?

祁連山區不同海拔植被帶土壤微生物磷脂脂肪酸分析

2024-01-05 05:53朱慶征馮志培馮二朋張廣淵孔玉華
中國水土保持科學 2023年6期
關鍵詞:樣地海拔土層

朱慶征, 馮志培, 馮二朋, 張廣淵, 孔玉華?

(1.河南農業大學林學院,450000,鄭州;2.西寧市林業科學研究所,810000,西寧)

土壤微生物是土壤的重要組成部分,在推動土壤養分轉化、物質循環和能量流動過程中發揮重要作用,其結構和功能對周圍環境變化特別敏感,常作為土壤養分狀況的重要指示[1]。然而,土壤微生物組成復雜、數量巨大,用傳統的研究方法往往低估土壤微生物的真實狀況,不利于準確掌握微生物群落結構特征。近年來,磷脂脂肪酸(phospholipid fatty acid,PLFA)標記法在研究土壤微生物群落方面被認為具有一定優勢。它不僅能夠更精確地測定微生物的生物量,還可以通過微生物群落結構和多樣性進一步反映土壤環境因子變化等生態學層面的信息[2],已被廣泛應用于探究生態系統中土壤微生物群落結構差異及其與環境因子的關系。

當前,圍繞土壤微生物群落的結構分布及其驅動因素的研究已成為土壤學和生態學的研究熱點。吳則焰等[3]對武夷山國家保護區研究時發現,武夷山不同海拔從低到高表現出明顯的植被垂直演替譜帶,從而引起土壤養分含量和水熱狀況等因素隨海拔呈規律性變化,導致土壤微生物PLFA標記種類和總量隨海拔上升而降低;姚蘭等[4]對黃山不同海拔植被帶研究發現,不同植被類型影響土壤微生物生物量和活性,其中土壤微生物生物量碳、氮和微生物熵總體隨海拔升高而增加;趙盼盼等[5]通過對戴云山國家級自然保護區不同海拔黃山松(Pinustaiwanensis)的研究表明,溫度和活性有機氮是影響表層土壤微生物群落結構發生變化的主要因子,叢枝菌根真菌、革蘭氏陰性菌、真菌、總磷脂脂肪酸,細菌:真菌均隨海拔升高顯著下降。還有研究表明,土壤微生物量在不同土層深度中表現為表層較高,在同一土層不同植被類型條件下差異較大[6]。上述研究發現,海拔通過引起植被類型變化,進而影響環境因子和土壤理化特征,對土壤微生物產生不同影響,且研究區域不同,得出的研究結論也有所差異。目前,有關祁連山區土壤微生物群落結構影響因子的研究還較匱乏。

祁連山是我國西部重要的生態安全屏障,是冰川與水源涵養的生態功能區。祁連山作為我國西北地區高大山系之一,受大陸性荒漠氣候和高山寒冷氣候的雙重影響,森林類型、層次結構和樹種組成等具有典型高寒半干旱氣候特點,區域內的氣候和植被類型隨海拔呈規律性變化,祁連圓柏(Sabinaprzewalskii)作為祁連山主要樹種之一,呈塊狀分布于祁連山海拔2 700~3 300 m地帶。有關該地的研究集中在土壤養分發育規律[7]以林下植被與土壤水分相關關系等[8],對于祁連山區土壤理化性質和微生物群落受海拔影響的研究尚鮮有報道。因此,筆者采用PLFA生物標記法對祁連山區不同海拔 0~40 cm 土壤微生物群落結構進行研究,旨在探討不同海拔植被帶土壤微生物群落在0~40 cm土層土壤中的分布、差異及其影響因子,為揭示祁連山區土壤微生物群落變化規律提供理論依據,也為進一步探明土壤微生物群落結構對環境因子變化的響應規律奠定基礎。

1 研究區概況

研究區位于互助縣北山林場國家祁連圓柏良種基地(E 102°20′~102°26′,N 36°54′~36°55′),海拔在2 660~3 215 m之間,處于黃土高原向青藏高原的過渡地帶。該區域屬大陸性高原氣候,夏季溫暖多雨,冬季寒冷干燥且低溫持續時間長;年平均氣溫3.8℃,年降水量470 mm,年蒸發量1 090 mm,年日照時間2 593.4 h,太陽年總輻射量584.9 kJ/m2,無霜期150 d。土壤為山地粟鈣土,土層厚度約45 cm,A層厚度約5 cm,土壤質地為砂壤土,粒狀結構。

