?

鹽芥葉片應答鹽脅迫的蛋白質組學分析

2022-03-16 02:38常麗麗彭存智王丹仝征黃超徐兵強
江蘇農業學報 2022年1期
關鍵詞:鹽脅迫

常麗麗 彭存智 王丹 仝征 黃超 徐兵強

摘要: 鹽芥是研究耐鹽機理的模式植物。為從蛋白質水平揭示鹽芥響應鹽脅迫的分子機制,本研究采用同位素標記相對和絕對定量(iTRAQ) 技術對不同NaCl濃度處理7 d的鹽芥葉片進行差異蛋白質組學分析。結果表明,鹽芥葉片中共鑒定到4 607個蛋白質,其中281個蛋白質的表達豐度顯著增加,95個蛋白質的表達豐度顯著降低。鹽脅迫差異表達蛋白質的KEGG代謝通路和蛋白質互作網絡分析結果表明,促進植株光合作用可幫助鹽芥適應低鹽環境;抑制葉綠素和支鏈氨基酸合成、調控應激反應基因的表達是鹽芥應對中鹽環境的重要因素;而有效清除活性氧、提高滲透物質積累量和增加能量供應可能是鹽芥耐受高鹽環境的關鍵。本研究結果為揭示鹽芥應答鹽脅迫的分子響應機制提供了理論基礎。

關鍵詞: 鹽芥;鹽脅迫;差異蛋白質;iTRAQ

中圖分類號: 文獻標識碼: A 文章編號: 1000-4440(2022)01-0049-16

Abstract: Eutrema salsugineum is a model plant for salt tolerance study. To reveal the molecular mechanism of E. salsugineum in response to salt stress at protein level, isobaric tags for relative and absolute quantification (iTRAQ) technology was used to do differential proteomics analysis on E. salsugineum leaves treated under different NaCl concentrations for seven days. The results showed that, a total of 4 607 proteins were identified from leaves of E. salsugineum, among which the expressional abundance of 281 proteins were significantly up-regulated, while the expressional abundance of 95 proteins were significantly down-regulated. Results of KEGG metabolic pathway and protein-protein interaction network analysis for differentially expressed proteins under salt stress showed that, promotion of photosynthesis was helpful for E. salsugineum to adapt to environment with low salinity. Inhibition of chlorophyll and branched chain amino acids synthesis, as well as expression regulation of stress-responsive genes were important factors for E. salsugineum to survive in an environment with medium salinity. Moreover, the key points for E. salsugineum to tolerate high salinity condition might be effective elimination of reactive oxygen species (ROS), elevating accumulation of osmolytes and increasing energy supply. The results can provide theoretical basis for revealing molecular mechanism of E. salsugineum in response to salt stress.

Key words: Eutrema salsugineum;salt stress;differentially expressed protein;isobaric tags for relative and absolute quantification (iTRAQ)

鹽脅迫是自然界中主要的非生物脅迫之一,土壤中的高濃度鹽分會使植物體內離子失衡,產生滲透壓力,從而嚴重影響植物的生長和發育[1]。鹽芥是一年生草本植物,屬真鹽生植物,多生長于鹽漬化土壤中。鹽芥是擬南芥的近親[2-3],同樣具有生長周期短、基因組構成?。s為擬南芥的2倍)、種子數目多、可利用農桿菌侵染花序法進行遺傳轉化試驗、遺傳轉化效率高等特點。因此,近幾年鹽芥被提出作為耐鹽分子機理研究的理想模式植物[2,4-5]。雖然鹽芥和擬南芥有很多相似的特性,但兩者之間的耐鹽性卻存在很大差異。通過轉錄組和蛋白質組學技術分析擬南芥和鹽芥在響應鹽脅迫的差異時,發現擬南芥中存在的鹽脅迫響應基因,不管是否處于鹽脅迫環境,在鹽芥中均能高豐度表達[6-7],說明鹽芥在面對逆境時是“有備無患”;而且鹽芥中存在特有的新陳代謝途徑,使得其在鹽脅迫條件下能減少由植物激素所誘導的生理修飾[8],從而能在一定程度上承受更大的脅迫壓力。同時研究發現,鹽脅迫條件下,鹽芥根系的磷酸化蛋白質組發生改變,這些變化的磷酸化蛋白質參與了信號轉導、活性氧清除、能量途徑、蛋白質合成以及蛋白質折疊等過程[9],這些研究為將來從磷酸化水平上研究鹽芥的耐鹽機制提供了重要的理論依據。

目前,人們已從鹽芥中鑒定到一些與鹽脅迫耐受相關的基因和調控因子,如編碼K+/Na+轉運蛋白基因(ThHKT1)[10-11]、編碼細胞質膜和液泡膜Na+/H+逆向轉運蛋白基因(ThNHX1)和(ThSOS1)[12-14]、焦磷酸酶基因(TsVP) [15-17]、高親和性K+轉運體(ThHAK5)[18]、脯氨酸合成基因(ThP5CS)[19]、Cu/Zn超氧化物歧化酶基因(ThCSD)[20]等,且部分基因的生物學功能已得到一定的闡述。我們前期對鹽芥葉片和葉綠體響應鹽脅迫的比較蛋白質組學的研究結果表明,鹽芥可通過Na+液泡區隔化,積累滲透調節物質(如淀粉、可溶性糖、脯氨酸等),以及維持光合效率和生長發育等方式來適應鹽脅迫環境[21-22]。本研究在已有的研究基礎上,應用先進的同位素相對標記與絕對定量技術(iTRAQ)對不同鹽濃度處理條件下的鹽芥葉片進行比較蛋白質組學研究,并重點分析不同鹽濃度處理對鹽芥葉片蛋白質表達豐度的影響,期望揭示鹽芥適應不同鹽濃度條件的蛋白質化學機制,為揭示鹽芥耐鹽分子機制提供參考。

