?

基于DSC技術構建甲基丙烯酰胺接枝蠶絲的接枝率定量檢測方法

2022-02-14 09:40方帥軍陳夢婕舒可人岳心茹
絲綢 2022年1期
關鍵詞:蠶絲定量分析

方帥軍 陳夢婕 舒可人 岳心茹

摘要: 為了建立甲基丙烯酰胺接枝蠶絲(polyMAA-SF)的定量分析模型,本文通過自由基引發方式將甲基丙烯酰胺單體(MAA)與蠶絲接枝聚合,得到梯度接枝率的蠶絲組樣,使用DSC技術對其進行表征分析。接枝后的蠶絲在DSC曲線中出現新的吸熱峰,新峰面積隨著接枝率的增加而增加。根據DSC分析方法作基線,建立新峰熱焓比值與接枝率(稱重法)的線性關系函數模型,并采用已知接枝率polyMAA-SF樣品進行驗證。結果表明,DSC定量分析得到的蠶絲接枝率相對誤差均小于5%,該函數模型適用于蠶絲接枝率的檢測。

關鍵詞: DSC;MAA;蠶絲;接枝率;定量分析

中圖分類號: TS141.8 ? ?文獻標志碼: A ? ?文章編號: 1001-7003(2022)01-0020-05

引用頁碼: 011103DOI: 10.3969/j.issn.1001-7003.2022.01.003

蠶絲具有輕柔、滑爽、優良光澤和懸垂性等優點,屬于天然纖維材料,普遍應用于服飾和家紡等領域,深受消費者喜愛。隨著技術革新,傳統的錫增重、單寧增重和絲膠固著增重[1]逐漸向接枝增重[2-3]轉變,以彌補因脫膠而引起的蠶絲重量損失。近年來,研究者用單烯類和環氧化合物類進行了大量對蠶絲的改性研究[4]。自由基引發接枝乙烯基單體[5]得到的乙烯基接枝蠶絲存在疏水性高,靜電大,纖維硬度高和可染性下降等缺點。甲基丙烯酰胺單體與蠶絲接枝共聚不僅保留了蠶絲織物良好的手感、光澤,還提高了其接枝率[6-7]、含潮率、懸垂性[8]、拒油性[9]和耐堿性[10],是當前廣泛應用的蠶絲接枝增重技術。

研究者對蠶絲接枝前后的內在性能進行了深入探究,包括采用近紅外光譜[11-12]、XRD、SEM、NMR和DSC[13]等手段。研究發現,接枝后的蠶絲在光譜吸收、熱性能及表面形貌等方面均有變化。Paola等[10]通過紅外和拉曼表征發現MAA接枝蠶絲出現了新的吸收峰,同時在5%氫氧化鈉溶液中的穩定性測試,表明了接枝蠶絲具有更好的分解穩定性。Tsunenori等[13]通過DSC測試發現MAA接枝蠶絲出現了新的吸熱峰,新峰熱焓與MAA接枝率存在一定關系。Franco等[14]也證實了上述結果,但實驗數據離散性較大,系統性不足,沒能建立熱焓關于接枝率的數學模型。本文采用DSC對不同接枝率蠶絲進行表征,基于此建立吸熱峰的熱焓比值與接枝率之間的函數關系,開發一種蠶絲接枝率的定量分析方法。

1 實 驗

1.1 材料、試劑及儀器

材料:脫膠桑蠶絲(浙江雅士林集團有限公司),甲基丙烯酰胺接枝蠶絲(浙江巴貝領帶有限公司)。

試劑:甲基丙烯酰胺(阿拉丁化學試劑有限公司)、過硫酸鉀(國藥集團化學試劑有限公司)、甲酸(無錫市純陽化工有限公司),均為分析純。

儀器:L-12C型振蕩染色機(廈門瑞比精密機械有限公司),UF75烘箱(德國美墨爾特有限公司),DSC差示掃描量熱儀(瑞士梅特勒—托利多集團有限公司)。

1.2 接枝蠶絲樣的制備

稱取已脫膠的蠶絲0.5 g,在140 ℃條件下烘60 min至恒重W1。甲基丙烯酰胺投入量為0.6~3.0 g,甲酸為3%,以3%過硫酸鉀作為引發劑。在85 ℃,浴比為1 ︰ 30(蠶絲 ︰ 處理液體積)條件下采用吸盡法處理40 min,通過浸潤和多次熱水洗滌去除未反應的MAA和物理黏附的均聚物,得到不同接枝率的甲基丙烯酰胺接枝蠶絲(polyMAA-SF)組樣。上述百分含量均表示相對原蠶絲的質量。將接枝蠶絲樣品在140 ℃條件下烘至恒重為W2,按下式分別計算接枝率和接枝效率:

