?

遼寧本溪地區新太古代晚期鉀質花崗巖的發現及其地質意義

2024-02-27 07:27尹志剛李萌萌吳子杰陳軍典姜然張凱強姜琦郭浩

尹志剛 李萌萌 吳子杰 陳軍典 姜然 張凱強 姜琦 郭浩

摘要:遼寧本溪地區位于華北克拉通東部陸塊東北部,區內廣泛發育新太古代深成侵入巖和變質表殼巖,尚無鉀質花崗巖的報道。鉀質花崗巖的形成過程是早期陸殼發育成熟和穩定的重要標志,本次鉀質花崗巖的發現對系統的研究華北克拉通早期陸殼的形成與演化具有重要的價值。本文對本溪地區馬家溝的鉀質花崗巖進行了巖石學、成巖年代學、巖石地球化學的研究,探討了巖石成因和形成的構造背景。馬家溝巖體為片麻狀中細粒黑云母二長花崗巖。鋯石U-Pb測年數據顯示,巖石207Pb/206 Pb加權平均年齡為(2 490±21)Ma,形成于新太古代晚期。該巖體屬弱過鋁質、高鉀鈣堿性系列鉀質巖石;主要富集高場強元素La、Zr、Th及大離子親石元素K、Nd等元素,虧損P元素、高場強元素Nb和大離子親石元素Sr、Ti等;REE曲線為右傾型,負Eu異常,屬于S型花崗巖。研究區鉀質花崗巖巖漿主要來源于地殼,是變質泥巖部分熔融的產物,形成于活動大陸邊緣碰撞造山后的伸展環境,代表華北太古宙克拉通固結基底形成之前的最后一次巖漿活動,標志著在新太古代晚期本溪地區微陸塊已拼貼完成,并與其他地區一起構成穩定的華北太古宙克拉通。

關鍵詞:新太古代晚期;巖石地球化學;鋯石U-Pb年代學;鉀質花崗巖;本溪地區

doi:10.13278/j.cnki.jjuese.20220150 中圖分類號:P588.12;P597 文獻標志碼:A

收稿日期:2022-05-18

作者簡介:尹志剛(1962—),男,教授,博士,主要從事區域地質礦產資源方面的研究,E-mail:yzg63@163.com

基金項目:中國地質調查局項目(1212011120734 );遼寧工程技術大學學科創新團隊資助項目(LNTU20TD-14)

Supported by the Project of China Geological Survey (1212011120734 ) and the Project Supported by Discipline Innovation Team of Liaoning Technical University (LNTU20TD-14)

The Discovery and Geological Implications of Late Neoarchean

Kaligranites in Benxi Area, Liaoning ProvinceYin Zhigang1,Li Mengmeng1,Wu Zijie2, 3,Chen Jundian4,Jiang Ran1,

Zhang Kaiqiang1,Jiang Qi1,Guo Hao1

1. College of Mining Engineering,Liaoning Technical University,Fuxin 123000, Liaoning,China

2. Liaoning Provincial Institute of Geological Exploration Co., Ltd., Dalian 116100, Liaoning,China

3. School of Geosciences, China University of Petroleum(EastChina), Qingdao 266580, Shandong,China

4. Geophysical Measuring Exploration Institute of Liaoning Province,Shenyang 110031,China

Abstract: The Benxi area of Liaoning Province is located in the northeastern part of the eastern North China craton, where Neoarchean plutonic intrusive rocks and metamorphic supracrustal rocks are widely developed, but no kaligranites have been reported. The formation process of kaligranites is an important symbol of the maturation and stability of the early continental crust. The discovery of kaligranites is significant for the systematic study of the formation and evolution of the early continental crust in the North China craton. In this paper, the petrology, diagenetic age, and petrogeochemistry of kaligranites in Majiagou, Benxi area are studied, and the petrogenesis and tectonic setting of formation are discussed. Majiagou pluton is a gneissic medium-fine-grained biotite monzogranite. The? zircon U-Pb dating data show that the207 Pb/206 Pb weighted average age is (2 490±21) Ma, suggesting the kaligranites formed in the Late Neoarchean. The granite is weakly peraluminous and high potassium calc alkaline kaligranite. The high field strength elements La, Zr, Th and large ion lithophile elements K, Nd are enriched, while high field elements P, strength elements Nb and large ion lithophile elements Sr, Ti are depleted. The REE partition curve is rightward with negative Eu anomalies, indicating S-type granite. The magma originated from the crust and the product of partial melting of metamorphic mudstone, which formed in an extensional environment after collisional orogenesis at active continental margins. It represents the last magmatic activity before the formation of the consolidated basement of the Archean craton in North China, and marks the completion of the collage of micro-blocks in Benxi area in the Late Neoarchean, and together with other regions, forming a stable North China Archean craton.

