?

激光驅動拉伸氫分子產生閾下諧波中拉比振蕩特征的取向依賴

2024-04-04 14:06張紅牛龔雪魏盼趙松峰

張紅?!↓徰∥号巍≮w松峰

摘要:通過數值求解二維模型分子在強激光場中的含時薛定諤方程,研究了拉伸氫分子產生閾下諧波中拉比振蕩特征的取向依賴.結果表明,三次諧波附近展現出精細次峰結構,借助于兩態模型,將這些次峰結構歸因于基態和第一激發態之間強耦合引起的拉比振蕩.文中還發現這些次峰結構對分子取向角有很強的依賴,且次峰結構隨著取向角(0°~90°)的增大而逐漸消失,這是由兩態間的耦合強度隨取向角增大而減小所引起.

關鍵詞:拉伸氫分子;精細次峰結構;拉比振蕩;取向依賴

中圖分類號:O 562.4文獻標志碼:A文章編號:1001-988Ⅹ(2024)02-0037-06

Alignment dependence of Rabi-flopping signatures in the below-threshold harmonics from the stretched H2 driven by lasers

ZHANG Hong-niu,GONG Xue,WEI Pan,ZHAO Song-feng

Abstract:We investigated the alignment dependence of Rabi-flopping signatures in the below-threshold harmonic generation from the stretched hydrogen molecules by numerically solving the two-dimensional time-dependent Schrdinger equation of molecules in laser fields.We found that fine sub-peaks near the third order harmonic and these fine sub-peaks can be attributed to Rabi oscillations originated from the strong-coupling between the ground state and the first excited state by using the two-state model.We also found that these fine sub-peaks strongly depend on alignment angles of molecules and gradually disappear as the alignment angle(0°~90°) increases because the coupling strength between these two states decreases with the alignment angle increasing.

Key words:stretched hydrogen molecules;fine sub-peak structures;Rabi-flopping;alignment dependence

物質在強激光場中產生的高次諧波是超快科學領域最熱門的研究課題,主要因為高次諧波在產生超短阿秒脈沖上取得了巨大成功[1-2],使得人們有能力實時觀測阿秒量級的電子動力學,也為物理、化學、生物、材料、信息、能源等領域提供了全新的研究手段,因而2023年諾貝爾物理學獎授予了發展產生阿秒超短脈沖實驗方法的3位科學家.

高次諧波的產生機制可用“三步模型”[3]或“四步模型”[4]來解釋.低次諧波起初被簡單地認為是微擾響應[5],因而沒有引起研究者的廣泛關注.然而,用重散射圖像無法對實驗中近閾值諧波的反常橢偏依賴給出合理的解釋[6-8],對近閾值和閾下諧波產生機制的研究重新引起了人們的關注[9],當然也和低階諧波在產生高重頻真空紫外光源上的重要應用密不可分[10-11].Yost等[12]在Xe原子在強激光場中產生的閾值附近及閾下諧波中觀測到了量子路徑干涉.次年,Power等[13]在中紅外激光驅動的Cs原子中觀測到了負群速度色散現象.這兩個實驗觀測表明,用微擾理論無法解釋低階諧波的產生機制.理論方面,研究者分別采用求解含時薛定諤方程(TDSE)[14-19]和經典蒙特卡羅方法(CTMC)[20]對原子閾下諧波的產生機制進行了探索.

分子閾下諧波也同樣引起了實驗和理論研究者的關注.早在2010年,Soifer等[21]用泵浦-探測方案觀測到氧分子諧波的反常橢偏依賴,這種反常的橢偏依賴在氮分子中并沒有出現.最近,陸培祥等[22]研究了多軌道對氮分子產生諧波的貢獻.理論方面,研究者分別用含時密度泛函理論(TDDFT)[23-24]和數值求解TDSE[25-30]研究了雙原子分子在激光場中產生的閾下諧波.在我們課題組之前的工作中,通過數值求解單電子TDSE[29],發現大核間距的氫分子離子在激光場中產生的閾下諧波具有精細次峰結構,并將次峰結構的出現歸因于周期間的干涉效應.之后,魏盼等[30]在拉伸的氫分子和氮分子在激光場中產生的閾下諧波中也發現存在類似的精細次峰結構,并將這些精細次峰結構解釋為兩態間的強耦合拉比振蕩.