接枝率/%=W2-W1W1×100(1)

接枝效率/%=W2-W1Wm×100(2)

式中:W1為接枝前蠶絲的質量,g;W2為接枝后蠶絲的質量,g;Wm為投入的MAA單體質量,g。

1.3 DSC表征與分析

將未接枝蠶絲和不同接枝率的polyMAA-SF樣品剪碎,稱取5 mg左右,在DSC差示掃描量熱儀中進行測定:測試溫度由25 ℃開始,升溫速率為10 ℃/min,在30 mL/min氮氣流量下升至400 ℃,獲得DSC曲線。每個樣品分別測試3次,通過對系列樣品曲線作基線得到相應熱焓值和溫度等數據,優選出最接近接枝率平均值的數據。

2 結果與分析

2.1 單體MAA含量對蠶絲接枝率及單體接枝效率的影響 ?甲基丙烯酰胺單體在接枝聚合過程中受各條件的影響,其中浴比影響很大,為了讓MAA單體在蠶絲織物上最大化接枝聚合,需要盡量控制接枝反應浴比。文獻[7]提出當浴比在1 ︰ 20~1 ︰ 40時,接枝率和接枝效率均會隨著單體含量的增加而快速增大,因此本文采用了1 ︰ 30的浴比。由圖1可知,蠶絲接枝率隨著MAA單體投入量的增加而不斷增大。從接枝效率變化可以看出,在MAA單體投入量為1.6 g之前接枝效率快速攀升,隨后逐漸放緩,保持在25%左右且有下降趨勢,說明在該浴比條件下接枝聚合反應,MAA單體不斷反應接枝,接枝率明顯提升;而接枝效率在蠶絲接枝率60%后,不再隨著MAA單體濃度增加而增加,說明接枝共聚的反應能力降低,已逐漸達到了蠶絲的固有接枝量。

2.2 接枝率對DSC分析圖的影響

將不同接枝率的甲基丙烯酰胺接枝蠶絲(polyMAA-SF)樣品在25~400 ℃下進行DSC測試,結果如圖2所示。相比未接枝蠶絲,接枝蠶絲在266~288 ℃出現新的吸熱峰,很明顯該吸熱峰是由已接枝上的甲基丙烯酰胺聚合物引起的。隨著接枝率的增加,新吸熱峰面積逐漸增大,其峰位也逐漸向高溫方向移動,而位于317~327 ℃內蠶絲本身固有結構的吸熱峰面積呈現減小趨勢,表明新吸熱峰面積與蠶絲接枝率之間存在一定關系。

2.3 DSC測試結果數據分析

由DSC曲線原理可知,流到樣品的熱流量對時間的積分等于轉化的熱焓(ΔH/J),對溫度表示的DSC曲線也總是對時間的積分,積分得到的結果即為DSC曲線與基線之間的面積,考慮測試樣品的質量,即可得到單位熱焓值,其與相關吸熱峰面積對應。以41.60%接枝率蠶絲的DSC曲線分析為例,在220 ℃~370 ℃作兩端切線為總基線,得到兩峰的積分面積。由圖3可知,兩峰具有部分重疊效應,根據DSC分析對于疊峰采用樣條基線的方式內插得到S形基線,從而得到紅色區域,記Q1,為MAA接枝聚合物的吸熱峰面積。將黑色區域記Q2,為蠶絲本身結構吸熱峰面積,具體數值列于表1。兩者比值Q1 ︰ Q2為43.07%,與稱重法測得的樣品接枝率41.60%很接近。

2.4 DSC分析方法的數學建模

根據41.60%接枝率蠶絲DSC分析方法,以同樣的方式分別對不同接枝率蠶絲的DSC曲線作基線,得到在266~288 ℃和317~327 ℃溫度內的單位熱焓值,標記為Q1和Q2。從表2可知,Q1熱焓值隨著接枝率的增大而增大,而Q2熱焓值呈現下降趨勢,兩者比值與接枝率都很接近。將接枝率和吸熱峰的熱焓比值Q1 ︰ Q2作圖,如圖4所示,優選的熱焓比值Q1 ︰ Q2與接枝率之間存在良好的線性關系,如下式所示,其擬合系數R2為0.994 9。

y=1.024x-0.071(3)