Key words: Late Neoarchean; rock geochemistry; zircon U-Pb chronology; kaligranite; Benxi area

0 引言

華北克拉通是迄今為止世界上發現的最古老的克拉通之一,也是中國已知的最大古陸塊,擁有超過3.8 Ga地質演化歷史[1-2]。與現今世界上已知的其他大多數廣泛發育(約2.7 Ga)的克拉通有所不同,華北克拉通不僅保留了新太古代早期巖漿活動的原始記錄,而且其獨特之處在于也存在新太古代晚期強烈的構造巖漿活動[3-4]。約2.5 Ga華北克拉通巖漿是以高溫富含鈉元素的TTG巖系為主,并伴有大量低溫富鉀花崗質巖類,包括二長花崗巖類以及鉀質花崗巖。新太古代晚期大陸地殼性質的轉變是目前學者們關注的前沿課題。部分學者提出,新太古代晚期大量花崗巖類巖漿的侵位是導致大陸地殼性質轉變的關鍵原因[5-6]。與新太古代早期以TTG片麻巖為主不同,新太古代晚期花崗巖類巖漿作用表現出明顯的成分多樣化特點,尤其是產出規模較大的富鉀花崗巖類巖石[6-7]。這些富鉀花崗巖類巖石為我們深入探討新太古代晚期大陸地殼的地質構造和演化過程提供了重要依據[8]。

鉀質花崗巖既是陸殼巖漿再循環的直接結果,也是華北太古宙克拉通巖漿循環終止的證據,對科學研究地球早期殼幔演化的形成歷史和地殼構造的運動規律都具有十分重要的理論研究價值。從目前國內獲得的有關資料及研究來看,分布在不同地點的鉀質花崗巖,它們各自的地球礦物組成、構造環境類型以及地球化學特征等方面均有非常明顯的成因變化。一般認為,盡管它們可能屬于陸殼部分熔融過程的產物,但實際上它們包含的巖石類型十分多樣,既有A型也有I型、S型,充分的說明了其原巖結構性質以及形成地質構造背景中的復雜性。通過詳細的野外填圖工作,筆者在遼寧本溪地區發現了新太古代晚期鉀質花崗巖體。本文通過對鉀質花崗巖的巖石學、鋯石U-Pb年齡、巖石地球化學等深入研究,系統討論本溪地區鉀質花崗巖的形成時代、巖石成因、構造環境以及地質意義,以期為早期華北克拉通的形成及演化提供直接的證據。

1 區域地質背景及巖石學特征

1.1 區域地質背景

前人資料通常將華北克拉通基底劃分為3塊:東部陸塊、西部陸塊和位于二者中間的中央造山帶,認為華北克拉通基底是由東、西陸塊沿中央造山帶碰撞拼合而成,并實現克拉通化,而新太古代晚期—古元古代早期是克拉通化非常重要的一個地殼生長發育階段[9-12]。研究表明[13],鞍山—本溪地區太古宙早期古老巖石記錄了多期地殼生長和再循環事件,可能與大量花崗巖類巖漿的侵位有關。在鞍山—本溪地區存在著古老的太古宙地體,是由花崗-綠巖帶(或變質表殼巖)組成的北東向太古宙古陸塊,經歷了復雜、漫長的地質演化歷史,對于研究前寒武紀地質構造形成及發展具有重要的地質意義[14]。華北克拉通新太古代晚期—古元古代早期鉀質花崗巖的出露范圍比較廣泛,包括贊皇雜巖中菅等鉀質花崗巖、冀西北淮安鉀質花崗巖、鞍山齊大山鉀質花崗巖、中條山涑水雜巖、太行山王屋山鉀質花崗巖和中條山煙莊鉀質花崗巖[15-20]等(表1)。研究區位于華北克拉通東部陸塊東北部(圖1a),區內共有6個侵入體,分布于馬家溝一帶(圖1b),出露的新太古代地層為鞍山巖群的茨溝巖組和大峪溝巖組,主要由斜長角閃巖、二長變粒巖、石英片巖和片麻巖等巖性組成,構成古老的結晶基地[22]。區內發現的新太古代晚期鉀質花崗巖體巖性為片麻狀中細粒黑云母二長花崗巖,分布面積約為37.55 km2,又稱馬家溝巖體。在平面上呈北西、北東向的不規則條帶狀分布,侵入茨溝巖組、大峪溝巖組,內部可見磁鐵石英巖及斜長角閃巖包體。