2 材料與方法

2.1 樣地設置及采樣

于2019年5月在祁連圓柏林(2 830、2 860和2 890 m)、林草過渡帶(2 900 m)和高山草甸(2 920 m)分別設置3個20 m×20 m樣方,共計15個,同一海拔各樣方間距離約50~60 m。5塊樣地坡向一致,依次記為E1、E2、E3、E4和E5,基本概況見表1。每個樣地按照“S”型5點取樣法采樣,使用土鉆分別采集0~10、10~20、20~30和30~40 cm的土壤樣品后,將同一土層的5個土樣混合作為1個土壤樣品,共計60個。將采集的土壤樣品帶回實驗室,分別保存于-80 ℃和4 ℃冰箱中,用于土壤微生物和理化性質的測定。

表1 研究區5個樣地基本概況Tab.1 Basic information of 5 sampling plots in the study area

2.2 樣品測定方法

土壤理化性質測定:土壤含水率利用烘干法測定;土壤粒徑體積分數(黏粒:<0.002 mm;粉粒:>0.002~0.050 mm;砂粒:>0.050~2.000 mm)利用土壤粒徑粒型測量系統(Mastersizer 2000,英國)測量;土壤pH值(土∶水=1∶2.5)用浸提酸度計(Hanna-HI98128,日本)測定[9];土壤全碳(total carbon,TC)和全氮(total nitrogen, TN)質量分數采用元素分析儀(EURO EA3000,意大利)測定。

磷脂脂肪酸測定參考Frosteg?rd等[10]和Bossio等[11]的方法,根據測定結果(表2),對不同微生物的磷脂脂肪酸進行標記。

表2 表征微生物類群的磷脂脂肪酸標記物Tab.2 Characteristics of PLFA biomarkers for soil microbial groups

2.3 數據處理

采用單因素方差分析(one-way ANOVA)和最小差異顯著法來比較不同海拔及不同土層間土壤理化性質和土壤微生物群落結構的差異,通過多因素方差分析(multi-way ANOVA)檢驗海拔與土層及其交互作用對土壤化學性質和微生物群落結構的影響。在進行去趨勢對應分析后,選擇冗余分析(redundancy analysis, RDA)來分析土壤理化性質與微生物群落結構之間的關系,并采用Pearson相關系數分析相關性。通過主成分分析(principal component analysis, PCA)檢驗不同海拔下土壤中微生物群落結構的差異。利用Origin 2018軟件進行主成分分析,其他統計分析采用SPSS 19.0和Canoco 5.0軟件進行,采用Excel 2010進行數據整理和制圖。

3 結果與分析

3.1 土壤理化性質的變化特征

5塊樣地土壤的pH值范圍為5.35~7.31,整體呈弱酸性(表3)。0~40 cm土壤的平均含水率隨著海拔升高呈先增加后降低的變化趨勢,大小依次為E3>E2>E4>E1>E5,其中E3顯著高于E5(P<0.05),除E5樣地外,其余樣地中土壤 0~40 cm 平均含水率均在10%以上。同一海拔下,各土層間的含水率隨土層深度的增加而逐漸降低,E4無明顯變化規律。不同海拔土壤粒徑體積分數無顯著差異,均為砂粒比例最大。土壤TC和TN在不同海拔下0~40 cm土層中的平均質量分數隨海拔升高也表現先增加后降低的趨勢,大小依次為E3>E2>E4>E5>E1,且E3中的質量分數顯著高于E1(P<0.05);在同一海拔各土層中,質量分數基本隨土層降低而減小,各土層間均無明顯差異。土壤C/N變化范圍為9.65~12.17,0~40 cm土層的平均值在E3最大,不同海拔下的差異不顯著(P>0.05)。

表3 不同海拔植被帶土壤理化性質Tab.3 Soil physic-chemical properties in different vegetation zones along an altitudinal gradient

3.2 土壤微生物PLFA標記物種類及含量

本研究在5個海拔植被帶土壤中共檢測出31種PLFA標記物。海拔對土壤微生物群落結構的分布影響顯著(表4)。14:0 iso、15:0 iso、16:0 iso、18:1 w7c和20:1 w9c這5種標記物在5個海拔的每個土層均有分布,屬于完全分布;15:00和16:1 w9c只分布在E3、E4和E5土壤中,屬于不完全分布。E3土壤中PLFA標記物種類最多(28種)、質量摩爾濃度最大(770.55 nmol/g),顯著高于其他海拔(P<0.05);E1土壤中PLFA標記物有25種,質量摩爾濃度最小(343.18 nmol/g),顯著低于其他海拔;E2、E4和E5土壤中PLFA標記物種類分別有22、24和23種,質量摩爾濃度分別為為631.32、583.62和546.54 nmol/g。