式中:y為Q1 ︰ Q2;x為接枝率(稱重法)。

結果表明,通過上述線性函數能夠精確計算出未知polyMAA-SF的接枝率。

2.5 DSC數學模型的驗證

將已知接枝率(F)的增重蠶絲在不同部位取4個點,分別進行DSC測試、作總基線和樣條基線、計算新吸熱峰面積比值(Q1 ︰ Q2),并以m表示,得到m1、m2、m3、m4。通過下式對其平均計算得到峰面積比平均值m:

m/%=m1+m2+m3+m44×100(4)

再將平均值 ?m代入線性函數關系式(3)中,計算得到接枝率 ?M,驗證結果如表3所示。

由線性函數關系式(3)計算得到的接枝率分別為2356%和67.10%,與已知接枝率之間的誤差分別為4.52%和0.85%,兩者均小于5.0%。結果表明,通過DSC法定量分析可以較為準確地得到甲基丙烯酰胺接枝蠶絲的接枝率。

3 結 論

本文采用差示掃描量熱儀對不同接枝率的甲基丙烯酰胺接枝蠶絲進行測試,由DSC曲線可知,接枝后的蠶絲在266~288 ℃出現新的吸熱峰,該吸熱峰面積隨著接枝率的增加而增大,說明該峰是由接枝的MAA聚合物引起。而位于317~327 ℃吸熱峰逐漸減小,該峰為蠶絲固有結構的吸熱峰。將新吸熱峰與蠶絲固有吸熱峰的單位熱焓比值和蠶絲接枝率(稱重法)作圖擬合,發現兩者之間存在良好的線性關系,并得到了相應的函數關系式。通過企業蠶絲樣驗證發現,數學模型計算得到的蠶絲接枝率與實際接枝率均非常接近,且兩者相對誤差小于5.0%。說明DSC定量分析技術對蠶絲接枝率的測定不僅有效且準確度較高,這對蠶絲接枝應用與檢驗檢測帶來積極的推動作用。

參考文獻:

[1]金美菊, 劉優娜. 蠶絲增重方法探討[J]. 上海紡織科技, 2015, 43(6): 68-70.

JIN Meiju, LIU Youna. Discussion on weighting methods of silk[J]. Shanghai Textile Science & Technology, 2015, 43(6): 68-70.

[2]LI Guohong, LIU Hong, LI Tianduo. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications[J]. Materials Science and Engineering, 2012, 32(4): 627-636.

[3]白秀娥, 陳國強. 甲基丙烯酸甲酯在真絲上接枝共聚反應條件的優化[J]. 蠶業科學, 2005(1): 83-87.

BAI Xiu’e, CHEN Guoqiang. Optimized conditons for the grafting reaction of methyl methacrylate on silk fiber[J]. Sericultural Science, 2005(1): 83-87.

[4]朱正華, 朱良均, 閔思佳, 等. 蠶絲蛋白纖維改性研究進展[J]. 紡織學報, 2002, 23(6): 83-85.

ZHU Zhenghua, ZHU Liangjun, MIN Sijia, et al. Research progress of silk protein fiber modification[J]. Journal of Textile Research, 2002, 23(6): 83-85.

[5]TSUKADA M, ARAI T, FREDDI G, et al. Grafting vinyl monomers onto silk (Bombyx mori) using different initiators: Properties of grafted silk[J]. Journal of Applied Polymer Science, 2010, 81(6): 1401-1409.

[6]張智輝, 沈一峰, 楊雷, 等. MAA/疏水性單體與蠶絲纖維的接枝共聚合反應[J]. 絲綢, 2013, 50(7): 1-4.ZHANG Zhihui, SHEN Yifeng, YANG Lei, et al. Graft copolymerization of MAA/hydrophobic monomer and silk fiber[J]. Journal of Silk, 2013, 50(7): 1-4.

[7]江崍, 沈一峰, 黃晴. 復合引發體系引發MAA接枝真絲工藝研究[J]. 絲綢, 2012, 49(11): 11-14.

JIANG Lai, SHEN Yifeng, HUANG Qing. Research on grafting silk with methacrylamide initiated by composite initiation system[J]. Journal of Silk, 2012, 49(11): 11-14.

[8]高樹珍, 唐蓉蓉, 劉款款. 桑蠶絲織物的接枝改性整理[J]. 毛紡科技, 2021, 49(9): 58-61.

GAO Shuzhen, TANG Rongrong, LIU Kuankuan. Properties of grafting-modification of silk fabrics[J]. Wool Textile Journal, 2021, 49(9): 58-61.

[9]TSUKADA M, FREDDI G, ISHIGURO Y, et al. Structural analysis of methacrylamide-grafted silk fibers[J]. Journal of Applied Polymer Science, 2010, 50(9): 1519-1527.

