用于制造導電織物。Zhao等[66]將棉紗浸入單壁碳納米管(SWCNT)分散液中,干燥后制得SWCNT包覆的棉紗(SWCNT-Cys),并在SWCNT-Cys上覆蓋生物纖維涂層,防止CNT直接與人體皮膚接觸,而不影響材料的導電性。由于強烈的范德華相互作用,MWCNT易于形成聚集體,Chi等[67]開發了一種平行的溶劑輔助超聲波分散方法,首先將MWCNT(質量分數0.5 %)和PDMS預聚物(質量分數20 %)分別分散在正己烷中,隨后將MWCNT分散體添加到PDMS分散體中,超聲處理5 h,然后將混合物置于75 °C的磁力攪拌下的水中,直到正己烷完全揮發,最終,將固化劑(10:1)添加到由MWCNT/PDMS制成的混合物中,室溫攪拌固化。表4對文獻中的CNT柔性干電極進行了歸納。

2.5 石墨烯柔性干電極

石墨烯具有優異的導電性、熱傳導性和穩定性,是制作柔性電子和耐磨傳感器的良好材料[68]。與金屬包覆聚合物電極相比,石墨烯的生物相容性更好,比金屬電極/皮膚界面更友好[69]。

Liu等[69]通過聚合物滲透的方法以PDMS為支撐層,石墨烯為界面導電層,制備了用于生物電采集的柔性干電極。尼龍織物具有表面光滑、耐磨、易吸濕和質量輕等特點,在織物電極方面具有較多應用。Das等[39]和Hallfors等[70]以尼龍織物為基底,采用化學還原氧化石墨烯的方法,制備了具有高導電性且耐用的ECG傳感器。Golparvar等[71]首次報道了石墨烯涂層導電紡織電極在EOG采集中的使用和表征,與常規Ag/AgCl濕電極的信號相關性最高達87 %。為避免AgNW氧化使電極電性能降低,Xu等[72-73]用氧化石墨烯(GO)包覆AgNW,并采用絲網印刷等技術沉積在PET基底上,制造了AgNW/GO復合透明電極,表現出優異的光學和電學性能(在550 nm波長下的透光率為83.5 %,表面電阻為11.9 Ω/sq)。表5歸納了文獻中基于GO的柔性生物電干電極。

3 總結與展望

3.1 總 結

電極采集的生物電信號的信號質量是評價電極性能的關鍵,生物電信號質量表征的參數有信噪比、運動偽影和與標準信號的相關度等。電極的導電性能和阻抗性能與生物電信號質量相關。因為研究中采用的測量方法不同,無法簡單地從數值上進行比較,但均以濕電極性能作為參考標準,具有廣泛的參考價值。由于可穿戴健康監控系統面臨的是長期監測,生物相容性和用戶穿戴的舒適性也是需要考慮的重要指標。銀納米線、PEDOT:PSS、聚吡咯、碳納米管和石墨烯等新型電極材料,具有優良的導電性能和一定的柔韌性,可以通過絲網印刷、浸涂或填充等較為簡單的方法賦予柔性基底導電性,在控制成本和大規模生產方面具有很大優勢。

3.2 展 望

隨著智能可穿戴產品和通信技術的發展,可穿戴傳感器在健康、運動、時尚等方面的應用快速增長,柔性生物電干電極逐漸被用于集成到各種可穿戴設備中。對于柔性生物電干電極的未來研究,除了研究電極本身的抗噪性能外,還應該考慮電極的臨床應用可靠性。作為濕電極的替代品,通過臨床應用的檢驗將更具說服力和可信度。為了適應集成可穿戴設備長期監測或循環使用的需求,柔性生物電干電極還要滿足可清潔和重復使用等日常應用方面的要求。

參考文獻:

[1]胡盛壽,高潤霖,劉力生,等.《中國心血管病報告2018》概要[J].中國循環雜志,2019,34(3):209-220.

[2]OZKAN H, OZHAN O, KARADANA Y, et al. A portable wearable tele-ecg monitoring system[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(1):173-182.

[3]PERIYASWAMY T, BALASUBRAMANIAN M. Ambulatory cardiac bio-signals: From mirage to clinical reality through a decade of progress[J]. International Journal of Medical Informatics,2019,130:103928.

[4]周偉,劉偉,邱清富,等.生物醫用電極制造技術及應用研究進展[J].科學通報,2015(15):1352-1360.