1 材料與方法

1.1 試驗材料與試驗設計

將鹽芥種子直接點播在基質土(營養土∶蛭石=1∶1,體積比)中,放置在培養箱中進行培養。培養條件:溫度為白天22 ℃,晚上20 ℃;相對濕度為60%±5%;16 h光照,8 h黑暗。種子發芽后,用1/2濃度Hoagland營養液每3 d澆灌1次。2個月后,挑選長勢一致的鹽芥植株用含有0 mmol/L、200 mmol/L(低鹽)、400 mmol/L(中鹽)和600 mmol/L(高鹽)NaCl的1/2濃度Hoagland營養液進行澆灌,每天更換新的營養液,每個鹽濃度處理36株植株。收集連續澆灌7 d(根據前期的預試驗確定的鹽處理時間)的鹽芥葉片,每12株為1個生物學重復,液氮速凍,-80 ℃保存備用。

1.2 鹽芥葉片蛋白質的提取、酶解及iTRAQ分析

參照Wang等[23]的BPP法提取鹽芥葉片總蛋白質,用預冷的甲醇和丙酮清洗蛋白質沉淀,然后溶解在蛋白質裂解液(7 mol/L尿素,2 mol/L硫脲,4% CHAPS(一種非變性的兩性離子型去垢劑),30 mmol/L Tris-HCl,pH 8.5)中。以牛血清白蛋白(BSA)為標準溶液,通過Bradford測定法測定蛋白質濃度[24]。取100 μg用不同濃度的NaCl處理的鹽芥葉片總蛋白質,用胰蛋白酶進行消化后,使用iTRAQ試劑分別標記0 mmol/L、200 mmol/L、400 mmol/L和 600 mmol/L NaCl處理的上述葉片總蛋白質酶解產物后,再進行等量混合。采用強陽離子變換(SCX)色譜柱(4.6 mm×250.0 mm, Aqua C18, 5 μm, 100 )對iTRAQ標記的肽段進行預分級,再通過液相串聯質譜對標記肽進行鑒定,獲取差異表達肽段信息。

1.3 質譜數據搜庫

使用Proteinpilot軟件(Version 4.5)對質譜結果進行搜庫,搜索數據庫為自建的鹽芥蛋白質數據庫,蛋白數據從美國國立生物技術信息中心(NCBI)網站(https://www.ncbi.nlm.nih.gov/genome/12266)上下載。搜庫參數設置為:酶類為Trypsin,錯誤剪切位點數為1,固定修飾位點為Carbamidomethyl(C),可變修飾位點為Oxidation(M)。將0 mmol/L NaCl處理鹽芥葉片蛋白質作為對照組,200 mmol/L NaCl、400 mmol/L NaCl、600 mmol/L NaCl作為處理組,按處理組與對照組離子的峰面積比值,選擇置信度在95%以上的結果進行報告。質譜鑒定出的可信蛋白質篩選參數應滿足:可信度在95%以上的肽置信水平,至少鑒定出2條肽段,且錯誤發現率(FDR)≤1%。

1.4 質譜數據生物信息學分析

通過KEGG途徑分析對可信鑒定的蛋白質參與的代謝通路進行富集。同時,對鹽脅迫差異表達蛋白質(變化倍數>1.50或<0.67,P<0.05)進行KEGG代謝途徑和蛋白質間相互作用網絡分析(https://string-db.org/cgi/input.pl)。

1.5 部分鹽脅迫差異表達蛋白質對應基因的qRT-PCR分析

提取用不同鹽濃度處理的鹽芥葉片總RNA,取1 μg總RNA反轉錄成cDNA,并將反轉錄后的cDNA樣品稀釋5倍后用于qRT-PCR分析,每個樣品至少重復3次qRT-PCR試驗。取1 μl稀釋后的cDNA加入到SYBR Green PCR Master mix體系中,使用Mx3005P熒光定量PCR儀進行qRT-PCR試驗,鹽芥的actin基因(NCBI基因登錄號312283264)作為內參基因。用于qRT-PCR的引物序列詳見表1。

2 結果與分析

2.1 鹽芥葉片蛋白質種類分析及鹽脅迫差異表達蛋白質的篩選

應用iTRAQ技術結合AB5600+高端生物質譜儀對鹽芥葉片總蛋白質進行定量分析,3次iTRAQ重復鑒定出的可信蛋白質數分別為3 750個、3 897個和3 901個,共計4 607個蛋白質至少在1次重復中鑒定到的可信的鹽芥葉片總蛋白質,其中3 811個蛋白質至少在2次重復試驗中得到可信鑒定(圖1A)。這3 811個可信蛋白質參與了18條代謝途徑,其中碳水化合物代謝途徑參與的蛋白質種類最多(988個蛋白質),其次是翻譯類蛋白質(895個蛋白質)與折疊、分類和降解類蛋白質(830個蛋白質)、氨基酸代謝(579個蛋白質)、信號轉導(547個蛋白質)、運輸和分解代謝(522個蛋白質)、脂質代謝(496個蛋白質)、環境適應(452種蛋白質)、能量代謝(416種蛋白質)等代謝途徑類蛋白質(圖1B)。

以0 mmol/L NaCl處理的鹽芥葉片為對照,鹽脅迫處理后共檢測到376個鹽脅迫差異表達蛋白質(變化倍數>1.5或<0.67,P<0.05)(圖1C),其中281個蛋白質的表達豐度顯著增加,95個蛋白質的表達豐度顯著降低;其中低鹽處理(200 mmol/L NaCl)檢測到57個差異表達的蛋白質,其中表達豐度增加的蛋白質43個,豐度降低的蛋白質14個;中鹽環境(400 mmol/L NaCl)引起108個蛋白質的表達豐度發生顯著改變,24個顯著增加,84個顯著降低;高鹽條件下(600 mmol/L NaCl)共有263個蛋白質的表達豐度發生顯著改變,252個表達豐度增加,11個表達豐度降低。通過比較不同鹽濃度處理條件下的差異表達蛋白質數量發現,鹽處理濃度越高,表達豐度發生顯著改變的蛋白質數目越多,說明鹽芥植株需要調控更多蛋白質的表達來應對高鹽環境。

