?

陸相坳陷湖盆細粒沉積巖巖相類型及成因

2024-02-27 13:35孟慶濤胡菲劉招君孫平昌柳蓉
關鍵詞:松遼盆地巖相

孟慶濤 胡菲 劉招君 孫平昌 柳蓉

摘要:頁巖油是目前非常規油氣研究的熱點與難點。細粒沉積巖巖相類型及成因分析是頁巖油“源儲”特征研究及“甜點”預測的有效途徑。松遼盆地青山口組細粒沉積廣泛發育,是頁巖油富集的有效層段。本文通過巖性、礦物成分、有機質豐度與沉積構造4個參數,將松遼盆地青山口組細粒沉積巖劃分為6種巖相:高有機質泥紋層黏土質頁巖(A)、中高有機質含細粉砂紋層長英質頁巖(B)、中低有機質含粗粉砂紋層長英質頁巖(C)、低有機質層狀粉砂巖(D)、低有機質層狀介形蟲灰巖(E)和低有機質層狀白云巖(F)。進一步從水動力學與有機質富集方面探討了不同巖相類型的成因,并建立了相應的沉積模式。具體為:在風暴浪基面之下的靜水、咸水環境、高湖泊生產力背景中,浮游藻類與黏土絮狀物均勻懸浮沉降,形成貧富有機質黏土質紋層,沉積A巖相;在正常浪基面之下的相對靜水(浪基面附近局部動蕩)、半咸水環境、高湖泊生產力背景中,三角洲徑流與洪流帶來的細粉砂顆粒繼續向湖盆中央搬運,經均勻懸浮沉降形成長英質紋層,間歇期懸浮沉降形成黏土質紋層,形成B巖相;正常浪基面之下,洪水攜帶粉砂級顆粒,順著水下分流河道搬運至外前緣,以穩定性濁流的形式進入前三角洲,隨流速逐漸降低,分異形成粗粉砂—細粉砂紋層,間歇期懸浮沉降形成黏土質紋層,形成C巖相;正常浪基面之下,三角洲前緣早期沉積物在陣發性濁流的作用下,滑塌至較深水區,形成D和E巖相;于正常浪基面與風暴浪基面之間,在相對干燥的氣候背景下的咸水環境中,形成F巖相。

關鍵詞:陸相坳陷湖盆;細粒沉積;巖相;成因模式;頁巖油;松遼盆地;青山口組

doi:10.13278/j.cnki.jjuese.20230314 中圖分類號:P618.13 文獻標志碼:A

收稿日期:2023-11-21

作者簡介:孟慶濤(1984—),女,教授,博士生導師,主要從事沉積學、石油地質學、非常規油氣勘探與開發方面的研究,E-mail: mengqt@jlu.edu.cn

通信作者:胡菲(1986—),男,副教授,碩士生導師,主要從事石油天然氣勘探與開發方面的研究,E-mail: hufei@jlu.edu.cn

基金項目:吉林省自然科學基金項目(20230101081JC);吉林大學科技創新團隊項目(2021TD-05)

Supported by the Natural Science Foundation of Jilin Province (20230101081JC) and the Program for Jilin University Science and Technology Innovative Research Team (2021TD-05)

Lithofacies Types and Genesis of Fine-Grained Sediments in Terrestrial

Depression Lake Basin: Taking Upper Cretaceous Qingshankou

Formation in Songliao Basin as an ExampleMeng Qingtao1,2, Hu Fei1,2, Liu Zhaojun1,2, Sun Pingchang1,2, Liu Rong1,2

1. College of Earth Sciences,Jilin University,Changchun 130061, China

2. Key Laboratory for Oil Shale and Coexisting Minerals of Jilin Province,Jilin University,Changchun 130061, China

Abstract: Shale oil is currently a hot and difficult topic in unconventional oil and gas research. The analysis of the types and genesis of fine-grained sedimentary lithofacies is an effective way to study the “source and reservoir” characteristics of shale oil and predict its “sweet spot”. The fine-grained sediments of the Qingshankou Formation in the Songliao basin are widely developed and are effective intervals for shale oil enrichment. Based on four parameters, including organic matter abundance, mineral composition, lithology, and sedimentary structures, six kinds of lithofacies of fine-grained sedimentary rocks of the Qingshankou Formation in the Songliao basin are divided in this paper, as clay shale with high content of organic matter and mud-grade lamination(A), felsic shale with medium-high content of organic matter and fine silt-grade lamination(B), felsic shale with medium-low content of organic matter and coarse silt-grade lamination(C), layered siltstone with low content of organic matter(D), layered ostracoid limestone with low content of organic matter (E) and layered dolomite with low content of organic matter (F). Then, the genesis of different lithofacies types were discussed from the perspectives of hydrodynamics and organic matter enrichment, and corresponding sedimentary models were established. In the static and salty water environment below the base of storm waves with high lake productivity, planktonic algae and clay flocs are uniformly suspended and settled, forming organic-rich clay lamination and lithofacies A is deposited. In a relatively static and brackish water environment below the normal wave base (with local turbulence near the wave base) with high lake productivity, the fine silt particles brought by delta runoff and flood flow continue to move towward the center of the lake basin, forming a felsic lamination through uniform suspension and sedimentation, and a clay lamination is formed during the period of intermittent suspension and sedimentation, and lithofacies B is deposited. Below the normal wave base, the flood which carries silt-grade particles are transported to the outer front of delta along the underwater distributary channel, and enter the front delta in the form of stable turbidity current. As the flow velocity gradually decreases, it forms a coarse to fine silt lamination, clay lamination is formed during the period of intermittent suspension and sedimentation, and lithofacies C is deposited. Below the normal wave base, the early sediments of the delta front, under the action of paroxysmal turbidity currents, collapse into deeper water, forming lithofacies D and E. Between the normal wave base and storm wave base, lithofacies F is formed in saline water environment under a relatively dry climate.

Key words: terrestrial depression lake basin;fine-grained sediments;lithofacies;genetic model;shale oil; Songliao basin;Qingshankou Formation

0 引言

隨著常規油氣藏發現的難度越來越大,尋找非常規油氣資源已成為國內外油氣勘探的重點方向[1]。美國頁巖層系油氣經過近60 a技術攻關和生產探索取得了認識、技術、管理和戰略全方面的重大創新,掀起了“頁巖革命”[2]。近10 a來,美國頁巖油產量平均增速超過 25%,2018 年美國頁巖油產量為 3.29×108 t,占原油總產量的59%,助推美國原油產量達歷史第2高峰[3]。目前,中國陸相頁巖油勘探尚處于起步階段,雖然已經在多個盆地早期的頁巖油勘探中獲得較好發現,但是相應的頁巖油富集區和富集段的選區選段評價標準尚未確定[1]。近幾年,中國加大對陸相源內石油地質研究、風險勘探、整體勘探、開發試驗和產能建設力度,取得了實質性重要發現和突破[4-5],實現了鄂爾多斯、準噶爾、松遼、渤海灣等盆地多個探區規模建產,展現出良好的發展前景[4,6]。