表4 不同海拔植被帶0~40 cm土壤微生物PLFA類型及質量摩爾濃度Tab.4 PLFA types and contents of soil microorganisms in 0-40 cm soil layer under different vegetation zones along an altitudinal gradient

通過對不同海拔植被帶土壤中優勢微生物PLFA進行分析,在E1、E2和E3土壤中PLFA質量摩爾濃度處于前5位的是15:0 iso、16:00、18:1 w7c、18:1 w9c和16:0 10-methyl,且其總和分別占PLFA總量的59.3%、60.9%和57.4%;E4和E5土壤中PLFA質量摩爾濃度較高的是16:0 10-methyl、16:00、18:1 w7c、16:1 w7c和15:0 iso,均占PLFA總量的54.7%??傮w而言,5個海拔土壤中微生物PLFA標記物質量摩爾濃度較高的類型是15:0 iso、16:00、18:1 w7c、18:1 w9c和16:0 10-methyl,表明這些PLFA所代表的微生物(以細菌為主)在該地區土壤中起主要作用。

3.3 土壤微生物各類群PLFA分布特征

除原生動物,0~40 cm土層土壤各類群PLFA質量摩爾濃度隨著海拔的升高均呈先升高后降低(E3>E2>E4>E5>E1)的趨勢(圖1)。隨著土層深度增加,E1、E2和E3土壤微生物各類群PLFA質量摩爾濃度呈遞減的趨勢,而E4和E5呈增加的趨勢。5個海拔下,細菌在土壤微生物群落中比例最大,均>60.23%;原生動物比例最小,均<2.87%。細菌、真菌、放線菌、G+和G-的PLFA質量摩爾濃度變化范圍分別為210.75~496.64、59.52~148.60、68.28~148.60、133.21~290.15和77.54~206.50 nmol/g,其峰值均出現在E3樣地0~10 cm土層中。原生動物標記物在E1樣地20~40 cm土層和E2樣地10~30 cm土層中均未檢測到(圖1e),最大值(6.40±0.61) nmol/g出現在E3樣地0~10 cm土層。不同海拔下,細菌/真菌比值變化波動較小,范圍為3.10~4.32,無顯著變化(圖1f)。革蘭氏陽性菌/革蘭氏陰性菌(G+/G-)的比值均>1,隨海拔亦無顯著變化;除E5外,其余樣地中兩者間的比值均隨土層深度增加而增大,土層間差異不顯著(P>0.05)(圖1h)。多因素方差分析結果表明,土層深度、海拔及其交互作用顯著影響PLFA總量、細菌、真菌、放線菌、原生動物、G+和G-(P<0.01)。此外,細菌/真菌(B/F)和G+/G-也受海拔的顯著影響。

3.4 土壤微生物群落主成分分析

主成分分析表明(圖2),與土壤微生物群落相關的2個主成分累計貢獻率達到93.08%,第1主成分(PC1)能夠解釋變異量57.35%,第2主成分(PC2)能夠解釋變異量的35.73%。不同海拔下的土壤微生物群落分布在排序空間的不同位置:E1土壤位于主成分1負端,主成分2正端;E2土壤位于主成分1正、負2端,主成分2正端;E3土壤位于主成分1正端,主成分2正端;E4土壤位于主成分1正端,主成分2負端;E5土壤位于主成分1正端,主成分2負端;樣地間距離表示其相互關系,距離越遠差異越大。進一步將主成分得分系數與各微生物類群PLFA進行相關分析(表5),31個微生物PLFA中有27個與主成分1顯著相關,其中17:1 w8c、16:1 w7c、16:1 w5c和20:1 w9c不相關,而17:0 cyclo、19:0 10-methyl和18:0 10-methyl呈顯著負相關,其余的各微生物類群PLFA間均為顯著正相關;與主成分2顯著相關的有18個微生物PLFA,其中10個為顯著正相關(P<0.05),分別是14:0iso、16:00、17:1 w8c、17:0 cyclo、16:1 2OH、16:1 w9c、16:1 w7c、16:1 w5c、18:2w6,9c/18:0 ante和16:0 10-methyl;8個為顯著負相關(P<0.05),分別為15:00、17:0iso、16:02OH、18:1 w5c、17:0 10-methyl、20:4w6,9,12,15c、20:4 w6c和20:1 w9c。