[5]RAMASAMY S, BALAN A. Wearable sensors for ECG measurement: a review[J]. Sensor Review,2018,38(4):412-419.

[6]HUANG Y, WU C, WONG A M, et al. Novel active comb-shaped dry electrode for EEG measurement in hairy site[J]. IEEE Transactions on Biomedical Engineering,2015,62(1):256-263.

[7]FIEDLER P, GRIEBEL S, PEDROSA P, et al. Multichannel EEG with novel Ti/TiN dry electrodes[J]. Sensors and Actuators A-Physical,2015,221:139-147.

[8]CELIK N, MANIVANNAN N, STRUDWICK A, et al. Graphene-enabled electrodes for electrocardiogram monitoring[J]. Nanomaterials,2016,6(9):156.

[9]GRISS P, ENOKSSON P, TOLVANEN-LAAKSO H K, et al. Micromachined electrodes for biopotential measurements[J]. Journal of Microelectromechanical Systems,2001,10(1):10-16.

[10]YU L M, TAY F E H, GUO D G, et al. A microfabricated electrode with hollow microneedles for ECG measurement[J]. Sensors and Actuators A-Physical,2009,151(1):17-22.

[11]DIAS N S, CARMO J P, DA SILVA A F, et al. New dry electrodes based on iridium oxide (IrO) for non-invasive biopotential recordings and stimulation[J]. Sensors and Actuators A-Physical,2010,164(1-2):28-34.

[12]OMAHONY C, PINI F, BLAKE A, et al. Microneedle-based electrodes with integrated through-silicon via for biopotential recording[J]. Sensors and Actuators A-Physical,2012,186(SI):130-136.

[13]PEI W, ZHANG H, WANG Y, et al. Skin-potential variation insensitive dry electrodes for ecg recording[J]. IEEE Transactions on Biomedical Engineering,2017,64(2):463-470.

[14]LI G, ZHANG D, WANG S, et al. Novel passive ceramic based semi-dry electrodes for recording electroencephalography signals from the hairy scalp[J]. Sensors and Actuators B-Chemical,2016,237:167-178.

[15]PRATS-BOLUDA G, GARCIA-CASADO J, MARTINEZ-DE-JUAN J L, et al. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals[J]. Medical Engineering & Physics,2011,33(4):446-455.

[16]高久偉,盧乾波,鄭璐,等.柔性生物電傳感技術[J].材料導報,2020(1):1095-1106.

[17]JIN G J, UDDIN M J, SHIM J S. Biomimetic cilia-patterned rubber electrode using ultra conductive polydimethylsiloxane[J]. Advanced Functional Materials,2018,28(50):1804351.1-1804351.7.

[18]DANILO P, ANDREA A, ANNALISA B. Survey on textile electrode technologies for electrocardiographic (ECG) monitoring, from metal wires to polymers[J]. Advanced Materials Technologies,2018,3(10):1800008.

[19]PANI D, ACHILLI A, SPANU A, et al. Validation of polymer-based screen-printed textile electrodes for surface EMG detection[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019,27(7):1370-1377.

[20]PENG H, LIU J, TIAN H, et al. Flexible dry electrode based on carbon nanotube/polymer hybrid micropillars for biopotential recording[J]. Sensors and Actuators A-Physical,2015,235:48-56.

[21]CHOI S B, OH M S, HAN C J, et al. Conformable, thin, and dry electrode for electrocardiography using composite of silver nanowires and polyvinyl butyral[J]. Electronic Materials Letters,2019,15(3):267-277.

[22]DEL AGUA I, MANTIONE D, ISMAILOV U, et al. DVS-Crosslinked PEDOT:PSS free-standing and textile electrodes toward wearable health monitoring[J]. Advanced Materials Technologies,2018,3(10):1700322.

[23]ZHOU Y, DING X, ZHANG J, et al. Fabrication of conductive fabric as textile electrode for ECG monitoring[J]. Fibers and Polymers,2014,15(11):2260-2264.

[24]GRISS P, TOLVANEN-LAAKSO H K, MERILAINEN P, et al. Characterization of micromachined spiked biopotential electrodes[J]. Trans Biomadical Engineering, 2002, 49(6):597-604.

[25]JUNG J, SHIN S, KIM Y T. Dry electrode made from carbon nanotubes for continuous recording of bio-signals[J]. Microelectronic Engineering,2019,203:25-30.