與國外頁巖油主要分布在海相富有機質致密碎屑巖和碳酸鹽巖中不同,中國頁巖油主要分布在湖相富有機質頁巖層系中[1]??傮w看,陸相沉積相變較快、非均質性較強、礦物成分多樣、孔隙結構和類型較復雜;同時,有機質成熟度偏低、流體黏度高,流動能力較差,殘留量大[7]。這使得頁巖油層系巖相復雜,頁巖油資源類型和資源系統多樣。

細粒沉積巖(fine-grained sedimentary rock),是指主要由顆粒粒級小于62.5 μm的細粒沉積物組成(體積分數大于50%)的沉積巖[8-10]。明確細粒沉積巖巖相特征,對于認識頁巖油儲層特征具有重要的理論意義和現實勘探意義[11];同時,巖相是“甜點”預測的有效途徑,其對揭示易改造的富有機質頁巖的發育特征和水平井設計具有重要意義[12-13]。近年來,我國許多學者開展了湖相細粒沉積巖的巖相劃分以及環境解釋,研究較多的頁巖油盆地主要有松遼盆地[14-16]、鄂爾多斯盆地[11,17-18]、渤海灣盆地[19-21]、準噶爾盆地[22-24]等。但由于盆地特征差異,基本上采用“逐盆逐建”的方式,所建立的巖相劃分方案具有地區性。

1 研究區地質概況

松遼盆地是中國大型中、新生代陸相沉積盆地,位于中國東北部,面積約為26×104km2。根據松遼盆地中生代構造演化,結合基底形態、蓋層發育及構造特征等,坳陷期地層按區域隆起和發育特征劃分成6個一級構造單元:北部傾沒區、中央坳陷區、東北隆起區、東南隆起區、西南隆起區和西部斜坡區。青山口組一段沉積時期湖泊范圍較大,主要發育淺湖、半深湖—深湖相沉積(圖1a),巖性主要為灰黑色-深灰色泥頁巖夾油頁巖,是松遼盆地優質烴源巖,青一段湖相頁巖的分布面積達8.7×104 km2,厚度為60~135 m(圖1b),深湖相頁巖有機質豐度可達3%~4%[25]。因此,本文在對松遼盆地研究的基礎上,以松遼盆地細粒沉積巖為例,建立一套適用于所有陸相坳陷湖盆細粒沉積巖巖相劃分方案,并明確其巖相特征及成因類型,對于巖相分布及“甜點”預測具有重要意義。

2 巖相劃分參數

陸相頁巖層系巖石組合類型復雜多樣,既有頁巖、泥巖,也有粉砂巖、碳酸鹽巖、混積巖和沉凝灰巖等[7]。因此,對其巖石類型進行分類和巖相劃分顯得相對復雜。目前,在巖相劃分過程中,考慮的參數主要包括巖性、礦物成分、有機質豐度、沉積構造與測井響應特征。

2.1 巖性

巖性是巖相劃分的基本參數。巖性最直觀地反映了巖石的特征,包括顏色、成分、結構和構造等,進一步決定了巖石的物理、化學性質。細粒沉積巖主要研究粒徑小于62.5 μm的沉積巖。在巖性劃分過程中,多采用傳統的三端元分類法,以泥巖、粉砂巖、碳酸鹽巖為3個單元,以體積分數50%為界,將細粒沉積巖巖性劃分為泥頁巖、粉砂巖、灰巖和混合巖4種類型[26-27],也有部分學者分別以25%、50%、75%為界,更細致地將巖性劃分為泥頁巖、砂質泥頁巖、灰質泥頁巖、粉砂巖、泥質粉砂巖、灰質粉砂巖、灰巖、泥質灰巖、砂質灰巖、混合巖等多種類型[28]。

2.2 礦物成分

礦物成分是巖相劃分中應用最多的參數。泥頁巖中主要的礦物成分有黏土礦物、石英、長石、方解石、白云石和黃鐵礦等。礦物組成不僅對頁巖的可壓裂性有作用,而且對頁巖中滯留烴含量也有重要影響。北美海相頁巖油氣成功開采經驗表明,石英及碳酸鹽等脆性礦物體積分數高的頁巖具有較好的可壓裂性,對中高成熟度頁巖油開采具有重要意義[1]。同時,中國陸相頁巖礦物組成對滯留烴含量與頁巖生烴潛力又具有重要的控制作用??傮w看,w(S1+S2)值與黏土礦物及碳酸鹽體積分數呈負相關。高黏土礦物體積分數對滯留烴與生烴潛量減少量影響更大[1]。

由于陸相湖盆距離物源較近且水體深度較小,受環境、氣候因素影響更加顯著,相對于海相沉積,陸相細粒沉積發育規模更小,非均質性更強[29]。根據這一特征,陸相湖盆通常以能夠代表其物質來源的陸源碎屑礦物、黏土礦物和盆內自生的碳酸鹽礦物作為3個端元共同進行巖石類型的劃分。最具代表性的有以下4種方案:1)沿用了海相頁巖劃分方案,以黏土礦物、石英和碳酸鹽礦物為端元,以體積分數50%為界限,將細粒沉積巖分為泥質、硅質、鈣質和混合質,其中,混合質又可以進一步細分為泥質-硅質、硅質-泥質、泥質-鈣質、鈣質-泥質、硅質-鈣質和鈣質-硅質[30-31](圖2a);2)以粉砂、黏土礦物和碳酸鹽礦物為端元,以各自體積分數50%為界限進行細粒沉積巖命名的方案,將細粒沉積巖分為粉砂巖、黏土巖、碳酸鹽巖和混合型細粒沉積巖[10](圖2b);3)以長英質礦物、黏土礦物和碳酸鹽礦物作為端元,以體積分數50%為界限,將細粒沉積巖劃分為長英質巖、黏土巖、碳酸鹽巖、混合巖,其中混合巖又可以進一步細分為長英質混合巖、黏土質混合巖和灰質混合巖等[24,32-33](圖2c);4)以長英質礦物、黏土礦物和碳酸鹽礦物為端元,以體積分數25%、50%和75%為界限,將細粒沉積巖劃分為長英質頁巖(Ⅰ)、含黏土長英質頁巖(Ⅰ1)、含灰/云長英質頁巖(Ⅰ2)、黏土質頁巖(Ⅱ)、含長英黏土質頁巖(Ⅱ1)、含灰/云黏土質頁巖(Ⅱ2)、灰/云質頁巖(Ⅲ)、含長英灰/云質頁巖(Ⅲ1)、含黏土灰/云質頁巖(Ⅲ2)、混合質頁巖(Ⅳ)10種類型 [23](圖2d)。

2.3 有機質豐度

在礦物體積分數的基礎上,大部分學者考慮到有機質的豐度及賦存狀態,加入了TOC(總有機碳)質量分數參數。w(TOC) 是決定烴源巖質量的重要指標,而烴源巖質量與規模決定了烴源巖的生烴能力及源內烴滯留的數量[34-36],相關評價對于明確頁巖油資源潛力、可流動性及富集區和富集段評價都具有重要意義[1]。