1.2 巖石學特征

馬家溝巖體(圖2):片麻狀中細粒黑云母二長花崗巖,顏色呈灰粉色-肉紅色,為中細粒似斑狀花崗結構,片麻狀構造。斑晶為鉀長石(約7%),粒徑多集中在4.00~7.00 mm之間;主要組成礦物成分為斜長石(28%~40%)、鉀長石(25%~37%)、石英(20%~30%)、黑云母(3%~15%)及白云母(0~2%)等,偶見角閃石。斜長石一般為更長石,多數呈半自形或不規則狀,少數呈集合體分布,粒徑多集中在0.15~3.10 mm之間,具聚片雙晶結構且發育相對較好,多已絹云母化或鈉黝簾石化,部分具定向分布趨勢;鉀長石為微斜長石,不規則粒狀,個別呈半自形,部分充填于其他礦物顆粒之間,部分沿長軸呈條帶狀交錯分布,粒徑在0.30~5.00 mm之間,部分微斜長石發生泥化;石英多呈不規則細粒狀,集合體呈條帶狀或豆莢狀分布,粒徑在0.10~3.50 mm之間;黑云母顏色大多呈黃色-黃綠色,集合體為片狀或細小片狀,粒徑在0.15~1.50 mm之間,多數出現了綠泥石化和脫鐵化現象,且都呈斷續條帶狀定向分布;白云母呈片狀,有沿長軸定向分布的趨勢,分布不均勻;角閃石呈柱狀,零星分布,粒徑約為1.00 mm。

2 SHRIMP鋯石U-Pb測年

樣品(QP30TW5)采自遼寧省本溪市平山區附近的新立屯—大峪村馬家溝巖體(圖2),從中挑選分離并提取出顆粒形態相似且晶體粒度均勻、晶形較好的鋯石,準備進一步確定巖石形成的年代。在北京離子探針中心完成了標準鋯石測年。首先在SHRIMP Ⅱ上進行了分析和標定,對標準鋯石中的TEM(417 Ma)質量分數進行了分餾法的校正,運用標準鋯石BR266(559 Ma)標定測量TEM樣品中的U、Th和Pb質量分數;其次用標準鋯石TEM和M257(U質量分數為840×10-6)分別校正樣品中的206 Pb/238 U年齡和U、Th的質量分數;再次,標準鋯石(TEM)和待檢測的樣品比值一般為1∶3,每個數據點測年采用5組掃描,使用204 Pb進行年齡校正;最后采用SQUID和Isoplot程序[23]分別進行數據處理。每個數據誤差都控制在±1σ,加權平均年齡誤差都控制在95%置信度,詳細的測試方法、實驗過程、相關參數和誤差校正見文獻[24]。

這些鋯石顆粒晶體多以渾圓柱狀的結晶為主,在陰極發光圖像中顯示出較好的結晶振蕩環帶(圖3)。對馬家溝巖體樣品鋯石年齡測定(表2),其中4個鋯石數據受到巖石變質作用影響較大,故只選取15個較為和諧的鋯石數據。根據鋯石SHRIMP U-Pb年齡諧和圖(圖4)所示,其上交點年齡為(2 491±17) Ma,置信度為95%(MSWD=4.3,n=15)。選取的樣品中巖漿鋯石的207 Pb/206Pb表面年齡分布于(2 560±11)~(2 028±24) Ma之間,通過計算可得到其207Pb/206Pb加權平均年齡為(2 490±21) Ma,與上交點表面年齡值在誤差限定范圍內一致,可以代表馬家溝巖體的形成年齡,確定其形成時代為新太古代晚期。