2.2 鹽脅迫差異表達蛋白質的KEGG代謝通路分析

對376個鹽脅迫差異表達蛋白質參與的代謝通路進行分析,發現它們主要富集到26條代謝途徑中(僅統計蛋白質數量≥4個的代謝途徑)(圖2、表2),包括能量代謝、其他氨基酸代謝、氨基酸代謝、碳水化合物代謝途徑等。其中能量代謝包括光合作用-天線蛋白、氧化磷酸化和硫代謝;谷胱甘肽代謝、硒化合物代謝和β-丙氨酸代謝屬于其他氨基酸代謝途徑;纈氨酸、亮氨酸和異亮氨酸生物合成、酪氨酸代謝、精氨酸和脯氨酸代謝、半胱氨酸和甲硫氨酸代謝、甘氨酸、絲氨酸和蘇氨酸代謝屬于氨基酸代謝;碳水化合物代謝途徑包括半乳糖代謝、氨基糖和核苷酸糖代謝、糖酵解/糖異生、丙酮酸代謝、乙醛酸和二羧酸代謝、淀粉和蔗糖代謝。此外,卟啉和葉綠素代謝、核糖體、RNA轉運、內質網中的蛋白質加工過程、苯丙素生物合成、嘌呤代謝、2-氧代羧酸代謝等代謝途徑也受到鹽脅迫的影響(圖2)。

進一步比較不同鹽濃度處理條件下差異表達蛋白質富集的代謝通路后發現,低鹽濃度處理顯著誘導了光合作用天線蛋白和參與氧化磷酸化途徑的蛋白質的豐度積累,包括葉綠素a/b結合蛋白1(CP1,XP_006415537.1)、CP2(XP_024012787.1)、CP4(XP_006404376.1)、CP6(XP_006403520.1)、CP24 10B(XP_006416877.1)、光系統Ⅰ反應中心亞基Ⅲ(PsaF,XP_006415339.1)和ATP酶亞基8(ATPase8,XP_006397344.2)。中等鹽度處理卻顯著降低了大部分參與卟啉和葉綠素代謝、纈氨酸生物合成、亮氨酸生物合成和異亮氨酸生物合成以及半胱氨酸和甲硫氨酸代謝途徑蛋白質的表達,其中參與卟啉和葉綠素代謝途徑的蛋白質為膽色素原脫氨酶(PBGD,XP_006399317.1)、尿卟啉原脫羧酶2(UROD2,XP_006411313.1)、谷氨酸-1-半醛2,1-氨基變位酶2(GSAM2,XP_006404223.1)、原葉綠素還原酶B(PORB,XP_006413074.1)、鎂螯合酶亞基ChlI-1(CHLI1, XP_006414096.1),以及脫鎂葉綠素加氧酶(PAO, XP_006419093.1);參與纈氨酸、亮氨酸和異亮氨酸生物合成途徑的蛋白質包括3-異丙基蘋果酸脫氫酶3(IMDH3,XP_006399931.1)、3-異丙基蘋果酸脫水酶小亞基1(IPMD-S1,XP_006411585.1)、乙酰乳酸合酶1(ALS1,XP_006404237.1)、蘇氨酸脫水酶(THD1,XP_024015515.1);參與半胱氨酸和甲硫氨酸代謝途徑的蛋白質有6個,包括1-氨基環丙烷-1-羧酸氧化酶2(ACO2,XP_006391897.1)、ACO4(XP_006418070.1)、S-腺苷甲硫氨酸合酶(SAMS,XP_006396376.1)、SAMS2(XP_006397900.1和 XP_006406736.1)、SAMS3(XP_006410860.1)和胱氨酸裂解酶(CORI3,XP_006413537.1)(圖3)。高鹽濃度處理條件下,大部分參與谷胱甘肽代謝、精氨酸和脯氨酸代謝、糖降解/糖異生,以及氨基糖和核苷糖代謝途徑的蛋白質表達豐度顯著增加,包括10種谷胱甘肽S-轉移酶(GST-Z1、GST-U16、GST-U17、GST-U19、GST-U27、GST-F3、GST-F8、GST-F9、GST-DJAR2和GST-DHAR1)、磷脂氫過氧化物谷胱甘肽過氧化物酶6(PHGP6,XP_006396880.1)、谷胱甘肽過氧化物酶7(GPX7,XP_006412543.1),以及吡咯啉-5-羧酸還原酶(PYCR,XP_006399997.1)、δ-1-吡咯啉-5-羧酸合酶A(P5CS-A,XP_006411212.1)、精氨酸酶1(ARG1,XP_006397249.1)、醛脫氫酶家族7成員B4(ALDH7B4,XP_006392717.1)、磷酸甘油酸變位酶4(PGM4,XP_006404025.1)、醛糖1-差向異構酶(ALE1,XP_006404339.1)、2,3-二磷酸甘油酸非依賴性磷酸甘油酸變位酶2(PMG2,XP_006407761.1)、NADPH依賴性醛酮還原酶(AKR,XP_006410968.1)、葡萄糖-6-磷酸1-差向異構酶(GLPE,XP_006413255.2)、UDP-葡萄糖4-差向異構酶4(UGE4,XP_006391617.1)、β-D-木糖苷酶4(XYL4,XP_006394136.1)、內切幾丁質酶(CHI,XP_006397529.1和XP_006397530.1)和CH25(XP_006407328.1)、果糖激酶1(FRK1,XP_006410273.1)、殼三糖苷酶1(CHIT1,XP_006413935.1)和葡萄糖-1-磷酸腺苷酸轉移酶大亞基3(GLGL3,XP_024005293.1)(圖3)。這些結果表明,鹽芥可能通過調控不同的代謝途徑來適應不同的鹽脅迫環境。