常規油氣勘探基本上把w(TOC)>1.0%定為優質烴源巖的下限[37-39]。非常規油氣多分布在源灶區內,缺少油氣大規模運移和富集過程,所以對烴源巖質量和規模的要求與常規油藏相比有較大不同。源內油氣藏以頁巖油氣為主,是油氣在源內的滯留,缺少大規模運移和富集過程,對烴源巖質量和規模要求更高。中高成熟度頁巖油w(TOC)門限值為 2%,最佳區間為 3%~5%,中低成熟度頁巖w(TOC)門限值為 6%,且越高越好[1]。通過模擬實驗與理論計算發現,在生烴增壓作用下,烴源巖排出烴占總生烴量的比例與有機質豐度呈正相關[40],高w(TOC)值烴源巖盡管滯留烴占比相對較低,但由于總生烴量大,因此其滯留烴數量遠遠高于低w(TOC)值烴源巖[1]。

根據不同的w(TOC)值將頁巖有機質豐度分為若干等級,常用的等級刻度有0.5%、1.0%、2.0%、4.0%和8.0%等,不同盆地之間w(TOC)差別較大,采用的分類標準不一致。如渤海灣盆地、準噶爾盆地、柴達木盆地泥頁巖w(TOC)值較高,通常以2%和4%為界,將細粒沉積巖劃分為富有機質、中有機質和貧有機質3種[19,41-42],少部分學者采用了二分方案,以2%或3%為界將有機質豐度分為高和低2個等級[21,42]。松遼盆地和鄂爾多斯盆地泥頁巖有機質質量分數較低,大多分布在0.5%~8.0%范圍內[14-15],通常以1%和2%為界,將細粒沉積巖劃分出高、中、低3種類型[16,43-44],也有少量學者采用2%和4%的界限分成高、中、低3個等級或者以2%為界進行二分[15,17]。

2.4 沉積構造

有些學者在巖相劃分方案中加入了沉積構造參數。沉積構造是研究細粒沉積巖的沉積環境及成因機制的關鍵參數,也是影響頁巖油開發工程部署的重要指標。通常認為,沉積構造具有塊狀、紋層狀和層狀3種典型類型[40,45-46]。其中:塊狀構造在垂向上沒有顏色、粒度、礦物成分的明顯變化,巖石整體表現為均質;層狀構造單層厚度大于1 cm;紋層狀構造單紋層厚度小于1 cm。有的學者進一步根據紋層的連續性(連續或者不連續)、形態(平直、波狀或者曲線狀)和幾何關系(平行或者不平行),將沉積構造進行了更詳細的劃分[30](圖3)。也有少量學者采用其他的沉積構造型式,如薄層頁狀、透鏡狀等[15,20]。

2.5 測井響應參數

不同巖相類型具有不同的測井響應特征,部分學者在研究巖相劃分時采用了測井響應參數。如李國欣等[47]在研究鄂爾多斯細粒沉積巖巖相時,在將頁巖劃分為硅質頁巖、黏土質頁巖和凝灰質頁巖這3類頁巖的基礎上,考慮自然伽馬參數,進一步將頁巖細分為6類頁巖巖相:特高自然伽馬硅質頁巖、高自然伽馬硅質頁巖、高自然伽馬黏土質頁巖、高自然伽馬凝灰質頁巖、中等自然伽馬硅質頁巖和中等自然伽馬黏土質頁巖。除此之外,付金華等[48-49]在巖相的劃分中也考慮了測井響應特征。

目前在細粒沉積巖巖相的研究過程中,基本上應用了以上5個參數,只不過根據地區差異性,不同學者選擇了其中2個或3個參數來進行巖相定名,且所選參數的名稱或劃分界限存在差異。3 巖相劃分方案及巖相特征

3.1 本文巖相劃分方案

巖性是區分巖石類型的基本參數,決定了巖石的物理、化學性質;礦物成分與w(TOC)在頁巖油評價中起到至關重要的作用,是富頁巖油層系巖相劃分必不可少的參數,決定了巖石的源、儲及工程品質特征;而沉積構造在研究細粒沉積巖成因和頁巖油開發中也起到重要的作用。因此,本文采用“巖性-礦物成分-TOC -沉積構造”四參數來進行巖相劃分。

針對松遼盆地青山口組沉積特征,考慮到巖相劃分方案的簡便性、適用性和可操作性,巖性采用傳統的三端元分類法,以粉砂巖、泥巖、碳酸鹽巖為3個端元,以優勢相為界,將巖性劃分粉砂巖、泥頁巖、灰(云)巖3種類型(圖4a)。礦物成分以長英質礦物、黏土礦物、碳酸鹽礦物為3個端元,以優勢相為界,將礦物成分劃分為長英質、黏土質、灰(云)質3種類型(圖4b)。w(TOC) 采用1%和2%兩個界限,將w(TOC)劃分為低、中和高3種級別(圖4c)。沉積構造首先分成層狀與紋層狀2種類型,其中,層狀構造單層厚度>1? cm,紋層狀構造單紋層厚度<在此劃分方案的基礎上,將松遼盆地青山口組細粒沉積物劃分為6種巖相類型:高有機質泥紋層黏土質頁巖(A)、中高有機質含細粉砂紋層長英質頁巖(B)、中低有機質含粗粉砂紋層長英質頁巖(C)、低有機質層狀粉砂巖(D)、低有機質層狀介形蟲灰巖(E)和低有機質層狀白云巖(F)(表1)。

3.2 巖相類型及特征

A高有機質泥紋層黏土質頁巖 顏色灰黑色、黑色,主要為泥質紋層,幾乎不含粉砂質紋層,紋層平直且連續,紋層厚度<1 mm,發育連續水平層理(圖5a)。鏡下薄片觀察紋層數量多,主要為貧富有機質泥質紋層。受到凹陷中心青山口組烴源巖高熱演化程度影響,富有機質泥質紋層由于有機質發生排烴作用導致顏色差別不明顯(圖5b)。黏土礦物體積分數相對最高,有機碳質量分數整體≥2%,主要沉積于深湖環境。

B中高有機質含細粉砂紋層長英質頁巖 顏色主要為灰黑-深灰色,以泥質紋層為主,含一定量細粉砂紋層(10%~50%),紋層呈平直、透鏡狀,連續-斷續狀分布,紋層厚度多<1 mm(圖5c),發育斷續-連續水平層理、透鏡狀層理。鏡下紋層非常發育,泥質紋層與細粉砂質紋層界限清晰、近于平直(圖5d),長英質礦物體積分數較高,有機碳質量分數整體≥1%,主要形成于半深湖環境。