3 巖石地球化學特征

3.1 分析測試方法

主量元素測定由遼寧地勘局第一實驗室完成,微量元素和稀土元素測定由吉林大學科學實驗中心完成。其中,主量元素分析采用壓片法X射線熒光光譜儀(XRF)測定,分析準確度和精度優于±2%,其中FeO質量分數通過濕化學方法測試。測試儀器型號規格為72-G型分光光度計和6410火焰光度計,檢測試驗結果依據國家規定標準為GB/T14506.32010[25](硅酸鹽巖石化學分析方法)。

微量元素、稀土元素化學分析采用電感耦合等離子體質譜法測定,準確度和精度優于±10%。測試的儀器型號為ICP-MS,檢測依據文獻[26]。

3.2 主量元素

本次共完成9件巖石地球化學樣品分析。研究區馬家溝巖體主量元素分析結果見表3。數據顯示:w(SiO2)為66.62%~75.08%,w(K2O)為3.94%~6.46%,w(Na2O)為2.75%~4.94%,w(CaO)為0.22%~1.75%,w(Al2O3)為13.62%~14.89%;鋁飽和指數A/CNK值在1.02~1.15之間,平均值為1.10。w(MgO)為0.34%~1.63%,w(TiO2)僅為0.10%~0.73%,w(P2O5)為0.03%~0.43%,巖石固結指數(IS)為3.10~11.00,分異指數(ID)為78.41~94.83,表明巖石分異程度較高;里特曼指數(σ)為2.30~3.20。在An-Ab-Or圖解(圖5a)上,樣品點多數落入花崗巖區域中;在A/NK-A/CNK鋁飽和指數圖解(圖5b)上,樣品點均落入弱過鋁質區;在w(K2O)-w(SiO2)圖解(圖6a)上,樣品點多數落入高鉀鈣堿性系列,少數落入鉀玄巖系列范圍內;在w(K2O)-w(Na2O)圖解(圖6b)上,樣品點多數落入鉀質區,少數落入高鉀質區。綜上所述,新太古代晚期馬家溝巖體為弱過鋁質、高鉀鈣堿性系列鉀質巖石。

3.3 微量和稀土元素

巖石微量和稀土元素質量分數測定結果見表3。馬家溝巖體樣品w(∑REE)為32.92×10-6~744.44×10-6,平均值為249.52×10-6;w(LREE)值為29.77×10-6~710.45×10-6,w(HREE)值為2.02×10-6~33.99×10-6,LREE/HREE 值為8.07~25.66;(La/Yb)N值為6.26~35.89,變化范圍較大,δEu值為0.17~0.77(除QP32S1-1樣品為1.10之外),均小于1,具負Eu異常。稀土元素球粒隕石標準化配分曲線(圖7a)顯示:馬家溝巖體曲線斜率較大,輕稀土元素曲線向右下方陡傾,指示巖體可能經歷了相對較強的輕稀土元素分異作用;而重稀土元素曲線向右下方緩傾,可能表明礦物的分異對重稀土元素的影響較小。以上數據表明馬家溝巖體稀土配分模式為輕稀土富集、重稀土相對平坦向右傾斜和Eu虧損的右傾型。在微量元素原始地幔標準化蛛網圖(圖7b)中,可以明顯看出馬家溝巖體微量元素質量分數變化較大,富集高場強元素La、Zr、Th和大離子親石元素K、Nd等,虧損P元素、高場強元素Nb和大離子親石元素Sr、Ti等。

4 討論

4.1 巖石成因類型及巖漿源區性質

根據巖石的成因,花崗巖可以劃分為4種類型:M型、I型、S型和A型。其中:M型花崗巖較為少見;A型花崗巖通常是以堿性花崗巖為主;I型花崗巖最顯著的特點是含有角閃石、磁鐵礦等礦物,Na2O/K2O>1,A/CNK<1.10;而S型花崗巖多具有白云母、堇青石、石榴子石等礦物,鋁飽和指數A/CNK>1.10,剛玉(C)>1[27]。無論是A型、I型或是S型,在經歷過高度的結晶分異后,其礦物組成和化學成分都發生了低共結的變化,因此對于鑒定這3種花崗巖類型變得尤為困難。我們可以綜合分析它們的地球化學特征和其存在的標志性礦物來進行判定。