2.3 鹽脅迫差異表達蛋白質間的互作調控網絡分析

STRING數據庫可用來分析蛋白質間的相互作用,本研究采用最高置信度(得分大于0.9)和馬爾可夫聚類(MCL)算法來呈現鹽脅迫差異表達蛋白質之間的互作調控網絡,結果如圖4所示。第Ⅰ類蛋白質主要參與光合作用、葉綠素合成和蛋白質降解途徑,含有10個蛋白質:CP1、CP4、CP6、CP24-10B、PsaF、核酮糖二磷酸羧化酶/加氧酶(Rubisco)活化酶(RCA,XP_006411205.1)、彎曲類囊體蛋白1A(CURT1A,XP_006396295.1)、PORB、26S蛋白酶體非ATP酶調節亞基7(PSMD7,XP_006399036.1)和UPF0603蛋白At1g54780(UPF0603,XP_006392487.1)。第Ⅱ類包括5個蛋白質,主要參與卟啉和葉綠素代謝,分別是GSAM2、PBGD、UROD2、CHLI1和未知蛋白質LOC18016835(Ycf54,XP_006401109.1)。第Ⅲ類包括6個蛋白質,主要參與硫代謝和丙酮酸代謝,包括5′-腺苷酸還原酶2(APR2,XP_006391919.1)、過硫化雙加氧酶ETHE1(ETHE1,XP_006392779.1)、羥酰谷氨酸水解酶(HAGH,XP_006407499.1)、ATP-硫酰酶1(ATP-S1,XP_006406118.1)和ATP-硫酰酶3(ATP-S3,XP_006414665.1)、乳酰谷胱甘肽裂解酶(GLX1,XP_006417306.1)。第Ⅳ類含有7個蛋白質,包括葡萄糖苷酶2(GS2,XP_006401342.1)、內質素(EP,XP_006413464.1)、蛋白質二硫鍵異構酶1-1(PDIL1-1,XP_006416267.1)、蛋白質二硫鍵異構酶1-2(PDIL1-2,XP_006390081.1)、蛋白質二硫鍵異構酶1-3(PDIL1-3,XP_006403511.1)和蛋白質二硫鍵異構酶1-4(PDIL1-4,XP_006400826.1),以及70 000熱激蛋白(HSP70,XP_006414318.1),這些蛋白質主要參與內質網中的蛋白質加工過程。第V類含有15個蛋白質,包括RNA結合蛋白CP33(RBP-CP33,XP_006403809.1)、含五肽重復序列蛋白(PRCP,XP_006418504.1)、延伸因子(EF-TS,XP_006412882.1)、觸發因子蛋白TIG(TF-TIG,XP_006401478.1),以及11個核糖體蛋白(RP),如30S RP2(XP_006403837.1)、40S RP-S2(XP_006411454.1)、40S RP-S8(XP_006400597.1, XP_006409551.1)、40S RP-S16(XP_006408213.1)、50S RP-L4(XP_006417815.1)、50S RP-L27(XP_006405411.1)、60S RP-L4(XP_006407657.1)、60S RP-L23(XP_006411174.1)、60S RP-L24(XP_006410833.1)和60S RP-L34(XP_006390992.1),這些蛋白質主要參與蛋白質翻譯過程。蛋白質-蛋白質相互作用分析結果表明,鹽芥可通過多條代謝途徑間的相互協同作用來適應鹽脅迫環境。

2.4 部分鹽脅迫差異表達蛋白質的基因表達規律分析

為了評估蛋白質表達豐度與其相應基因表達水平之間的相關性,本研究利用qRT-PCR對9個典型的鹽脅迫差異表達蛋白質進行基因表達分析。結果(圖5)表明,8個鹽脅迫差異表達蛋白質的編碼基因在鹽處理后顯著上調表達,僅1個蛋白質(PBGD)對應的基因表達水平在鹽處理后無明顯變化。其中CP4基因表達水平僅在低鹽條件下顯著升高,PAO和P5CS-A基因表達水平在中鹽環境下顯著升高,而Fd-GOGAT1基因表達水平在高鹽處理條件下顯著升高。低鹽和中鹽處理顯著誘導了ALDH7B4基因的表達,而低鹽和高鹽環境卻顯著上調UROD2、PORB和30S RP2基因的表達(圖5)。

比較9個鹽脅迫差異表達蛋白質與其相應基因的表達變化趨勢后發現,PAO、P5CS-A和CP4的蛋白質表達模式與其編碼基因的表達變化規律基本相似,而ALDH7B4、Fd-GOGAT1、UROD2、PORB、30S RP2和PBGD的蛋白質與編碼基因的表達變化趨勢卻不一致(圖5)。

鹽脅迫處理后基因表達水平和蛋白質表達豐度不一致的現象也在其他植物中出現,如小麥[25]、甜菜[26]等,具體原因還需要進一步分析才能確定。

基于上述研究結果和已有的文獻報道,我們提出一個鹽芥適應不同鹽濃度脅迫環境的可能模式(圖6)。

3 討論

當植物受到高鹽脅迫時,植物體內的離子和滲透壓會失去平衡,并由此產生次級脅迫(如氧化脅迫),從而嚴重影響植株的生長和發育,甚至導致植株死亡[1]。植物通過建立新的離子和滲透動態平衡、緩解或消除氧化損害、調控生長等措施來適應新的脅迫環境[5]。已有研究結果表明,在鹽脅迫條件下,鹽芥主要將Na+累積在地上部分,并將Na+泵入液泡內;同時,鹽芥的滲透調節能力也較強,可通過降低生長速率來適應滲透脅迫[27]。本研究利用定量蛋白質組學iTRAQ技術,對0 mmol/L、200 mmol/L、400 mmol/L和600 mmol/L NaCl處理7 d條件下的鹽芥葉片進行差異蛋白質組學分析,發現376個蛋白質的表達豐度在鹽處理后發生顯著改變。根據這些差異表達蛋白質的功能分類和代謝途徑分析,推測鹽芥適應不同鹽濃度脅迫處理7 d條件下的可能分子機制。

3.1 增強的光合作用和能量供應可能是鹽芥適應低鹽環境的關鍵

對許多真鹽生植物來說,適當的鹽濃度可以促進它們的生長和發育。研究結果表明,300 mmol/L NaCl處理可顯著促進真鹽生植物鹽角草的葉片肉質化和莖直徑增加[28];鹽生植物海馬齒在200~300 mmol/L NaCl處理條件下表現出最佳的生長狀態[29];200 mmol/L NaCl處理可顯著增加鹽地堿蓬的根系干質量和鮮質量以及根系的總長度[30]。100 mmol/L NaCl處理鹽芥表現出最佳生長狀態,而200 mmol/L和400 mmol/L NaCl處理抑制了葉片的生長發育,但沒有表現出任何毒害癥狀[31],這與我們以前的研究結果[21]相一致。本研究發現光合作用天線蛋白的基因和蛋白質的表達豐度在200 mmol/L NaCl處理條件下均顯著增加,結合未發生顯著變化的葉綠體顯微結構[22,31]以及升高的總葉綠素含量和葉綠素a與葉綠素b比值的研究結果[21,31],推測鹽芥可能通過增加葉綠素含量和提高光合作用天線蛋白的表達量來吸收更多的光能。同時,200 mmol/LNaCl處理可誘導PsaF和ATPase8上調表達,將吸收的更多光能傳遞到光反應中心,促進鹽芥的光合作用,從而合成更多的有機物和增加能量供應來幫助鹽芥應對低鹽環境,這些研究結果與部分植物[32-33]響應鹽脅迫的比較蛋白質組學研究結果相一致。