C中低有機質含粗粉砂紋層長英質頁巖 在青山口組一段和二段均有發育,顏色主要為灰—深灰色,以泥質紋層為主,含一定量粗粉砂紋層(10%~50%),紋層呈波狀、透鏡狀,連續-斷續狀分布,紋層厚度多>1 mm,發育正遞變層理、砂球構造和泄水構造等(圖5e)。鏡下紋層較發育,泥質紋層與細粉砂質紋層界限清晰且凹凸不平,粗粉砂紋層厚度較大,底部可見明顯沖刷面(圖5f)。長英質礦物體積分數較高,頁巖有機碳質量分數整體<2%,主要形成于前三角洲環境。

D低有機質層狀粉砂巖 主要以薄層形式夾于暗色頁巖中,單層厚度多<20 cm,累計厚度占比較小。顏色主要為灰、灰白色,發育正遞變層理、波紋層理、砂球構造和泄水構造等,底部可見明顯的沖刷面和重荷模構造(圖6a)。鏡下觀察礦物成分主要為長英質礦物,分選較差,次棱角狀,鈣質膠結(圖6b)。長英質礦物體積分數較高,有機碳質量分數整體<1%,主要形成于前三角洲沉積環境。

E低有機質層狀介形蟲灰巖 主要以薄層形式夾于暗色頁巖中,單層厚度多<20 cm,累計厚度占比較小。顏色主要為灰色、深灰色,主要發育塊狀層理,底部可見明顯的沖刷面和重荷模構造(圖6c),滴酸劇烈起泡。鏡下觀察成分以介形蟲為主,介形蟲呈較完整或碎屑形態,介形蟲顆粒間被泥質填隙物充填(圖6d)。碳酸鹽礦物體積分數較高,有機碳質量分數整體<1%,主要形成于前三角洲環境。

F低有機質層狀白云巖 主要以薄層形式夾于暗色頁巖中,單層厚度多<20 cm,累計厚度占比較小。顏色為灰白色、灰色,頂底與頁巖為突變接觸(圖6e),滴酸緩慢起泡。鏡下觀察成分以泥晶白云石為主(圖6f)。碳酸鹽礦物體積分數較高,有機碳質量分數整體<1%,主要形成于半深湖環境。

4 巖相成因與沉積模式

很多人認為細粒物質的沉積和固結是個簡單的過程,然而,通過實驗研究發現這是個十分復雜的問題,其結果取決于許多變量[50]。目前,對巖相的成因機制研究處于起步階段,主要從水動力條件和有機質富集兩方面進行研究。

4.1 水動力學條件

細粒沉積物水動力學,目前主要從水槽實驗模擬正演和粒度分析反演兩方面開展研究。本次主要通過粒度分析開展頁巖、粉砂巖的水動力條件研究,主要探討泥級黏土質紋層、細粉砂長英質紋層、粗粉砂長英質紋層和層狀粉砂巖的水動力成因機制。

泥級黏土質紋層是細粒沉積巖中最常見的部分,與滿足斯托克定律的非黏性顆粒不同,單黏土顆粒在流體中長時間處于懸浮狀態不易發生沉積,需要依靠絮凝作用發生沉降[51]。當黏土以絮凝體形式發生沉積時,主要存在2種方式:其一為懸浮沉降模式,此類黏土沉積不經過后期搬運、改造,只與自身粒徑、形態及水動力強度有關[52]。該過程主要發生在湖泊中心靜水區,與有機質共同沉積,形成貧富有機質差異的黏土質頁巖,且主要形成貧富有機質黏土質紋層層耦(圖5b)。其二為“平流運輸”模式,黏土物質可以形成絮狀波紋向下游移動,內部存在低角度傾斜紋層,但沉積后被完全壓實,波紋內部傾斜薄層不可識別,最終形成平行的黏土質紋層[53-54]。

粉砂級長英質沉積物為典型的非黏性顆粒,沉積過程滿足斯托克定律,當粉砂級碎屑由陸源河流搬運進入湖盆時,受到重力、浮力、底床剪切引起的拖曳力和上舉力的共同作用,當水動力減弱,顆粒運動速度降低,長英質沉積物在近岸處發生機械分異并沉降形成粉砂巖等。而現代沉積觀測及古代沉積地層證實近岸沉積的粉砂級的長英質沉積物可以受到后續風暴流、底流等作用,發生剝蝕呈再懸浮狀態,并發生長距離運輸,沉降形成層狀、紋層狀粉砂質沉積物,能夠使沉積物發生長距離運輸的流體包括洪水成因異輕流、異重流、濁流的長距離搬運和風力驅動環流等。粒度分析表明,泥質紋層、細粉砂紋層、粗粉砂紋層及層狀粉砂巖形成的水動力條件具有差異。

泥質紋層中泥級顆粒約占90%,少量粉砂級顆粒(圖7a,b)。直方圖顯示,粉砂級顆粒粒度主要集中在6~7 φ之間,即粒徑為7.82~15.63 μm(圖7b)。概率累計曲線表明,除泥質顆粒外,少量的粉砂級顆粒也主要以懸浮為主(圖7c)。

細粉砂紋層中泥級顆粒約占30%,細粉砂顆粒約70%(圖7d,e)。直方圖顯示,細粉砂紋層粒度主要集中在5~6 φ之間,即粒徑為15.63~31.25 μm,約占65%,少量顆粒介于31.25~62.50 μm和3.90~15.63 μm之間(圖7e)。概率累計曲線表明,細粉砂顆粒主要以懸浮為主,其中遞變懸浮與均勻懸浮約各占50%,細截點約在5.5 φ(圖7f)。

粗粉砂紋層中泥級顆粒約占20%,粉砂級顆粒約占80%(圖7g,h)。直方圖顯示:粗粉砂紋層粒度主要集中在4~5 φ之間,即粒徑為31.25~62.50 μm,約占60%;而粒度5~6 φ,即粒徑為15.63~31.25 μm的顆粒約占20%,少量顆粒介于62.50~125.00和3.90~15.63 μm之間,說明其分選較差(圖7h)。概率累計曲線表明,粗粉砂顆粒主要以遞變懸浮為主,約占70%,其次為均勻懸浮,細截點約在4.5 φ(圖7i)。

粉砂巖中泥級顆粒約占15%(圖7j,k)。直方圖顯示:粉砂巖粒度主要集中在4~5 φ之間,即粒徑為31.25~62.50 μm的顆粒約占50%;而粒度3~4 φ,即62.50~125.00 μm的顆粒約占30%,少量顆粒介于3.90~31.25 μm之間,說明其分選中等—較差(圖7k)。概率累計曲線呈現三段式,跳躍組分約占30%,遞變懸浮約占50%,均勻懸浮約占20%,跳躍組分與懸浮組分細截點約在4φ(圖7l)。

從泥質紋層、細粉砂紋層、粗粉砂紋層到粉砂巖,粒度逐漸變粗,泥級顆粒體積分數逐漸減少,均勻懸浮組分逐漸減少,遞變懸浮組分逐漸變多,甚至出現跳躍組分,反映水動力條件逐漸變強。