文中將通過數值求解二維模型分子在激光場中的TDSE,證實在拉伸的二維模型氫分子中同樣也能發生強耦合拉比振蕩,在三次諧波附近發現精細次峰結構;然后,通過將分子旋轉不同角度(即取向角),研究了精細次峰結構對分子取向角的依賴.文中除特別說明外,均采用原子單位.

2 結果與討論

在我們前期的工作中[29-30],在拉伸的三維氫分子離子、氫分子和氮分子閾下諧波中都發現了精細次峰結構.對于二維模型分子,計算的能級和三維真實分子能級存在差別,但是只要選擇合適的核間距和激光波長,使得兩個孤立的分子態(即電荷共振態)之間能發生強耦合的拉比振蕩,我們預期能在閾下諧波中看到類似的精細次峰結構,并進一步研究這些精細次峰結構對分子取向角的依賴.文中選擇激光的偏振方向沿x軸,通過旋轉分子來研究三次諧波附近的精細次峰結構對分子取向角的依賴.

圖1給出了拉伸氫分子沿線偏振激光場時(即取向角為0°)的諧波譜.計算中,采用的半高全寬為24 fs,激光強度為1×1013W·cm-2,波長為2 000 nm,核間距R=8 a.u..從放大的插圖中很清晰地觀察到了三次諧波附近的精細次峰結構.這說明在拉伸的二維模型氫分子中同樣能產生類似于三維拉伸分子中閾下諧波的精細次峰結構[29,30,38].

圖2分別展示了用求解二維含時薛定諤方程和兩態模型所得的基態和第一激發態布局隨時間的變化.從圖中可以看出,拉伸氫分子的基態和第一激發態之間發生了強耦合的拉比振蕩.當分子取向角為0°時,我們計算的躍遷偶極矩x21為3.82,因而拉比頻率 ΩR=x21E0為0.065 a.u,對應的耦合參數δ=2ΩR/ω=5.7,表明滿足強耦合條件δ1[37].在大核間距下,二維模型氫分子的波函數可近似用基態和第一激發態描述,原因在于其他激發態與這兩個態的能級間隔太大.在激光場驅動下,基態中的活性電子首先通過偶極躍遷被激發到場綴飾的第一激發態,然后從激光場中獲得能量,最后復合到場綴飾的基態而發射出低能光子.

圖3a分別比較了采用求解TDSE和兩態模型得到的拉伸氫分子的閾下諧波譜和含時誘導偶極矩.可以看出,用兩種方法計算的閾下諧波譜以及含時誘導偶極矩都吻合得很好,這表明分子閾下諧波譜中這些精細的次峰結構可歸因于兩個強耦合分子態之間的拉比振蕩.另外,相鄰子峰之間的間距約為0.25ω,對應于ΩR/12.

圖4給出了不同取向角下拉伸氫分子產生的閾下諧波譜.隨著取向角的增大,體系的柱對稱性被破壞,從而出現了偶次諧波.另外,三次諧波附近的精細次峰結構隨著取向角的增大逐漸消失,我們認為這是兩態之間的耦合強度逐漸變弱引起的.從圖4a到4g,不同取向角下躍遷偶極矩依次為3.82,3.69,3.31,2.70,1.91,0.99,0,而相應的耦合參數依次為5.7,5.5,4.9,4.0,2.8,1.5,0.以取向角90°為例,圖4h和4i分別展示了拉伸氫分子的基態和第一激發態的波函數,可以看出,在激光偏振方向(x軸)上第一激發態存在波節面,因而躍遷偶極矩為零,則相應的耦合參數也為零.