3.2 抑制葉綠素與支鏈氨基酸的合成和調控脅迫響應基因的表達可能是鹽芥在中鹽環境下存活的重要因素

光合色素是光合作用系統的重要組成部分,主要包括高等植物中的葉綠素a、葉綠素b和類胡蘿卜素,其中葉綠素是主要的捕光和反應色素。許多研究結果表明,鹽脅迫通常會降低植物的葉綠素含量[34-36]。同樣,我們之前的研究發現400 mmol/L和600 mmol/LNaCl處理均顯著降低了鹽芥葉片的葉綠素含量[21]。本研究共鑒定到6個參與卟啉和葉綠素代謝的鹽脅迫差異表達蛋白質(PBGD、UROD2、PORB、GSAM2、CHLI1和PAO),其中PBGD可催化4個膽色素原分子轉化為尿卟啉原Ⅲ,是葉綠素生物合成的關鍵步驟[37];UROD催化尿卟啉原Ⅲ脫羧為共卟啉原Ⅲ[38];PORB是葉綠素生物合成中的關鍵酶,可催化原葉綠素還原為葉綠素[39];GSAM催化谷氨酸-1-半醛異構化為5-氨基乙酰丙酸,而5-氨基乙酰丙酸是四吡咯(如葉綠素和血紅素)的通用前體[40];CHLI1是Mg螯合酶的一個亞基,可將Mg2+插入原卟啉IX中,完成葉綠素生物合成的第一步[41];PAO是葉綠素分解代謝的關鍵調節酶[42]。在鹽脅迫條件下,水稻幼苗中PBGD的活性[43]和番茄幼苗中PBGD的表達水平[44]均顯著下降;耐鹽和鹽敏感棉花中PORB的表達豐度亦受到顯著抑制[45]。同時,鹽脅迫下水稻幼苗、番茄幼苗和鹽敏感棉花中的葉綠素含量也明顯降低。本研究結果與這些研究結果相似,即參與葉綠素生物合成的蛋白質(PBGD、UROD2、PORB、GSAM2和CHLI1)的表達豐度在400 mmol/LNaCl處理后顯著降低,而參與葉綠素分解代謝的PAO表達豐度卻在600 mmol/LNaCl處理條件下顯著增加,由此推測鹽芥可能通過降低葉綠素生物合成中關鍵蛋白質的表達量來降低葉片中的葉綠素含量,從而適應中鹽脅迫環境;而高鹽脅迫環境增強了葉綠素的分解代謝,從而引起葉綠素含量降低。

非生物脅迫可強烈誘導支鏈氨基酸(BCAA)的降解[46-47]。亮氨酸、纈氨酸和異亮氨酸屬于BCAA,但亮氨酸、纈氨酸和異亮氨酸在響應脅迫過程中的功能可能并不完全相同[48]。本研究共鑒定到4個鹽脅迫差異表達蛋白質(IMDH3、IPMD-S1、ALS1和THD1)參與到纈氨酸、亮氨酸和異亮氨酸生物合成途徑。已有研究結果表明,靶向干擾禾谷鐮刀菌中編碼IMDH的FgLEU2A基因的表達,可顯著降低其對滲透和氧化脅迫的耐受性[49];反義抑制番茄IPMD的表達可提高果實中BCAA的水平[50];使用乙酰乳酸合成酶(ALS)抑制劑并不干擾干旱脅迫誘導的BCAA積累過程[51]。在本研究中,400 mmol/LNaCl處理顯著降低了IMDH3、IPMD-S1、ALS1和THD1的表達量,表明中度鹽脅迫環境可能抑制了BCAA的合成。

此外,大多數參與半胱氨酸和甲硫氨酸代謝途徑的蛋白質在400 mmol/L NaCl處理后表達豐度明顯降低,其中ACO是乙烯生物合成中的關鍵酶,可將1-氨基環丙烷-1-羧酸轉化為乙烯。在擬南芥中過量表達小麥TaACO1基因,可通過調控DREB1/CBF信號轉導途徑中的脅迫響應基因來降低轉基因株系的耐鹽性[52];但過量表達擬南芥ACO基因卻提高了轉基因株系的耐澇性[53],這些結果表明不同植物中的ACO可能在響應非生物脅迫時發揮不同的功能。SAMS可催化甲硫氨酸和ATP生成S-腺苷-L-甲硫氨酸(SAM),而SAM參與了乙烯、煙草胺和多胺的生物合成。研究結果表明,非生物脅迫可顯著誘導SAMS的表達[54],且擬南芥中異源表達馬鈴薯和甜菜的SAMS,可通過上調與脅迫反應相關的基因表達量來提高轉基因株系的脅迫耐受性[55-56]。結合本研究結果和現有報道,推測鹽芥可能通過降低半胱氨酸和甲硫氨酸代謝中關鍵蛋白質的表達豐度來調控脅迫響應基因的表達,從而適應中度鹽脅迫環境。

3.3 有效清除活性氧、累積滲透調節物質、增加能量供應可能是鹽芥耐受高鹽脅迫環境的關鍵

植物在受到鹽堿、干旱、低溫等逆境脅迫時,體內活性氧物質(ROS)含量會迅速上升,當ROS積累到一定水平后,會對植物造成損傷,而植物主要通過酶促抗氧化系統和非酶促抗氧化系統來清除多余的ROS,以平衡體內的ROS水平[57]。谷胱甘肽(GSH)是植物中重要的抗氧化劑,細胞中GSH的水平與生物和非生物脅迫響應密切相關[58-59]。GPX和GST是谷胱甘肽代謝途徑中的關鍵酶。GPX在脅迫響應過程中發揮多種功能,如維持H2O2穩態、形成蛋白質復合體參與脅迫防御、作為ROS或氧化還原傳感器促進不同信號通路間的相互協作[60]。GST含有大量多功能酶,在GSH介導的氧化還原調控和細胞解毒過程中發揮重要作用[61]。有研究結果表明,GPX和GST的表達量上調與許多植物的耐逆性提高密切相關,如擬南芥[62-63]、水稻[64]、小麥[65-66]、大麥[67]、大豆[68]等。目前已在鹽芥中鑒定到GPX基因家族,并證實鹽和滲透處理可誘導大多數GPX基因及其蛋白質的表達豐度增加[69]。本研究發現在高鹽處理條件下,PHGP6、GPX7和10個GST蛋白質的表達豐度均顯著增加,這與蘋果樹根響應低溫脅迫和沙棗幼苗接種叢枝菌根真菌后響應鹽脅迫的比較蛋白質組學結果相似[70-71]。由此推測鹽芥可能通過促進GSH代謝途徑中關鍵酶的表達來清除過量的ROS,從而適應高鹽脅迫環境。