4.2 有機質富集

除黏土和長英質碎屑顆粒以外,有機質也是細粒沉積巖的重要組成部分,有機質的富集條件也可以直接反映細粒沉積物的成因。

細粒沉積巖有機質的富集和保存主要受構造、氣候變化、沉積環境、古湖泊生產力、古水體鹽度和氧化還原程度等因素的影響。古氣候通過降雨量改變古湖盆的可容納空間,影響古湖泊中生物的發育、物源供給和水體性質,是控制細粒沉積有機質富集變化的重要因素[55-56];古生產力受氣候環境、地區光照率、湖盆地貌、營養鹽供給、水介質條件、藻類季節性勃發和自養型細菌等的影響;有機質分解與保存條件受水體分層、細菌生物、無機礦物、水介質條件、黏土礦物和沉積速率等的綜合影響。青山口組一段沉積時期松遼盆地處于快速沉降階段[57],為盆地可容納空間的增大提供了可能性,湖盆水體明顯加深,最大水深達100 m,為低能靜水半深湖—深湖沉積環境,沉積速率較低[58],為細粒沉積形成提供了場所。Rb/Sr、Mg/Sr值等古氣溫替代指標指示該時期主要為溫暖濕潤的氣候條件[59],局部存在干濕交替變化,其中,富有機質細粒沉積對應偏溫暖氣候階段,而貧有機質細粒沉積對應半濕潤半干旱氣候,表明溫暖濕潤的氣候條件有利于富有機質細粒沉積的發育。青一段細粒沉積有機質主要來源于層狀藻、結構藻等水生低等生物,為高湖泊生產力引起的“藻類勃發”的產物,有機質與藻類質量分數呈現較好的正相關性,陸源有機質輸入較少,局部含薄層火山凝灰巖、白云巖和介屑灰巖。較高的Sr/Ba值、伽馬蠟烷指數和V/Ni值指示青一段細粒沉積形成時期沉積水體為淡水—半咸水缺氧環境,較高的鹽度和強還原環境有利于有機質的保存(圖8)。

4.3 細粒沉積巖沉積模式

通過紋層形成的水動力條件、有機質富集機制及沉積環境分析,對松遼盆地青山口組6種細粒沉積巖巖相的成因進行分析,建立沉積模式。

高有機質泥紋層黏土質頁巖(A巖相)主要形成在風暴浪基面之下、深湖靜水環境、咸水、良好保存條件和高湖泊生產力背景中。浮游藻類體與黏土絮狀物懸浮搬運與沉降,形成貧富有機質黏土紋層,少量細粉砂級長英質顆粒分散懸浮沉降于其中(圖9)。

中高有機質含細粉砂紋層長英質頁巖(B巖相)主要形成在正常浪基面與風暴浪基面之間、半深湖較靜水環境、半咸水、良好的保存條件和高的湖泊生產力背景中。風暴流、底流將早期沉積物的長英質碎屑顆粒再次搬運至深水區,經遞變和均勻懸浮搬運形成長英質紋層,間歇期懸浮沉降泥級黏土質紋層,形成B巖相(圖9)。

中低有機質含粗粉砂紋層長英質頁巖(C巖相)主要形成在正常浪基面與風暴浪基面之間、前三角洲、水體局部動蕩、半咸水、相對差的保存條件和低的湖泊生產力背景中。在洪水的作用下,粉砂級顆粒以穩定性濁流的形式進入前三角洲,隨流速逐漸降低,分異形成粗粉砂紋層與細粉砂紋層,間歇期懸浮沉降泥級黏土質紋層,形成C巖相(圖9)。

低有機質層狀粉砂巖(D巖相)與低有機質層狀介形蟲灰巖(E巖相)主要形成在正常浪基面與風暴浪基面之間、前三角洲、水體局部動蕩、半咸水、相對差的保存條件和低的湖泊生產力背景中。三角洲前緣沉積物在一定觸發機制的作用下,再次滑塌以陣發性濁流的形式進入前三角洲,形成D或者E巖相(圖9)。

低有機質層狀白云巖(F巖相)主要形成在正常浪基面與風暴浪基面之間、半深湖較靜水環境、半咸水、良好的保存條件和高的湖泊生產力背景中。在相對干燥的氣候條件下的咸水環境中,形成F巖相,常與B巖相伴生(圖9)。

5 結論

1)通過巖性、礦物成分、有機質豐度與沉積構造4個參數,將松遼盆地青山口組劃分為6種巖相:高有機質泥紋層黏土質頁巖(A)、中高有機質含細粉砂紋層長英質頁巖(B)、中低有機質含粗粉砂紋層長英質頁巖(C)、低有機質層狀粉砂巖(D)、低有機質層狀介形蟲灰巖(E)和低有機質層狀白云巖(F)。

2)A巖相為灰黑色、黑色,主要發育貧富有機質泥質紋層,紋層平直且連續,厚度<1 mm,黏土礦物體積分數相對較高,w(TOC)≥2%;B巖相為灰黑-深灰色,含一定量細粉砂紋層(10%~50%),紋層呈平直、透鏡狀,連續-斷續狀分布,厚度多<1 mm,長英質礦物體積分數相對較高,w(TOC)≥1%;C巖相為灰—深灰色,含一定量粗粉砂紋層(10%~50%),紋層呈波狀、透鏡狀,連續-斷續狀分布,厚度多>1 mm,長英質礦物體積分數相對較高,w(TOC)<2%;D巖相為灰、灰白色,單層厚度多<20 cm,長英質礦物體積分數較高,w(TOC)<1%;E巖相為灰色、深灰色,單層厚度多<20 cm,碳酸鹽礦物體積分數較高,w(TOC)<1%;F巖相為灰白色、灰色,單層厚度多<20 cm,碳酸鹽礦物體積分數較高,w(TOC)<1%。

3)在高湖泊生產力的深湖、咸水環境,浮游藻類與黏土絮狀物均勻懸浮沉降,形成貧富有機質黏土質紋層,沉積A巖相。在較高湖泊生產力的半深湖、半咸水環境,三角洲徑流與洪流帶來的細粉砂顆粒經均勻懸浮沉降形成長英質紋層,間歇期懸浮沉降黏土質紋層,形成B巖相。在較低湖泊生產力的前三角洲、半咸水環境,洪水攜帶粉砂級顆粒,以穩定性濁流的形式進入前三角洲,隨流速逐漸降低,分異形成粗粉砂—細粉砂紋層,間歇期懸浮沉降泥級黏土質紋層,形成C巖相。在前三角洲區,三角洲前緣早期沉積物在陣發性濁流的作用下,再次滑塌,形成D和E巖相。在相對干燥的氣候背景下的半深湖咸水環境中,形成F巖相。

參考文獻(References):

[1]趙文智,張斌,王曉梅,等. 陸相源內與源外油氣成藏的烴源灶差異[J]. 石油勘探與開發,2021,48(3):464-475.

Zhao Wenzhi, Zhang Bin, Wang Xiaomei, et al. Differences in Source Kitchens for Lacustrine In-Source and Out-of-Source Hydrocarbon Accumulations[J]. Petroleum Exoloration and Development, 2021, 48(3): 464-475.