[26]SUN Y, REN L, JIANG L, et al. Fabrication of composite microneedle array electrode for temperature and bio-signal monitoring[J]. Sensors,2018,18(4):1193.

[27]AN X, STYLIOS G K. A hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking[J]. Materials,2018,11(10):1887.

[28]CARDU R, LEONG P H W, JIN C T, et al. Electrode contact impedance sensitivity to variations in geometry[J]. Physiological Measurement,2012,33(5):817-830.

[29]CHEN Y, OP DE BEECK M, VANDERHEYDEN L, et al. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording[J]. Sensors,2014,14(12):23758-23780.

[30]SHU L, XU T, XU X. Multilayer sweat-absorbable textile electrode for EEG measurement in forehead site[J]. IEEE Sensors Journal,2019,19(15):5995-6005.

[31]COMERT A, HONKALA M, HYTTINEN J. Effect of pressure and padding on motion artifact of textile electrodes[J]. Biomedical Engineering Online,2013,12(1):26.

[32]TAJI B, CHAN A D C, SHIRMOHAMMADI S. Effect of pressure on skin-electrode impedance in wearable biomedical measurement devices[J]. IEEE Transactions on Instrumentation and Measurement,2018,67(8):1900-1912.

[33]LI G, WANG S, DUAN Y Y. Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting[J]. Sensors and Actuators B-Chemical,2018,277:250-260.

[34]MEZIANE N, WEBSTER J G, ATTARI M, et al. Dry electrodes for electrocardiography[J]. Physiological Measurement,2013,34(9):47-69.

[35]ACAR G, OZTURK O, GOLPARVAR A J, et al. Wearable and flexible textile electrodes for biopotential signal monitoring: A review[J]. Electronics,2019,8(5):479.

[36]YAO S, ZHU Y. Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review[J]. Jom,2016,68(4):1145-1155.

[37]劉澄玉,楊美程,邸佳楠,等.穿戴式心電:發展歷程、核心技術與未來挑戰[J].中國生物醫學工程學報,2019(6):641-652.

[38]SCILINGO E P, GEMIGNANI A, PARADISO R, et al. Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables[J]. IEEE Transactions on Information Technology in Biomedicine,2005,9(3):345-352.

[39]DAS P S, HOSSAIN M F, PARK J Y. Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement[J]. Microelectronic Engineering,2017,180:45-51.

[40]YOKUS M A, JUR J S. Fabric-based wearable dry electrodes for body surface biopotential recording[J]. IEEE Transactions on Biomedical Engineering,2016,63(2):423-430.

[41]STAUFFER F, THIELEN M, SAUTER C, et al. Skin conformal polymer electrodes for clinical ECG and EEG recordings[J]. Advanced Healthcare Materials,2018,7(7):1700994.

[42]LOPEZ-GORDO M A, SANCHEZ-MORILLO D, PELAYO VALLE F. Dry EEG electrodes[J]. Sensors,2014,14(7):12847-12870.

[43]MOTA A R, DUARTE L, RODRIGUES D, et al. Development of a quasi-dry electrode for EEG recording[J]. Sensors and Actuators A-Physical,2013,199:310-317.

[44]LIU H, TAO X, XU P, et al. A dynamic measurement system for evaluating dry bio-potential surface electrodes[J]. Measurement,2013,46(6):1904-1913.

[45]LEE E, KIM I, LIU H, et al. Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes[J]. Fibers and Polymers,2017,18(9):1749-1753.

[46]LIN S, LIU J, LI W, et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces[J]. Nano Letters,2019,19(10):6853-6861.

[47]QIN Q, LI J, YAO S, et al. Electrocardiogram of a silver nanowire based dry electrode: quantitative comparison with the standard Ag/AgCl gel electrode[J]. IEEE Access,2019,7:20789-20800.

[48]LEE J H, HWANG J, ZHU J, et al. Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring of electrophysiological signs[J]. ACS Applied Materials & Interfaces,2018,10(25):21184-21190.

[49]TSUKADA S, NAKASHIMA H, TORIMITSU K. Conductive polymer combined silk fiber bundle for bioelectrical signal recording[J]. PLoS One,2012,7(4):1-10.

[50]CHEN Y, PEI W, CHEN S, et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) as interface material for improving electrochemical performance of microneedles array-based dry electrode[J]. Sensors and Actuators B-Chemical,2013,188:747-756.