當植物受到非生物脅迫時可通過積累滲透調節物質來進行滲透調節[72]。滲透調節物質大致可分為2類:一類是從外部引入細胞的無機離子,另一類是細胞內合成的有機物質,包括可溶性糖(蔗糖、葡萄糖、果糖、半乳糖等)和含氮化合物(如脯氨酸、甜菜堿等),其中脯氨酸是許多植物中最有效的滲透調節物質之一[73-77]。本研究中,我們鑒定到3個參與精氨酸和脯氨酸代謝途徑的關鍵蛋白質PYCR、P5CS-A和ALDH7B4。PYCR和P5CS-A是植物中脯氨酸合成的關鍵酶。許多研究結果表明,PYCR和P5CS的表達水平與脅迫誘導的脯氨酸合成密切相關[78-79]。ALDH不僅能將醛氧化成羧酸,通過減少脂質過氧化來響應脅迫環境[47],還能通過促進脯氨酸合成參與擬南芥對高鹽脅迫的響應[80]。本研究發現,在高鹽脅迫條件下PYCR、P5CS-A和ALDH7B4的蛋白質表達水平明顯升高,結合不同NaCl濃度處理條件下鹽芥葉片中脯氨酸含量急劇增加的研究結果[21],推測高鹽脅迫提高脯氨酸代謝途徑的蛋白質表達量可促進鹽芥中脯氨酸的積累。此外,我們還發現鹽芥葉片中淀粉和可溶性糖的含量分別在400 mmol/L和600 mmol/LNaCl處理時達到最大值[21],結合本研究結果,600 mmol/LNaCl處理下參與碳水化合物代謝的蛋白質(5個參與糖酵解/糖異生的蛋白質,8個參與氨基糖和核苷酸糖代謝的蛋白質)表達豐度均顯著增加,由此推測高鹽環境也促進了碳水化合物的積累。這些結果表明,積累的滲透調節物質(如脯氨酸、淀粉、可溶性糖等)可能是鹽芥適應高鹽脅迫環境的關鍵因素。

為了降低Na+的毒害效應,植物需要消耗大量三磷酸腺苷(ATP)來排除體內多余的Na+,或將Na+區隔化進液泡來建立新的離子和滲透平衡[5]。ATP合成酶可通過合成ATP為細胞提供能量[81]。本研究發現,高鹽脅迫環境下ATP合成酶的G亞基和ε亞基的表達豐度均顯著增加,這與鹽芥已有的研究結果[21-22]和其他植物的研究結果相似[82-84]。通過ATP合成酶亞基表達豐度的增加來提高能量供應可能是鹽芥應對高鹽環境的重要策略。

本研究利用iTRAQ技術從鹽芥葉片中鑒定到4 607個蛋白質,其中281個蛋白質的表達豐度顯著增加,97個蛋白質的表達豐度明顯降低,以響應不同NaCl濃度處理的脅迫環境,這些鹽脅迫差異表達蛋白質主要參與能量代謝、碳水化合物代謝、氨基酸代謝、卟啉和葉綠素代謝等代謝途徑。通過對不同鹽濃度處理下的脅迫差異表達蛋白質進行KEGG代謝通路和蛋白質互作調控網絡分析,基本明確了鹽芥適應不同鹽脅迫環境的可能分子機制,下一步將深入研究關鍵鹽脅迫差異表達蛋白質的生物學功能,為揭示鹽芥耐鹽分子機制奠定理論基礎。

參考文獻:

[1] LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: a review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291.

[2] WARWICK S I, AL-SHEHBAZ I A, SAUDER C A. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA[J]. Canadian Journal of Botany-Revue Canadienne de Botanique, 2006, 84(2): 269-281.

[3] AMTMANN A, BOHNERT H J, BRESSAN R A. Abiotic stress and plant genome evolution. Search for new models[J]. Plant Physiology, 2005, 138(1): 127-130.

[4] BRESSAN R A, ZHANG C, ZHANG H, et al. Learning from the Arabidopsis experience. The next gene search paradigm[J]. Plant Physiology, 2001, 127(4): 1354-1360.

[5] ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.

[6] TAJI T, SEKI M, SATOU M, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant Physiology, 2004, 135(3): 1697-1709.

[7] PANG Q, CHEN S, DAI S, et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Journal of Proteome Research, 2010, 9(5): 2584-2599.

[8] ARBONA V, ARGAMASILLA R, GMEZ-CADENAS A. Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress[J]. Journal of Plant Physiology, 2010, 167(16): 1342-1350.

[9] ZHOU Y J, GAO F, LI X F, et al. Alterations in phosphoproteome under salt stress in Thellungiella roots[J]. Chinese Science Bulletin, 2010, 55(32): 3673-3679.

[10]蔡小寧,楊 平,賁愛玲,等. 鹽芥ThHKT1基因的克隆[J], 江蘇農業科學, 2006(6): 21-24.

[11]唐 寧,楊 平. 鹽芥ThHKT1基因的生物信息學分析[J]. 藥物生物技術, 2008, 15(6): 449-452.

[12]WU C, GAO X, KONG X Q, et al. Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila[J]. Plant Molecular Biology Reporter, 2009, 27(1): 1-12.

[13]OH D H, GONG Q, ULANOV A, et al. Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line[J]. Journal of Integrative Plant Biology, 2007, 49(10): 1484-1496.

[14]OH D H, LEIDI E, ZHANG Q, et al. Loss of halophytism by interference with SOS1 expression[J]. Plant Physiology, 2009, 151(1): 210-222.