本文數據顯示,馬家溝巖體為弱過鋁質、高鉀鈣堿性系列鉀質巖石,無堿性礦物出現,區別于A型花崗巖;鋁飽和指數A/CNK值在1.02~1.15之間,平均值為1.10,w(Na2O+K2O)值為7.65%~9.52%,平均值為8.84%。Na2O/K2O值除了QP32S1-1外其他均小于1,不同于其他典型的I型花崗巖(Na2O/K2O>1);CIPW標準礦物出現剛玉(分子量為1.21~2.84,平均值為1.87(>1))以及樣品中含有富鋁礦物白云母,均顯示S型花崗巖的特征。另外,大多數S型花崗巖貧Sr(w(Sr)<300×10-6),且w(Yb)大多介于1×10-6~7×10-6之間[28],樣品中w(Sr)為73.49×10-6~331.90×10-6,平均值為180.18×10-6,w(Yb)為0.20×10-6~3.73×10-6,平均值為1.87×10-6。由A-C-F圖解(圖8)所示,樣品點均落在“S型”區。綜上所述,馬家溝巖體應為S型花崗巖。

[12]萬渝生,董春艷,頡頏強,等.華北克拉通太古宙研究若干進展[J].地球學報,2015,36(6):685-700.

Wan Yusheng,Dong Chunyan,Xie Hangqiang,et al.Some Advances in Archean Studies of the North China Craton[J].Acta Geoscientica Sinica,2015,36(6):685-700.

[13]田毅,余超,王廣偉,等.鞍山—本溪—撫順地區新太古代地質演化探討[J].地質與資源,2015,24(4):301-308.

Tian Yi,Yu Chao,Wang Guangwei,et al.Discussion on the Neoarchean Geological Evloution in Anshan-Benxi-Fushun Region[J].Geology and Resources,2015,24(4):301-308.

[14]Zhao G C,Cawood P A.Precambrian Geology of China[J].Precambrian Research,2012,222/223:13-54.

[15]楊崇輝,杜利林,任留東,等.贊皇雜巖中太古宙末期菅等鉀質花崗巖的成因及動力學背景[J].地學前緣,2011,18(2):62-78.

Yang Chonghui,Du Lilin,Ren Liudong,et al.Petrogenesis and Geodynamic Setting of Jiangdeng Potassic Granite at the end of the Neoarchean in Zanhuang Complex,North China Craton[J].Earth Science Frontiers,2011,18(2):62-78.

[16]Zhang H F,Zhai M G,Santosh M,et al.Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huaian Complex:Implications for the Evolution of the North China Craton[J]. Gondwana Research,2011,20(1):82-105.

[17]Wan Y S,Dong C Y,Liu D Y,et al.Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton:A Review[J].Precambrian Research,2012,222/223:265-289.

[18]張瑞英,張成立,第五春榮,等.中條山前寒武紀花崗巖地球化學年代學及其地質意義[J].巖石學報,2012,28(11):3559-3573.

Zhang Ruiying,Zhang Chengli,Diwu Chunrong,et al.Zircon U-Pb Geochronology,Geochemistry and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain,Shanxi Province[J].Acta Petrologica Sinica,2012,28(11):3559-3573.

[19]Zhao Y,Li N B,Jiang Y H,et al.Petrogenesis of the Late Archean (~2.5 Ga) Na and K Rich Gran Itoids in the Zhongtiao Wangwu Region and Its Tectonic Significance for the Crustal Evolution of the North China Craton[J].Precambrian Research,2017,303:590-603.

[20]楊崇輝,杜利林,宋會俠,等.中條山地區涑水雜巖新太古代煙莊正長花崗巖年齡及成因:對華北克拉通地殼演化的制約[J].地球科學,2020,45(9):3161-3178.