[2]丹尼爾 耶金. 能源重塑世界[M]. 朱玉犇,閻志敏譯. 北京:石油工業出版社,2012.

Daniel Yekin. Energy Reshapes the World [M]. Translate by Zhu Yuben, Yan Zhimin. Beijing: Petroleum Industry Press, 2012.

[3]U S Energy Information Administration. Annual Energy Outlook 2019 with Projections to 2050 [R]. Washington: U S Energy Information Administration, 2019.

[4]焦方正. 非常規油氣之“非常規”再認識[J]. 石油勘探與開發, 2019, 46(5): 803-810.

Jiao Fangzheng. Re-Recognition of “Unconventional” in Unconventional Oil and Gas[J]. Petroleum Exploration and Development, 2019, 46(5): 803-810.

[5]李鷺光,何海清,范土芝,等. 中國石油油氣勘探進展與上游業務發展戰略[J]. 中國石油勘探, 2020, 25(1): 1-10.

Li Luguang, He Haiqing, Fan Tuzhi, et al. Oil and Gas Exploration Progress and Upstream Development Strategy of CNPC[J]. China Petroleum Exploration, 2020, 25(1): 1-10.

[6]鄒才能,潘松圻,荊振華,等. 頁巖油氣革命及影響[J]. 石油學報, 2020, 41(1): 1-12.

Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale Oil and Gas Revolution and Its Impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12.

[7]趙文智,朱如凱,胡素云,等. 陸相富有機質頁巖與泥巖的成藏差異及其在頁巖油評價中的意義[J]. 石油勘探與開發,2020,47(6):1079-1089.

Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation Contribution Differences Between Lacustrine Organic-Rich Shales and Mudstones and Their Significance in Shale Oil Evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089.

[8]Stow D A V, Shanmugam G. Sequence of Structures in Fine-Grained Turbidites: Comparison of Recent Deep-Sea and Ancient Flysch Sediments[J]. Sedimentary Geology, 1980, 25(1/2): 23-42.

[9]Aplin A C, Macquaker J H S. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.

[10]姜在興,梁超,吳靖,等. 含油氣細粒沉積巖研究的幾個問題[J]. 石油學報,2013,34(6):1031-1039.

Jiang Zaixing, Liang Chao, Wu Jing, et al. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.

[11]耳闖,羅安湘,趙靖舟,等. 鄂爾多斯盆地華池地區三疊系延長組長7段富有機質頁巖巖相特征[J]. 地學前緣,2016,23(2):108-117.

Er Chuang, Luo Anxiang, Zhao Jingzhou, et al. Lithofacies Features of Organic-Rich Shale of the Triassic Yanchang Formation in Huachi Area[J]. Earth Science Frontiers, 2016, 23(2): 108-117.

[12]高崗,劉顯陽,王銀會,等.鄂爾多斯盆地隴東地區長7段頁巖油特征與資源潛力[J].地學前緣,2013,20(2):140-146.

Gao Gang, Liu Xianyang, Wang Yinhui, et al. Characteristics and Resource Potential of the Oil Shale of Chang 7 Layer in Longdong Area, Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 140-146.

[13]楊華,李士祥,劉顯陽.鄂爾多斯盆地致密油、頁巖油特征及資源潛力[J].石油學報,2013, 34(1):1-11.

Yang Hua, Li Shixiang, Liu Xianyang. Characteristics and Resource Potential of Tight Oil and Shale Oil in Ordos Basin[J]. Acta Petroleum Sinica, 2013, 34(1):1-11.

[14]柳波,孫嘉慧,張永清,等. 松遼盆地長嶺凹陷白堊系青山口組一段頁巖油儲集空間類型與富集模式[J]. 石油勘探與開發,2021,48(3):521-535.

Liu Bo, Sun Jiahui, Zhang Yongqing, et al. Reservoir Space and Enrichment Model of Shale Oil in the First Member of Cretaceous Qingshankou Formation in the Changling Sag, Southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535.

[15]王嵐,曾雯婷,夏曉敏,等. 松遼盆地齊家—古龍凹陷青山口組黑色頁巖巖相類型與沉積環境[J]. 天然氣地球科學,2019,30(8):1125-1133.

Wang Lan, Zeng Wenting, Xia Xiaomin, et al. Study on Lithofacies Types and Sedimentary Environment of Black Shale of Qingshankou Formation in Qijia-Gulong Depression, Songliao Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133.

[16]張輝,王志章,楊亮,等.松南上白堊統青山口組一段不同賦存狀態頁巖油定量評價[J].吉林大學學報(地球科學版),2022,52(2):315-327.

Zhang Hui, Wang Zhizhang, Yang Liang, et al. Quantitative Evaluation of Shale Oil in Different Occurrence States in First Member of Qingshankou Formation of Upper Cretaceous in South of Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 315-327.

[17]徐立富,鄧紀梅,杜佳,等.鄂爾多斯盆地東緣臨興地區海陸過渡相頁巖巖相類型和儲層差異[J].煤炭學報,2021,46(增刊2):862-876.

Xu Lifu,Deng Jimei,Du Jia,et al.Lithofacies Types and Reservoir Differences of Marine Continental Transitional Shale in Linxing Area, Eastern Margin of Ordos Basin[J]. Journal of China Coal Society, 2021, 46 ( Sup.2) : 862-876.

[18]王以城,張磊夫,邱振,等. 鄂爾多斯盆地東緣二疊系山32亞段海陸過渡相頁巖巖相類型與儲層發育特征[J]. 天然氣地球科學,2022,33(3):418-430.

Wang Yicheng,Zhang Leifu,Qiu Zhen,et al. Lithofacies Types and Reservoir Characteristics of Transitional Shales of the Permian Shan32Sub-Member,Eastern Ordos Basin[J]. Natural Gas Geoscience,2022,33(3):418-430.

[19]張順,陳世悅,鄢繼華,等. 東營凹陷西部沙三下亞段—沙四上亞段泥頁巖巖相及儲層特征[J]. 天然氣地球科學,2015,26(2):320-332.

Zhang Shun, Chen Shiyue, Yan Jihua, et al. Characteristics of Shale Lithofacies and Reservoir Space in the 3rdand 4thMembers of Shahejie Formation, the West of Dongying Sag[J]. Natural Gas Geoscience, 2015,26(2): 320-332.

[20]蒲秀剛,馬超,郭彬程,等. 渤海灣盆地歧口凹陷歧北次凹沙三上亞段頁巖巖相特征及含油性差異[J].東北石油大學學報,2023,47(2):55-69.

Pu Xiugang, Ma Chao, Guo Bincheng, et al. Shale Lithofacies Characteristics and Shale Oil Bearing Differences in the Es3sof Qibei Subsag, Qikou Sag, Bohai Bay Basin[J]. Journal of Northeast Petroleum University, 2023, 47(2): 55-69.

[21]劉惠民,于炳松,謝忠懷,等. 陸相湖盆富有機質頁巖微相特征及對頁巖油富集的指示意義: 以渤海灣盆地濟陽坳陷為例[J]. 石油學報,2018,39(12):1328-1343.