[15]GAO F, GAO Q, DUAN X G, et al. Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance[J]. Journal of Experimental Botany, 2006, 57(12): 3259-3270.

[16]SUN Q H, GAO F, ZHAO L, et al. Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila[J]. BMC Plant Biology, 2010, 10(1): 90.

[17]LV S L, ZHANG K W, GAO Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance[J]. Plant and Cell Physiology, 2008, 49(8): 1150-1164.

[18]ALEMN F, NIEVES-CORDONES M, MARTNEZ V, et al. Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2009, 65(2/3): 263-269.

[19]高秀華. 鹽芥耐鹽相關基因的功能研究[D]. 濟南: 山東師范大學, 2006.

[20]XU X, ZHOU Y, WEI S, et al. Molecular cloning and expression of a Cu/Zn-containing superoxide dismutase from Thellungiella halophila[J]. Molecules and Cells, 2009, 27(4): 423-428.

[21]WANG X C, CHANG L L, WANG B C, et al. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance[J]. Molecular & Cellular Proteomics, 2013, 12(8): 2174-2195.

[22]CHANG L L, GUO A P, JIN X, et al. The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-Based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila[J]. Plant Science, 2015, 236: 223-238.

[23]WANG X C, SHI M J, LU X L, et al. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS[J]. Proteome Science, 2010, 8(1): 35.

[24]BRADFORD M M. A rapid and sensitive method for the quantization of microgram quantities of protein using the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.

[25]YAN M, LU Z L, LI B, et al. Comparative proteomics reveals new insights into the endosperm responses to drought, salinity and submergence in germinating wheat seeds[J]. Plant Molecular Biology, 2021, 105(3): 287-302.

[26]LI J, CUI J, CHENG D, et al. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots[J]. BMC Plant Biology, 2020, 20(1): 347.

[27]劉愛榮,趙可夫. 鹽脅迫對鹽芥生長及硝酸還原酶活性的影響[J]. 植物生理與分子生物學學報, 2005, 31(5): 469-476.

[28]KATSCHNIG D, BROEKMAN R, ROZEMA J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology[J]. Environmental and Experimental Botany, 2013, 92: 32-42.

[29]YI X, SUN Y, YANG Q, et al. Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance[J]. Journal of Proteomics, 2014, 99: 84-100.

[30]郭建榮,鄭聰聰,李艷迪,等. NaCl處理對真鹽生植物鹽地堿蓬根系特征及活力的影響[J]. 植物生理學報, 2017, 53(1): 63-70.

[31]GOUSSI R, MANA A, DERBALI W, et al. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B-Biology, 2018, 183: 275-287.

[32]PANG Q, CHEN S, DAI S, et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Journal of Proteome Research, 2010, 9(5): 2584-2599.

[33]LIU Z, ZOU L, CHEN C, et al. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae[J]. Scientific Reports, 2019, 9(1): 9590.

[34]KUMARI M P, SEKAR K. Effect of plant growth regulators on chlorophyll and carotenoid content of salinity stressed okra seedlings[J]. Asian Journal of Horticulture, 2008, 3(1): 54-55.

[35]XING W, WANG J, LIU H, et al. Influence of natural saline-alkalistress on chlorophyll content and chloroplast ultrastructure of two contrasting rice(Oryza sativa L. japonica) cultivars[J]. Australian Journal of Crop Science, 2013, 7(2): 289-292.

[36]SAYYAD-AMIN P, JAHANSOOZ M R, BORZOUEI A, et al. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress[J]. Journal of Biological Physics, 2016, 42(4): 601-620.

[37]SHOOLINGIN-JORDAN P M. Porphobilinogen deaminase and uroporphyrinogen Ⅲ synthase: structure, molecular biology, and mechanism[J]. Journal of Bioenergetics & Biomembranes, 1995, 27(2): 181-195.

[38]ELDER G H, ROBERTS A G. Uroporphyrinogen decarboxylase[J]. Journal of Bioenergetics & Biomembranes, 1995, 27(2): 207-214.

[39]SCHOEFS B, FRANCK F. Protochlorophyllide reduction: mechanisms and evolutions[J]. Photochemistry & Photobiology, 2003, 78(6): 543-557.

[40]ECKHARDT U, GRIMM B, HRTENSTEINER S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Molecular Biology, 2004, 56(1): 1-14.

[41]IKEGAMI A, YOSHIMURA N, MOTOHASHI K, et al. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin[J]. Journal of Biological Chemistry, 2007, 282(27): 19282-19291.

[42]PRUZINSK A, TANNER G, ANDERS I, et al. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 15259-15264.

[43]TURAN S, TRIPATHY B C. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings[J]. Physiologia Plantarum, 2015, 153(3): 477-491.

[44]HU L, XIANG L, LI S, et al. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress[J]. Physiologia Plantarum, 2016, 156(4): 468-477.

[45]GONG W, XU F, SUN J, et al. iTRAQ-based comparative proteomic analysis of seedling leaves of two upland cotton genotypes differing in salt tolerance[J]. Frontiers in Plant Science, 2017, 8: 2113.

[46]HILDEBRANDT T M, NUNES NESI A, ARAJO W L, et al. Amino acid catabolism in plants[J]. Molecular Plant, 2015, 8(11): 1563-1579.

[47]HUANG S P, ZENG Y L. Research progress on plant aldehyde dehydrogenase under adversity stresses[J]. Biotechnology Bulletin, 2015, 31(12): 8-14.

[48]HILDEBRANDT T M. Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response[J]. Plant Molecular Biology, 2018, 98(1/2): 121-135.

[49]LIU X, HAN Q, WANG J, et al. Two FgLEU2 genes with different roles in leucine biosynthesis and infection-related morphogenesis in Fusarium graminearum[J]. PLoS One, 2016, 11(11): e0165927.

[50]KOCHEVENKO A, FERNIE A R. The genetic architecture of branched-chain amino acid accumulation in tomato fruits[J]. Journal of Experimental Botany, 2011, 62(11): 3895-3906.

[51]HUANG T, JANDER G. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched chain amino acids in Arabidopsis thaliana[J]. Planta, 2017, 246(4): 737-747.

[52]CHEN D, MA X, LI C, et al. A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana[J]. Plant Cell Reports, 2014, 33(11): 1815-1827.