Yang Chonghui,Du Lilin,Song Huixia,et al.Geochronology and Petrogenesis of Neoarchean Yanzhuang Syenogranites from Sushui Complex in the Zhongtiao Mountains:Implications for the Crustal Evolution of the North China Craton[J].Earth Scinece,2020,45(9):3161-3178.

[21]Zhai M G.Multi-Stage Crustal Growth and Cratonization of the North China Craton[J].Geoscience Frontiers,2014,5(4):457-469.

[22]遼寧省地質礦產局.遼寧省區域地質志[M].北京:地質出版社,1989.

Bureau of Geology and Mineral Resource of Liaoning Province. Regional Geology of Liaoning Province[M].Beijing:Geological Publishing House,1989.

[23]Ludwig K R.Users Manual for ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Centre,Special Publication,2003:1-74.

[24]宋彪,張玉海,萬渝生,等.鋯石SHRIMP樣品靶制作、年齡測定及有關現象討論[J].地質論評,2002,48 (增刊1):26-30.

Song Biao,Zhang Yuhai,Wan Yusheng,et al.Mount Making and Procedure of the SHRIMP Dating[J]. Geological Review,2002,48(Sup.1):26-30.

[25]中國國家標準化管理委員會.硅酸鹽巖石化學分析方法第3部分:二氧化硅量測定:GB/T 14506.3—2010 [S].北京:中國標準出版社,2010.

Standardization Administration of the Peoples Republic of China.Methods for Chemical Analysis of Silicate Rocks Part 3:Determination of Silicon Dioxide Content:GB/T 14506.3—2010[S].Beijing:Standards Press of China,2010.

[26]趙振華.微量元素地球化學原理[M].北京:科學出版社,1997.

Zhao Zhenhua.Principle of Geochemistry of Trace Elements[M].Beijing:Science Press,1997.

[27]肖慶輝,邱瑞照,邢作云,等.花崗巖成因研究前沿的認識[J].地質論評,2007,53(增刊1):17-27.

Xiao Qinghui,Qiu Ruizhao,Xing Zuoyun,et al.Understanding of the Frontiers of Granite Genesis Research[J].Geological Review,2007,53(Sup.1):17-27.

[28]賀元凱,吳泰然,羅紅玲,等.華北板塊北緣中段新太古代的陸-陸碰撞事件:來自合教S型花崗巖的證據[J].北京大學學報(自然科學版),2010,46(4):571-580.

He Yuankai,Wu Tairan,Luo Hongling,et al.Late Archean Continent-Continent Collision Event of Middle Segment of North Margin of North China Plate:Evidence from S-Type Granite of Hejiao Area[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2010,46(4):571-580.

[29]Green T H.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System[J].Chemical Geology,1995,120(3/4):347-359.

[30]Villaros A,Stevens G,Buick I S.Origins of the S-Type Cape Granites (South Africa)[J].Geochimica et Cosmochimica Acta,2006,70(18):A673.

[31]Liu C H,Liu S W,Li Q G,et al.Petrogenesis of the Paleo-Prot Erozoic Guandishan Granitoids in Shanxi Province:Constraints from Geochemistry and Nd Isotopes[J].Acta Geologica Sinica,2006,80(6):925-935.

[32]甘保平,第五春榮,王伯隆,等.賀蘭山古元古代花崗巖年代學及地球化學特征:對華北克拉通西部孔茲巖帶形成和演化的制約[J].巖石學報,2019,35(8):2325-2343.

Gan Baoping,Diwu Chunrong,Wang Bolong,et al.Geochronology and Geochemistry of the Paleoproterozoic Granites from the Helanshan Region:Contrains on the Formation and Evolution of Khodalite Belt in the Western North China Craton[J].Acta Petrologica Sinica,2019,35(8):2325-2343.

[33]Li Z,Wei C J.Two Types of Neoarchean Basalts from Qingyuan Greenstone Belt,North China Craton:Petrogenesis and Tectonic Implications[J].Precambrian Research,2017,292:175-193.

[34]王躍,周奇明,張金龍,等.魯西地區新太古代地殼增生事件:來自花崗巖和二長花崗巖U-Pb年代學、Hf同位素和巖石地球化學的證據[J].吉林大學學報(地球科學版),2022,52(2):463-485.