Liu Huimin, Yu Bingsong, Xie Zhonghuai, et al. Characteristics and Implications of Micro-Lithofacies in Lacustrine-Basin Organic-Rich Shale: A Case Study of Jiyang Depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1328-1343.

[22]王圣柱. 博格達山山前帶蘆草溝組不同巖相儲集特征及含油性[J].新疆石油地質,2020,41(4):402-413.

Wang Shengzhu. Reservoir Characteristics and Oil-Bearing Properties of Different Lithofacies of Lucaogou Formation in the Piedmont Belt of Bogda Mountain[J]. Xinjiang Petroleum Geology,2020, 41(4):402-413.

[23]李兆豐,唐相路,黃立良,等.準噶爾盆地瑪湖凹陷風城組頁巖巖相發育特征[J].能源與環保,2021,43(4):108-114.

Li Zhaofeng,Tang Xianglu,Huang Liliang,et al.Lithofacies Development Characteristics of Fengcheng Formation Shale in Mahu Sag,Junggar Basin[J]. China Energy and Environmental Protection, 2021, 43(4):108-114.

[24]張益粼,王貴文,宋連騰,等.頁巖巖相測井表征方法:以準噶爾盆地瑪湖凹陷風城組為例[J].地球物理學進展,2023,38(1):393-408.

Zhang Yilin,Wang Guiwen,Song Lianteng,et al.Logging Identification Method of Shale Lithofacies: A Study of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Progress in Geophysics, 2023, 38(1): 393-408.

[25]Feng Z Q, Jia C Z, Xie X N, et al. Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin,Northeast China[J]. Basin Research, 2010, 22: 79-95.

[26]吳靖,姜在興,梁超.東營凹陷沙河街組四段上亞段細粒沉積巖巖相特征及與沉積環境的關系[J].石油學報,2017,38(10):1110-1122.

Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies Characteristics of Fine-Grained Sedimentary Rocks in the Upper Sub-Member of Member 4 of Shahejie Formation, Dongying Sag and Their Relationship with Sedimentary Environment[J]. Acta Petroleum Sinica, 2017, 38(10): 1110-1122.

[27]彭思鐘,劉德勛,張磊夫,等. 鄂爾多斯盆地東緣大寧—吉縣地區山西組頁巖巖相與沉積相特征[J]. 沉積學報,2022,40(1):47-59.

Peng Sizhong, Liu Dexun, Zhang Leifu, et al. Shale Lithofacies and Sedimentary Facies of the Permian Shanxi Formation, Daning-Jixian Area, Eastern Margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 47-59.

[28]寧萬興,王學軍,郝雪峰,等. 東營凹陷細粒沉積巖巖相組合特征[J]. 西南石油大學學報(自然科學版),2020,42(4): 55-65.

Ning Wanxing, Wang Xuejun, Hao Xuefeng, et al. Fine-Grained Sedimentary Rock Lithofacies Assemblage Characteristics in Dongying Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(4): 55-65.

[29]姜在興,孔祥鑫,楊葉芃,等. 陸相碳酸鹽質細粒沉積巖及油氣甜點多源成因[J]. 石油勘探與開發,2021,48(1):26-37.

Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi-Source Genesis of Continental Carbonate-Rich Fine-Grained Sedimentary Rocks and Hydrocarbon Sweet Spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37.

[30]Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.

[31]李一凡,魏小潔,樊太亮. 海相泥頁巖沉積過程研究進展[J]. 沉積學報,2021,39(1):73-87.

Li Yifan,Wei Xiaojie, Fan Tailiang. A Review on Sedimentary Processes of Marine Mudstones and Shales[J]. Acta Sedimentologica Sinica, 2021, 39(1):73-87.

[32]單玄龍,邢健,蘇思遠,等.川南長寧地區下古生界五峰組—龍馬溪組一段頁巖巖相與含氣性特征[J].吉林大學學報(地球科學版),2023,53(5):1323-1337.

Shan Xuanlong, Xing Jian, Su Siyuan, et al. Shale Lithofacies and Gas-Bearing Characteristics of the Lower Paleozoic Wufeng Formation-Member 1 of Longmaxi Formation in Changning Area, Southern Sichuan[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(5):1323-1337.

[33]李書琴,印森林,高陽,等. 準噶爾盆地吉木薩爾凹陷蘆草溝組混合細粒巖沉積微相[J]. 天然氣地球科學,2020,31(2):235-249.

Li Shuqin, Yin Senlin, Gao Yang, et al. Study on Sedimentary Microfacies of Mixed Fine-Grained Rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 235-249.

[34]趙文智,王兆云,張水昌,等. 有機質“接力成氣”模式的提出及其在勘探中的意義[J]. 石油勘探與開發, 2005, 32(2): 1-7.

Zhao Wenzhi, Wang Zhaoyun, Zhang Shuichang, et al. Successive Generation of Natural Gas from Organic Materials and Its Significance in Future Exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7.

[35]趙文智,王兆云,王紅軍,等. 再論有機質“接力成氣”的內涵與意義[J]. 石油勘探與開發,2011,38(2):129-135.

Zhao Wenzhi, Wang Zhaoyun, Wang Hongjun, et al. Further Discussion on the Connotation and Significance of the Natural Gas Relaying Generation Model from Organic Material[J]. Petroleum Exploration and Development, 2011, 38(2): 129-135.

[36]Jarvie D M, Hill R J, Tim T E, et al. Unconventional Shale Gas Systems: The Mississippian Barnett Shale of North Central Texas as One Model for Thermogenic Shale Gas Assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.

[37]黃第藩,李晉超,周翥虹,等. 陸相有機質演化與成烴機理[M]. 北京:石油工業出版社,1984.

Huang Difan, Li Jinchao, Zhou Zhuhong, et al. Evolution and Hydrocarbon Generation Mechanism of Nonmarine Organic Matters[M]. Beijing: Petroleum Industry Press, 1984.

[38]Peters K E. Guideline of Evaluating Petroleum Source Rock Using Programmed Pyrolysis[J]. AAPG Bulletin, 1986, 70(3): 318-329.

[39]Katz B. Petroleum Source Rocks [M]. Berlin, Heidelberg: Springer-Verlag, 1995.

[40]Guo Xiaowen, He Sheng, Liu Keyu, et al. Quantitative Estimation of Overpressure Caused by Oil Generation in Petroliferous Basins[J]. Organic Geochemistry, 2011, 42(11): 1343-1350.

[41]陳世悅,張順,王永詩,等. 渤海灣盆地東營凹陷古近系細粒沉積巖巖相類型及儲集層特征[J]. 石油勘探與開發,2016,43(2):198-208.

Chen Shiyue, Zhang Shun,Wang Yongshi, et al. Lithofacies Types and Reservoirs of Paleogene Fine-Grained Sedimentary Rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208.

[42]彭麗,陸永潮,彭鵬,等. 渤海灣盆地渤南洼陷沙三下亞段泥頁巖非均質性特征及演化模式:以羅69井為例[J]. 石油與天然氣地質,2017,38(2):219-229.