a: 14:0 iso ; b: 14:0 iso; c: 15:0 anteiso; d: 15:00; e: 16:0 iso; f: 16:00; g: 17:0 iso; h: 17:0 anteiso; i: 17:00;j: 19:0 iso; k: 19:0 anteiso; l: 16:0 2OH; m: 16:1 w9c; n: 17:1 w8c; o: 17:0 cyclo; p: 16:1 2OH; q: 18:1 w7c; r: 18:1 w5c; s: 16:1 w7c; t: 19:0 10-methyl; u: 18:3 w6c (6,9,12) ; v: 16:1 w5c; w: 18:2 w6,9c/18:0 ante; x: 18:1 w9c;y: 18:2 w6c; z: 16:0 10-methyl; ab: 17:0 10-methyl; cd: 18:0 10-methyl; ef: 20:4 w6,9,12,15c; gh: 20:4 w6c; ij: 20:1 w9c圖2 不同海拔植被帶土壤微生物PLFA主成分分析Fig.2 Principal component analysis of soil microbial PLFAs under different vegetation zones along an altitudinal gradient

表5 主成分得分系數與土壤微生物PLFA的相關性Tab.5 Correlation between PCA score coefficient and soil microbial PLFA

3.5 土壤微生物群落與土壤理化性質的相關性

此研究中冗余分析表明:第1和第2排序軸特征值分別為0.330 8和0.018 7,解釋量分別為89.45%和5.04%,共解釋94.49%。說明第1、2排序軸能夠很好地反映土壤微生物與土壤因子之間的關系,且主要由第1排序軸決定(圖3)。PLFA總量、細菌、真菌、放線菌、原生動物、G+、G-與pH、黏粒和粉粒呈顯著或極顯著負相關關系;與土壤含水率、砂粒、TC和TN和C/N呈顯著(P<0.05)或極顯著(P<0.01)正相關關系。細菌/真菌、G+/G-與pH、黏粒和粉粒呈正相關關系,且pH與G+/G-具有極顯著相關性(P<0.01),土壤微生物群落與土壤理化性質的相關系數詳見表6。與土壤含水率、砂粒、TC、TN和C/N呈負相關關系。對土壤微生物影響較大的土壤因子有土壤含水率、TC和TN,其中土壤含水率影響最大(圖3)。

虛線為微生物群落,實線為土壤理化性質。Dotted lines represent microbial communities and solid lines represent soil physical and chemical properties.圖3 土壤微生物群落結構與土壤理化性質的RDA分析Fig.3 RDA analysis of soil microbial community structure and soil physic-chemical properties

表6 土壤微生物各菌群與土壤理化因子間的Pearson相關系數Tab.6 Pearson correlation coefficient between soil microorganism groups and soil physical-chemical properties

4 討論

不同地區與類型土壤中可檢測到的PLFA種類與數量存在著較大差異。吳則焰等[3]對武夷山海拔500~2 100 m不同植被帶土壤微生物的PLFA分析時檢測到25種。杜雅仙等[12]研究寧夏荒漠草原海拔1 369~1 390 m不同植物群落微斑塊內土壤微生物區系特征時檢測到28種PLFA標記物。而本研究中共檢測出31種PLFA標記物,表明該區土壤微生物PLFA種類較為豐富。造成此差異的主要因素可能是由于不同地區不同海拔所引起的植被類型和土壤養分的時空異質性。

目前,關于海拔變化對土壤微生物群落多樣性影響規律的研究結果不一致[13-15],然而,規律不同但其影響因素較為相似。一方面主要歸因于隨海拔變化的植被類型和土壤因子,另一方面是隨著海拔升高溫度降低,影響土壤微生物活性。本研究中E3土壤中PLFA標記物種類最多且質量摩爾濃度最大(表4)。隨海拔的升高,細菌、真菌和放線菌PLFA質量摩爾濃度在祁連圓柏林(E1、E2和E3)中均呈逐漸增加趨勢,在林草過渡帶和草甸(E4和E5)中呈逐漸降低趨勢(圖1)。土壤微生物群落多樣性在祁連圓柏林中隨海拔升高而升高的根本原因,可能是海拔引起植被變化,導致土壤養分狀況存在差異,直接影響土壤微生物活動,改變其群落多樣性。筆者野外采樣時發現E3樣地地上植被最豐富,且土壤水分和養分充足,有利于微生物活動。因此,導致此區域檢測到的土壤微生物各類群PLFA標記物數量與種類最多。厲桂香等[16]研究表明,森林土壤中存在著豐富的纖維資源,而草甸群落植物多樣性低,凋落物類型簡單,因此草甸土壤可供微生物利用的資源較少;從森林到草甸,隨海拔上升溫度下降,低溫導致土壤微生物活動減弱。吳建國等[17]研究也發現森林中土壤微生物活性比高寒草甸高,地處較高海拔而溫度較低的高寒草甸不利于微生物的活動。因此,E4、E5中土壤微生物各類群PLFA含量隨海拔升高逐漸降低。一方面可能是由于海拔升高引起溫度降低,使得微生物活動受限,另一方面則可能是由于海拔升高引起植被類型變化,進而植物群落通過凋落物輸入等過程影響土壤理化性質。