Wang Yue,Zhou Qiming,Zhang Jinlong,et al.Neoarchean Crustal Accretion in Western Shandong Province:Evidence from Granite and Monzogranite U-Pb Chronology,Hf Isotope and Rock Geochemistry[J].Journal of Jilin University (Earth Science Edition),2022,52(2):463-485.

[35]Zhao G C,Cawood P A,Li S Z,et al.Amalgamation of the North China Craton:Key Issues and Discussion[J].Precambrian Research,2012,222/223:55-76.

[36]Zhao G C,Zhai M G.Lithotectonic Elements of Precambrian Basement in the North China Craton:Review and Tectonic Implications[J].Gondwana Research,2013,23(4):1207-1240.

[37]彭游博. 遼北開原地區新太古代變質深成巖LA-ICP-MS鋯石U-Pb年齡及地球化學特征[J]. 地質通報,2020,39(5):670-680.

Peng Youbo.LA-ICP-MS Zircon U-Pb Age and Geochemical Characteristics of Neoarchaean Metamorphic Plutonic Rocks in Kaiyuan Area of Northern Liaoning Province[J]. Geological Bulletin of China,2020,39(5):670-680.

[38]鄭常青,耿志忠,段東,等. 遼北開原地區晚古生代—早中生代混雜巖的厘定及其地質意義[J]. 世界地質,2023,42(3):444-460.

Zheng Changqing,Geng Zhizhong,Duan Dong,et al. Determination and Geological Significance of Late Paleozoic-Early Mesozoic Melanges in Kaiyuan Area,Northern Liaoning Province[J]. World Geology,2023,42(3):444-460.

[39]萬渝生,董春艷,任鵬,等.華北克拉通太古宙TTG巖石的時空分布、組成特征及形成演化:綜述[J].巖石學報,2017,33(5):1405-1419.

Wan Yusheng,Dong Chunyan,Ren Peng,et al. Spatial and Temporal Distribution,Compositional Characteristics and Formation and Evolution of Archean TTG Rocks in the North China Craton:A Synthesis[J].Acta Petrologica Sinica,2017,33(5):1405-1419.

[40]Zhai M G,Santosh M.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview[J].Gondwana Research,2011,20 (1):6-25.

[41]Wang W,Cawood P A,Liu S,et al.Cyclic Formation and Stabilization on of Archean Lithosphere by Accretionary Orogenesis:Constraints from TTG and Potassic Granitoids,North China Craton[J].Tectonics,2017,36(9):1724-1742.

[42]石強,李晨,周煜欣,等.華北克拉通北緣孔茲巖帶兩期深熔石榴花崗巖地球化學特征及其地質意義[J].吉林大學學報(地球科學版),2023,53(4):1090-1116.

Shi Qiang,Li Chen,Zhou Yuxin,et al.Geochemistry and Geological Significance of the Two Episodes of Anatectic Garnet Granites in the Khondalite Belt,Northern Margin of the North China Craton[J].Journal of Jilin University (Earth Science Edition),2023,53(4):1090-1116.

[43]Diwu C R,Sun Y,Guo A L,et al.Crustal Growth in the North China Craton at ~2.5 Ga:Evidence from in Situ Zircon U-Pb Ages,Hf Isotopes and Whole-Rock Geoshemistry of the Dengfeng Complex[J].Gondwana Research,2011,20(1):149-170.

[44]陳斌,李壯,王家林,等.遼東半島~2.2 Ga巖漿事件及其地質意義[J].吉林大學學報(地球科學版),2016,46(2):303-320.

Chen Bin,Li Zhuang,Wang Jialin,et al.The ~2.2 Ga Magmatic Event in Liaodong Peninsula and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition),2016,46(2):303-320.

[45]王惠初,陸松年,初航,等.遼陽河欄地區遼河群中變質基性熔巖的鋯石U-Pb年齡與形成構造背景[J].吉林大學學報(地球科學版),2011,41(5):1322-1334,1361.

Wang Huichu,Lu Songnian,Chu Hang,et al.Zircon U-Pb Age and Tectonic Setting of Meta-Basalts of Liaohe Group in Helan Area, Liaoyang, Liaoning Province[J].Journal of Jilin University (Earth Science Edition),2011,41(5):1322-1334,1361.