[53]RAMADOSS N, GUPTA D, VAIDYA B N, et al. Functional characterization of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Arabidopsis thaliana and its potential in providing flood tolerance[J]. Biochemical & Biophysical Research Communications, 2018, 503(1): 365-370.

[54]GUO Z, TAN J, ZHUO C, et al. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa sub sp. falcata that confers cold tolerance through up-regulating polyamine oxidation[J]. Plant Biotechnology Journal, 2014, 12(5): 601-612.

[55]KIM S H, KIM S H, PALANIYANDI S A, et al. Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants[J]. Plant Physiology and Biochemistry, 2015,87: 84-91.

[56]MA C, WANG Y, GU D, et al. Overexpression of S-adenosyl-l-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress[J]. International Journal of Molecular Sciences, 2017, 18(4): 847.

[57]APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1): 373-399.

[58]MAY M J, VERNOUX T, LEAVER C, et al. Glutathione homeostasis in plants: implications for environmental sensing and plant development[J]. Journal of Experimental Botany,1998,49(321):649-667.

[59]CHOUDHURY F K, DEVIREDDY A R, AZAD R K, et al. Rapid accumulation of glutathione during light stress in Arabidopsis[J]. Plant & Cell Physiology, 2018, 59(9): 1817-1826.

[60]BELA K, HORVTH E, GALL , et al. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses[J]. Journal of Plant Physiology, 2015, 176(1): 192-201.

[61]LABROU N E, PAPAGEORGIOU A C, PAVLI O, et al. Plant GSTome: structure and functional role in xenome network and plant stress response[J]. Current Opinion in Biotechnology, 2015, 32: 186-194.

[62]MILLA M, MAURER A, HUETE A R, et al. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways[J]. The Plant Journal, 2003, 36(5): 602-615.

[63]XU J, TIAN Y S, XING X J, et al. Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis[J]. Physiologia Plantarum, 2016, 156(2): 164-175.

[64]KANG S G, JEONG H K, SUH H S. Characterization of a new member of the glutathione peroxidase gene family in Oryza sativa[J]. Molecules & Cells, 2004, 17(1): 23-28.

[65]GALL , CSISZR J, SECENJI M, et al. Glutathione transferase activity and expression patterns during grain filling in ag leaves of wheat genotypes differing in drought tolerance: response to water deficit[J]. Journal of Plant Physiology, 2009, 166(17): 1878-1891.

[66]CSISZR J, GALL A, HORVTH E, et al. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress[J]. Plant Physiology & Biochemistry, 2012, 52: 119-129.

[67]REZAEI M K, SHOBBAR Z S, SHAHBAZI M, et al. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern[J]. Journal of Plant Physiology, 2013, 170(14): 1277-1284.

[68]CHAN C, LAM H M. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress[J]. Plant and Cell Physiology, 2014, 55(3): 570-579.

[69]GAO F, CHEN J, MA T, et al. The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions[J]. International Journal of Molecular Sciences, 2014, 15(2): 3319-3335.

[70]LI L J, LU X C, MA H Y, et al. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata[J]. Journal of Plant Research, 2018, 131(5): 865-878.

[71]JIA T, WANG J, CHANG W, et al. Proteomics analysis of E. angustifolia seedlings inoculated with arbuscular mycorrhizal fungi under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(3): 788.

[72]CHEONG M, YUN D J. Salt-stress signaling[J]. Journal of Plant Biology, 2007, 50(2): 148-155.

[73]KHAN T A, YUSUF M, AHMAD A, et al. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress[J]. Food Chemistry, 2019, 289: 500-511.

[74]BANDURSKA H, NIEDZIELA J, PIETROWSKA-BOREK M, et al. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin[J]. Plant Physiology And Biochemistry, 2017, 118: 427-437.

[75]尹 秀,王 俊,張二豪,等. PEG-6000浸種處理對甘青青蘭種子萌發及幼苗抗旱性的影響[J].江蘇農業科學,2020,48(13):168-172.

[76]殷世航,周 賽,黃霄宇,等. 中蔗系列新品種對干旱脅迫的響應及抗旱性評價[J].南方農業學報,2020,51(6):1339-1345.

[77]任保蘭,耿建建,呂 亞,等. 辣木幼苗對淹水脅迫的生理響應及耐澇性綜合評價[J].南方農業學報,2021,52(3):789-796.

[78]PREZ-ARELLANO I, CARMONA-ALVAREZ F, MARTNEZ A I, et al. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease[J]. Protein Science, 2010, 19(3): 372-382.

[79]SINGH P, TIWARI A, SINGH S P, et al. Proline biosynthesizing enzymes (glutamate 5-kinase and pyrroline-5-carboxylate reductase) from a model cyanobacterium for desiccation tolerance[J]. Physiology and Molecular Biology of Plants, 2013, 19(4): 521-528.

[80]DEUSCHLE K, FUNCK D, HELLMANN H, et al. A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity[J]. The Plant Journal, 2001, 27(4): 345-356.

[81]TIKHONOV A N. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts[J]. Photosynthesis Research, 2013, 116(2/3): 511-534.

[82]WANG L X, PAN D Z, LI J, et al. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance[J]. Plant Science, 2015, 231: 159-172.

[83]JI W, CONG R, LI S, et al. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress[J]. Frontiers in Plant Science, 2016, 7: 573.

[84]LIU Z, ZOU L, CHEN C, et al. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae[J]. Scientific Reports, 2019,9(1): 9590.

(責任編輯:陳海霞)

1889500783337

猜你喜歡
鹽脅迫
鹽脅迫提高金盞菊和萬壽菊的耐鹽性
外源氯化鈣對大蒜幼苗鹽脅迫傷害的緩解作用
外源NO對NaCl脅迫下高粱幼苗生理響應的調節
外源NO對NaCl脅迫下高粱幼苗生理響應的調節
花生Clp家族成員的篩選、聚類和鹽脅迫響應分析
短時鹽脅迫對紫花苜蓿葉片氣孔特征的影響
鹽脅迫對不同種源地燕麥種子萌發的影響研究
鹽脅迫對木槿幾種生理指標的影響
不同鹽處理對攀援衛矛和大葉黃楊生理效應的影響
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合