隨土層深度增加,E1、E2和E3中土壤微生物各類群PLFA質量摩爾濃度呈遞減趨勢(圖1)。分析發現,在E1、E2和E3中土壤TC和TN含量隨土層深度增加亦呈遞減趨勢(表3),且土壤微生物各類群與土壤TC、TN均存在顯著或極顯著正相關關系(P<0.05)。由此可以說明,E1、E2和E3土壤表層中積累的有機物質(枯枝落葉、腐殖質等),為其土壤微生物的生長和繁育提供豐富的養分條件;還有研究表明,植物根系的生長能夠提高表層土壤的通氣和水熱狀況,進而為表層土壤微生物的生命活動提供良好的環境條件[18]。而E4和E5中呈增加趨勢,可能是隨著海拔的升高,植被覆蓋度逐漸降低,表層土壤裸露在空氣中,使其受風蝕影響較為嚴重;同時表層土壤溫度還會受到氣溫變化的影響,導致表層土壤溫度變化劇烈,不利于土壤微生物的生長和繁育[19]。

土壤微生物群落結構受到不同海拔條件下植被類型和土壤因子差異的影響。有研究表明,土壤因子對微生物群落多樣性的貢獻量大于植被類型[20]。結果表明,土壤含水率隨海拔升高呈先升高后降低的趨勢,與土壤微生物多樣性呈顯著正相關關系,土壤含水率增加土壤微生物的活性,這有利于增加土壤微生物群落多樣性[21]。RDA分析結果表明該區域內土壤含水率是影響土壤微生物群落的主導因子,揭示了海拔導致的土壤含水量差異性分布是影響土壤微生物多樣性的主要因子[13]。同時,微生物生長活動需要適宜的土壤pH值范圍,超出或低于此范圍都會抑制微生物活動[22]。筆者發現,pH值與土壤微生物各類群PLFA質量摩爾濃度呈顯著負相關關系。土壤微生物在進行生長代謝過程中需要一定量的氮,氮含量的增加會提高微生物分解有機質的速率[23],這與筆者發現的土壤微生物各類群PLFA質量摩爾濃度與土壤TN呈正相關的結果相一致,表明TN是影響土壤微生物生長活動的重要因素[4]。有研究表明,G-對水分變化非常敏感,在土壤養分充足的環境中生長較快,G+在資源受限的土壤中占優勢[24]。這與本研究中G+/G-比值與含水率顯著負相關、與TC和TN呈極顯著負相關關系的結果一致。細菌/真菌的大小可準確判斷土壤生態系統的穩定性和兩個種群的相對豐富程度[25],二者比值越小,生態系統越穩定。本研究中比值變化幅度較小,可能是土壤生態系統較穩定,未受到顯著影響。

5 結論

隨著海拔的升高,植被類型由林地過渡為草甸,祁連山區土壤微生物PLFA總量、細菌、真菌和放線菌含量均呈先增加后降低趨勢,峰值出現在祁連圓柏林E3樣地。祁連圓柏林土壤表層凋落物豐富,水養條件更有利于微生物的生命活動;林草過渡帶與草甸植被帶表層易受風蝕,使土壤深層比表層更適合微生物活動。本研究利用PLFA標記法分析祁連圓柏林、林草過渡帶與高山草甸中土壤微生物群落多樣性隨海拔變化的規律,后續可以綜合運用多種微生物研究方法,將有助于進一步揭示祁連山區海拔對植被-土壤-微生物生態系統的影響規律。

猜你喜歡
樣地海拔土層
土釘噴錨在不同土層的支護應用及效果分析
高海拔的甘南
額爾古納市興安落葉松中齡林植被碳儲量研究
昆明市主要綠化樹種閾值測定與分析
基于角尺度模型的林業樣地空間結構分析
土層 村與人 下
土層——伊當灣志
土層 沙與土 上
南美三大高海拔球場
海拔4000米的父愛
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合