[46]Laurent O,Martin H,Moyen J F,et al.The Diversity and Evolution of Late-Archean Granitoids:Evidence for the Onest of “Modern-Style” Plate Tectonics Between 3.0 and 2.5 Ga[J].Lithos,2014,205:208-235.

[47]段雪鵬,田永飛,王寧,等.遼東地區大石湖溝銅礦化構造背景:來自閃長玢巖鋯石成因的指示[J].吉林大學學報(地球科學版),2023,53(1):140-160.

Duan Xuepeng,Tian Yongfei,Wang Ning,et al.Tectonic Setting of Dashihugou Copper Mineralization in Eastern Liaoning Province:Implications from Zircon Genesis of Diorite Porphyrite[J].Journal of Jilin University (Earth Science Edition), 2023,53(1):140-160.

[48]鄭培璽.遼西地區臺子里花崗質片麻巖鋯U-Pb年齡及其地質意義[J].吉林大學學報(地球科學版),2009,39(3):455-460.

Zheng Peixi.Zircon U-Pb Age and Geological Significance of the Taizili Granitic Gneiss in Western Liaoning Province[J].Journal of Jilin University (Earth Science Edition),2009,39(3):455-460.

[49]Bao H,Liu S W,Wang M J,et al.Mesoarchean Geodynamic Regime Evidenced from Diverse Granitoid Rocks in Anshan-Benxi of the North China Craton[J].Lithos,2020,366:105574.

[50]Dong C Y,Wan Y S,Xie H Q,et al.The Mesoarchean Tiejiashan-Gongchangling Potassic Granite in the Anshan-Benxi Area,North China Craton:Origin by Recycling of Paleo to Eoarchean Crust from U-Pb-Nd-Hf-O Isotopic Studies[J].Lithos,2017,290/291:116-135.

[51]Zhou Y Y,Zhao T P,Zhai M G,et al.Petrogenesis of the Archean Tonalite-Trondhjemite-Tranodiorite (TTG) and Tranites in the Lushan Area,Southern Margin of the North China Craton:Implications for Crustal Accretion and Transformation[J].Precambrian Research,2014,255:514-537.

[52]Wang X,Huang X L,Yang F.Revisiting the Lushan-Taihua Complex:New Perspectives on the Late Mesoarchean-Early Neoarchean Crustal Evolution of the Southern North China Craton[J].Precambrian Research,2019,325:132-149.

[53]Wang K,Liu S W,Wang M J,et al. Geochemistry and Zircon U-Pb-Hf Isotopes of the Late Neoarchean Granodiorite-Monzogranite-Quartz Syenite Intrusions in the Northern Liaoning Block,North China Craton:Petrogenesis and Implications for Geodynamic Processes[J].Precambrian Research,2017,295:151-171.

[54]張旗,王焰,李承東,等.花崗巖Sr-Yb分類及其地質意義[J].巖石學報,2006,22(9):2249-2269.

Zhang Qi,Wang Yan,Li Chengdong,et al.Granite Classification on the Basis of Sr and Yb Contents and Its Implications[J].Acta Petrologica Sinica,2006,22 (9):2249-2269.

[55]張旗,金惟俊,李承東,等.再論花崗巖按照Sr-Yb的分類:標志[J].巖石學報,2010,26 (4):985-1015.

Zhang Qi,Jin Weijun,Li Chengdong,et al.Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index[J].Acta Petrologica Sinica,2010,26 (4):985-1015.

[56]韓寶福.后碰撞花崗巖類的多樣性及其構造環境判別的復雜性[J].地學前緣,2007,14(3):64-72.

Han Baofu.Diversity of Post-Collisional Granitoids and Complexity of Tectonic Environment Discrimination[J].Earth Science Frontiers,2007,14(3):64-72.

[57]李三忠,李璽瑤,戴黎明,等.前寒武紀地球動力學(Ⅵ):華北克拉通形成[J].地學前緣,2015,22(6):77-96.

Li Sanzhong,Li Xiyao,Dai Liming,et al.Precambrian Geodynamics(Ⅵ):Formation of North China Craton[J].Earth Science Frontiers,2015,22(6):77-96.

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合