Peng Li, Lu Yongchao, Peng Peng, et al. Heterogeneity and Evolution Model of the Lower Shahejie Member 3 Mudshale in the Bonan Subsag, Bohai Bay Basin: An Example from Well Luo 69[J]. Oil & Gas Geology, 2017, 38(2): 219-229.

[43]柳波,石佳欣,付曉飛,等. 陸相泥頁巖層系巖相特征與頁巖油富集條件:以松遼盆地古龍凹陷白堊系青山口組一段富有機質泥頁巖為例[J]. 石油勘探與開發,2018,45(5):828-838.

Liu Bo, Shi Jiaxin, Fu Xiaofei, et al. Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine-Grained Sedimentary System: A Case Study of Organic-Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838.

[44]金成志,董萬百,白云風,等. 松遼盆地古龍頁巖油巖相特征與成因[J]. 大慶石油地質與開發,2020,39(3):35-44.

Jin Chengzhi, Dong Wanbai, Bai Yunfeng, et al. Lithofacies Characteristics and Genesis Analysis of Gulong Shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 35-44.

[45]劉姝君,操應長,梁超. 渤海灣盆地東營凹陷古近系細粒沉積巖特征及沉積環境[J]. 古地理學報,2019,21(3):479-489.

Liu Shujun, Cao Yingchang, Liang Chao. Lithologic Characteristics and Sedimentary Environment of Fine-Grained Sedimentary Rocks of the Paleogene in Dongying Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2019, 21(3): 479-489.

[46]鄧遠,陳世悅,蒲秀剛,等. 渤海灣盆地滄東凹陷孔店組二段細粒沉積巖形成機理與環境演化[J]. 石油與天然氣地質,2020,41(4):811-823,890.

Deng Yuan, Chen Shiyue, Pu Xiugang, et al. Formation Mechanism and Environmental Evolution of Fine-Grained Sedimentary Rocks from the Second Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(4): 811-823, 890.

[47]李國欣,劉國強,侯雨庭,等. 陸相頁巖油有利巖相優選與壓裂參數優化方法[J].石油學報,2021,42(11):1405-1416.

Li Guoxin, Liu Guoqiang, Hou Yuting, et al. Optimization Method of Favorable Lithofacies and Fracturing Parameter for Continental Shale Oil[J]. Acta Petrolel Sinica, 2021, 42(11):1405-1416.

[48]付金華, 李士祥, 牛小兵, 等. 鄂爾多斯盆地三疊系長7 段頁巖油地質特征與勘探實踐[J].石油勘探與開發, 2020, 47(5): 870-883.

Fu Jinhua, Li Shixiang, Niu Xiaobing, et al. Geological Characteristics and Exploration of Shale Oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 870-883.

[49]趙賢正,周立宏,蒲秀剛,等. 斷陷湖盆湖相頁巖油形成有利條件及富集特征:以渤海灣盆地滄東凹陷孔店組二段為例[J]. 石油學報,2019,40(9):1013-1029.

Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Favorable Formation Conditions and Enrichment Characteristics of Lacustrine Facies Shale Oil in Faulted Lake Basin: A Case Study of Member 2 of Kongdian Formation in Cangdong Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1013-1029.

[50]朱如凱,李夢瑩,楊靜儒,等. 細粒沉積學研究進展與發展方向[J]. 石油與天然氣地質,2022,43(2):251-264.

Zhu Rukai, Li Mengying, Yang Jingru, et al. Advances and Trends of Fine-Grained Sedimentology[J]. Oil & Gas Geology,2022,43(2):251-264.

[51]Curran K J, Hill P S, Milligan T G. Fine-Grained Suspended Sediment Dynamics in the Eel River Flood Plume[J]. Continental Shelf Research, 2002, 22: 2537-2550.

[52]Kranck K, Smith P C, Milligan T G. Grain-Size Characteristics of Fine-Grained Unflocculated Sediments I: ‘One-Round Distributions[J]. Sedimentology, 1996, 43(3): 589-594.

[53]Schieber, Juergen, Southard, et al. Accretion of Mudstone Beds from Migrating Floccule Ripples[J]. Science, 2007,? 318:1760-1763.

[54]Schieber J, Southard J B. Bedload Transport of Mud by Floccule Ripples-Direct Observation of Ripple Migration Processes and Their Implication[J]. Geology, 2009, 37(6):483-486.

[55]劉招君,孟慶濤,賈建亮. 油頁巖成礦作用研究中的關鍵方法和技術[J]. 古地理學報,2019,21(1):127-142.

Liu Zhaojun, Meng Qingtao, Jia Jianliang. Key Methods and Technologies in the Study of Oil Shale Mineralization[J]. Journal of Palaeogeography, 2019, 21(1): 127-142.

[56]Meng Q T, Bruch A A, Sun G, et al. Quantitative Reconstruction of Middle and Late Eocene Paleoclimate Based on Palynological Records from the Huadian Basin, Northeastern China: Evidence for Monsoonal Influence on Oil Shale Formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 510: 63-77.

[57]鐘其權,馬力,石寶衡. 關于松遼盆地構造發育特征的探討[J]. 石油勘探與開發,1978,5(2):1-10.

Zhong Qiquan, Ma Li, Shi Baoheng. Discussion on the Characteristics of Structural Development in the Songliao Basin[J]. Petroleum Exploration and Development, 1978,5(2): 1-10.

[58]徐進軍.松遼盆地北部上白堊統油頁巖有機質富集機制的高精度刻畫[D].長春:吉林大學,2015.

Xu Jinjun. High Precision Characterization of Organic Matter Enrichment Mechanism of the Upper Cretaceous Oil Shale in Northern Songliao Basin [D]. Changchun: Jilin University, 2015.

[59]賈建亮.基于地球化學-地球物理的松遼盆地上白堊統油頁巖識別與資源評價[D].長春:吉林大學,2012:85-110.

Jia Jianliang. Research on the Recognition and Resource Evaluation of the Upper Cretaceous Oil Shale Based on Geochemistry-Geophysics Technique in the Songliao Basin, China [D]. Changchun: Jilin University, 2012:85-110.

猜你喜歡
松遼盆地巖相
松遼盆地泰康地區四方臺組鈾成礦條件分析
渤中34-9油田古近系火山巖巖相特征與分布預測
相關矩陣和熵值算法在松遼盆地元素錄井巖性識別中的應用
松遼盆地南部油頁巖微量元素特征及其成礦期古環境恢復
多離子復合摻雜對水泥熟料性能和巖相結構的影響
麥蓋提斜坡東部構造帶奧陶系巖相、成巖作用帶與儲層成因
巖相精細劃分方法在頁巖油氣研究中的應用——以澳大利亞Eromanga盆地Toolebuc組頁巖為例
松遼盆地南部海坨子油田特低滲透儲層裂縫識別及預測模型
塔里木盆地三疊紀巖相古地理特征
松遼盆地南部梨樹斷陷下白堊統營城組物源分析
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合