3 結束語

文中通過數值求解二維模型分子在線偏振激光場中的含時薛定諤方程,研究了拉伸氫分子產生的三次諧波附近精細次峰結構對取向角的依賴.結果表明,拉伸的二維模型氫分子中也能產生諧波的精細次峰結構,結合兩態模型可以確認這些次峰結構產生的原因是兩態之間發生了強耦合拉比振蕩.另外,三次諧波附近的精細次峰結構敏感地依賴于分子取向角,我們認為這是兩態間的躍遷偶極矩和耦合強度隨取向角逐漸變小引起的.

參考文獻:

[1]CORKUM P B,KRAUSZ F.Attosecond science[J].Nature Physics,2007,3(6):387.

[2]KRAUSZ F,IVANOV M.Attosecond physics[J].Reviews of Modern Physics,2009,81(1):234.

[3]CORKUN P B.Plasma perspective on strong field multi-ionisation[J].Physical Review Letters,1993,71(13):1997.

[4]STRELKOV V.Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production[J].Physical Review Letters,2010,104(12):123901.

[5]LHUILLIER A,SCHAFER K J,KULANDER K C.Theoretical aspects of intense field harmonic generation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,1991,24(15):3341.

[6]BUENETT N,KAN C,CORKUM P B.Ellipticity and polarization effects in harmonic generation in ionizing neon[J].Physical Review A,1995,51(5):R3421.

[7]MIYAZAKI K,TAKADA H.High-order harmonic generation in the tunneling regime[J]. Physical Review A,1995,52(4):3021.

[8]KAKEHATA M,TAKADA H,YUMOTO H,et al.Anomalous ellipticity dependence of high-order harmonic generation[J].Physical Review A,1997,55(2):R864.

[9]XIONG W H,PENG L Y,GONG Q H.Recent progress of below-threshold harmonic generation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2017,50(3):032001.

[10]GOHLE C,UDEM T,HERRMANN M,et al.A frequency comb in the extreme ultraviolet[J].Nature,2005,436:237.

[11]CINGOZ A,YOST D C,ALLISON T K,et al.Direct frequency comb spectroscopy in the extreme ultraviolet[J].Nature,2012,482:71

[12]YOST D C,SCHIBLI T R,YE J,et al.Vacuum-ultraviolet frequency combs from below-threshold harmonics[J].Nature Physics,2009,5:815.

[13]POWER E P,MARCH A M,CATOIRE F,et al.XFROG phase measurement of threshold harmonics in a Keldysh-scaled system[J].Nature Photonics,2010,4:352.

[14]XIONG W H,GENG J W,TANG J Y,et al.Mechanisms of below-threshold harmonic generation in atoms[J].Physical Review Letters,2014,112(23):233001.

[15]LI P C,SHEU Y L,LAUGHLIN C,et al.Dynamical origin of near- and below-threshold harmonic generation of Cs in an intense mid-infrared laser field[J].Nature Communications,2015,6:7178.

[16]HE L X,LAN P F,ZHAI C Y,et al.Quantum path interference in the wavelength-dependent below-threshold harmonic generation[J].Physical Review A,2015,91(2):023428.

[17]CAMP S,SCHAFER K J,GAARDE M B.Interplay between resonant enhancement and quantum path dynamics in harmonic generation in helium[J].Physical Review A,2015,92(1):013404.

[18]XU R H,CHEN Y J,LIU J,et al.Tracking origins of below-threshold harmonics with a trajectory-resolved fully quantum approach[J].Physical Review A,2016,94(6):063417.

[29]郭春祥,焦志宏,周效信,等.激光強度依賴的閾下諧波產生機制[J].物理學報,2020,69(7):074203.

[20]XIONG W H,GENG J W,GONG Q H,et al.Half-cycle cutoff in near-threshold harmonic generation[J].New Journal of Physics,2015,17(12):123020.