[10]PAOLA T, ELEONORA P, MASUHIRO T. Stability toward alkaline hydrolysis of B.mori silk fibroin grafted with methacrylamide[J]. Raman Spectroscopy, 2016(47): 731-739.

[11]ZOCCOLA M, BOSCHI A, AROSIO C, et al. Silk grafting with methacrylamide: A near-infrared spectroscopy study[J]. Journal of Applied Polymer Science, 2011, 120(1): 253-262.

[12]PAVONI E, TOZZI S, TSUKADA M, et al. Structural study on methacrylamide-grafted Tussah silk fibroin fibres[J]. International Journal of Biological Macromolecules, 2016, 88: 196-205.

[13]KAMEDA T, MASUHIRO T. Structure and thermal analyses of MAA-grafted silk fiber using DSC and 13C solid-state NMR[J]. Macromolecular Materials & Engineering 2007, 291(7): 877-882.

[14]FRANCO F, MONICA P, MARCO L. Silk grafting with methacrylic monomers: Process optimization and comparison[J]. Journal of Applied Polymer Science, 2007(103): 4039-4046.

Abstract: Silk is a kind of high-quality natural fiber loved by people for its softness, smoothness, excellent luster and drape properties. In actual applications, it is necessary to remove the sericin part of silk through degumming, resulting in the quality loss of nearly 25% during silk pretreatment and causing huge losses for silk production enterprises. With the development of silk technology, silk weighting process has developed from traditional methods such as tin weighting, tannin weighting and sericin-fixed weighting to silk graft weighting, among which methacrylamide graft weighting is one of the most widely used silk graft weighting technologies. This method can not only solve the problem of silk quality loss, but also retain the hand-feel and luster of silk fabric, and improve the drapability of silk and other properties. However, different grafting rates with different effects on the quality of silk also affect the price of silk. The grafting rate of silk after weighting is often decided by the producer, while the next-step-processing enterprises and silk consumers are often unable to accurately judge the specific silk grafting rate. Despite different signal peaks found in grafted silk by silk researchers through characterization and analysis of the grafted silk by infrared spectroscopy, XRD, scanning electron microscopy and Raman spectroscopy, few researchers have carried out accurate analysis and research on silk with unknown grafting rate.

In order to figure out the thermal properties of methacrylamide grafted silk and calculate the grafting rate of unknown grafted silk, potassium persulfate was used as initiator for graft polymerization of different concentrations of methyl acrylamide monomer and the degummed silk, to get a series of grafted silk with different grafting rates, and the accurate grafting rate was obtained by weighing method. Subsequently, grafted silk samples of this batch were tested three times by differential scanning calorimeters, and corresponding DSC curves were obtained. Compared with the ungrafted silk, the grafted silk showed a new endothermic peak in the range of 266-288 ℃, which was obviously caused by the grafted methacrylamide polymer in the grafted silk. With the increase of grafting rate, the area of new endothermic peak gradually increased, and its peak position gradually moved towards high temperature direction, while the endothermic peak area of the intrinsic structure of silk in the range of 317-327 ℃ showed a decreasing trend, indicating that there is a certain relationship between the area of new endothermic peak and grafting rate of silk. Then, the baseline and integral of DSC curves were calculated to obtain the enthalpy value and the peak position, and the data closest to the average value of grafting rate was optimized. The mathematical relation between unit enthalpy ratio and grafting rate was found and established by using Origin data processing software. Finally, through DSC characterization of grafted silk samples with known grafting rate and the calculation of the unit enthalpy ratio, the linear function was used for verification. In this paper, the intrinsic relationship between the thermal property of methacrylamide grafted silk and silk grafting rate was found by means of DSC characterization data. The study shows that there exists a linear function between the ratio of unit enthalpy of grafted silk and the grafting rate, with a relative error of less than 5.0% by verification, indicating that the grafting rate of unknown methacrylamide grafted silk can be calculated accurately by DSC quantitative analysis.

With the combination of DSC characterization technology and calculation software, the accurate grafting rate for the unknown grafted silk can be obtained, which effectively solves the problems on grafting rate quality control and testing appraisal for silk production enterprises, providing a good reference for the applications of the grafted silk testing appraisal, and greatly promoting the development of the silk weighting field.

Key words: DSC; MAA; silk; grafting rate; quantitative analysis

猜你喜歡
蠶絲定量分析
春蠶絲盡便會死嗎
定量分析的特點及其重要性
大規模古籍文本在中國史定量研究中的應用探索
FTA在工業氣體探測報警系統中的應用
商務英語詞匯量與商務英語閱讀能力相關性研究
國外藝術體操科研現狀
我的新發現
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合