[51]LELEUX P, BADIER J, RIVNAY J, et al. Conducting polymer electrodes for electroencephalography[J]. Advanced Healthcare Materials,2014,3(4):490-493.

[52]PANI D, DESSI A, SAENZ-COGOLLO J F, et al. Fully textile, pedot:pss based electrodes for wearable ecg monitoring systems[J]. IEEE Transactions on Biomedical Engineering,2016,63(3):540-549.

[53]BIHAR E, ROBERTS T, SAADAOUI M, et al. Inkjet-printed PEDOT:PSS electrodes on paper for electrocardiography[J]. Advanced Healthcare Materials,2017,6(6):1601167.

[54]張馳,魏德健,曹慧.用于心電信號采集的織物電極技術的研究進展[J].生物醫學工程學雜志,2018(5):811-816.

[55]JIANG Y, TOGANE M, LU B, et al. sEMG sensor using polypyrrole-coated nonwoven fabric sheet for practical control of prosthetic hand[J]. Frontiers in Neuroscience,2017,11(93):33.

[56]ABU-SAUDE M, MORSHED B. Characterization of a novel polypyrrole (PPy) conductive polymer coated patterned vertical CNT (pvCNT) dry ECG electrode[J]. Chemosensors, 2018,6(3):27.

[57]ZHANG K, KANG N, ZHANG B, et al. Skin conformal and antibacterial PPy-leather electrode for ECG monitoring[J]. Advanced Electronic Materials,2020,6(8):2000259.

[58]JUNG H, MOON J, BAEK D, et al. CNT/PDMS composite flexible dry electrodes for long-term ecg monitoring[J]. IEEE Transactions on Biomedical Engineering,2012,59(5):1472-1479.

[59]LEE J H, LEE S M, BYEON H J, et al. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording[J]. Journal of Neural Engineering,2014,11(4):046014.

[60]KANG B, HA T. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors[J]. Japanese Journal of Applied Physics,2018,57(5):05GD02

[61] LIU B, LUO Z, ZHANG W, et al. Silver nanowire-composite electrodes for long-term electrocardiogram measurements[J]. Sensors and Actuators A-Physical,2016,247:459-464.

[62]JUNG H, KWON D, LEE S, et al. Carbon nanofiber-based wearable patches for bio-potential monitoring[J]. Journal of Medical and Biological Engineering,2019,39(6):892-900.

[63]JAFAR A, ALSHATTI Y, AHMAD A. Carbon nanotube toxicity: The smallest biggest debate in medical care[J]. Cogent Medicine,2016,3(1):1217970.

[64] FIRME C P, BANDARU P R. Toxicity issues in the application of carbon nanotubes to biological systems[J]. Nanomedicine: Nanotechnology, Biology and Medicine,2010,6(2):245-256.

[65]MADANI S Y, MANDEL A, SEIFALIAN A M. A concise review of carbon nanotubes toxicology[J]. Nano Rev,2013,4(1):24319547.

[66]ZHAO Y, CAO Y, LIU J, et al. Single-wall carbon nanotube-coated cotton yarn for electrocardiography transmission[J]. Micromachines,2018,9(3):132.

[67]CHI M, ZHAO J, DONG Y, et al. Flexible carbon nanotube-based polymer electrode for long-term electrocardiographic recording[J]. Materials,2019,12(6):971.

[68]YAPICI M K, ALKHIDIR T, SAMAD Y A, et al. Graphene-clad textile electrodes for electrocardiogram monitoring[J]. Sensors and Actuators B-Chemical,2015,221:1469-1474.

[69]LIU B Y, LUO Z Y, ZHANG W Z, et al. A simple method of fabricating graphene-polymer conductive films[J]. International Polymer Processing,2018,33(1):135-138.

[70]HALLFORS N G, ALHAWARI M, JAOUDE M A, et al. Graphene oxide: Nylon ECG sensors for wearable IoT healthcare-nanomaterial and SoC interface[J]. Analog Integrated Circuits and Signal Processing,2018,96(2):253-260.

[71]GOLPARVAR A J, YAPICI M K. Electrooculography by wearable graphene textiles[J]. IEEE Sensors Journal,2018,18(21):8971-8978.

[72]XU X, LUO M, HE P, et al. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring[J]. Applied Physics A-Materials Science & Processing,2019,125(714):1-7.

[73]XU X, LIU Z, HE P, et al. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring[J]. Journal of Physics D-Applied Physics,2019,52(45):455401.

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合