[21]SOIFER H,BOTHERON P,SHAFIR D,et al.Near-threshold high-order harmonic spectroscopy with aligned molecules[J].Physical Review Letters,2010,105(14):143904.

[22]LONG J,CHEN Y H,ZHU X S,et al.Below- and near-threshold harmonic generation from multiple orbitals[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2023,56(5):055601.

[23]YANG H,LIU P,LI R X,et al.Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field[J].Optics Express,2013,21(23):28684.

[24]LI P C,SHEU Y L,CHU S I.Role of nuclear symmetry in below-threshold harmonic generation of molecules[J].Physical Review A,2020,101(1):011401(R).

[25]DONG F L,TIAN Y Q,YU S J,et al.Polarization properties of below-threshold harmonics from aligned molecules H+2 in linearly polarized laser fields[J].Optics Express,2015,23(14):18106.

[26]NASIRI A K,TELNOV D A,CHU S I.Above- and below-threshold high-order-harmonic generation of H+2 in intense elliptically polarized laser fields[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2014,90(3):033425.

[27]RIVIRE P,MORALES F,RICHTER M, et? al.Time reconstruction of harmonic emission in molecules near the ionization threshold[J].Journal of Physics B:Atomic,Molecular and Optical Physics,201 4,47(24):241001.

[28]LI P C,WANG Z B,CHU S I.Multichannel-resolved dynamics in resonance-enhanced below-threshold harmonic generation of H+2 molecular ions[J].Physical Review A,2021,103(4):043113.

[29]DU L L,WANG G L,LI P C,et al.Interference effect in low-order harmonic generation of H+2 in intense laser fields[J].Physical Review A,2018,97(2):023404.

[30]WEI P,GUAN Z,DU L L, et al.Rabi-flopping signatures in below-threshold harmonic generation from the stretched H2 and N2 molecules in intense laser fields[J].Optics Express,2021,29(26):43225.

[31]PETERS M,NGUYEN-DANG T T,CHARRON E, et al.Laser-induced electron diffraction:a tool for molecular orbital imaging[J].Physical Review A,2012,85(5):053417.

[32]GONG X,WEI P,GAUAN Z,et al.Generation of elliptically polarized isolated attosecond pulses from N2 and O2 molecules in orthogonal few-cycle two-color fields[J].Results in Physics,2023,45:106215.

[33]WANG R R,MA M Y,WEN L C,et al.Comparative study of electron vortices in photoionization of molecules and atoms by counter-rotating circularly polarized laser pulses[J].Journal of the Optical Society of America B,2023,40(7):1755.

[34]FEIT M D,FLECK J A,STEIGER A.Solution of the Schrdinger equation by a spectral method[J].Journal of Computational Physics,1982,47(3):433.

[35]JIANG T F,CHU S I.High-order harmonic generation in atomic hydrogen at 248 nm:dipole-moment versus acceleration spectrum[J].Physical Review A,1992,46(11):7324.

[36]趙松峰,周效信,金成.強激光場中模型氫原子和真實氫原子的高次諧波與電離特性研究[J].物理學報,2006,55(8):4085.

[37]ZUO T,CHELKOWSKI S,BANDRAUK A D.Harmonic generation by the H+2 molecular ion in intense laser fields[J].Physical Review A,1993,48(5):3844.

[38]DU L L,WANG G L,LI P C,et al.Low-order harmonic generation of hydrogen molecular ion in laser field studied by the two-state model[J].Chinese Physics B,2018,27(11):113201.

[39]GAUTHEY F I,GARRAWAY B M,KNIGHT P L.High harmonic generation and periodic level crossings[J].Physical Review A,1997,56(4):3096.

[40]FIGUEIRA D M,FARIA C,ROTTER I.High-order harmonic generation in a driven two-level atom:Periodic level crossings and three-step processes[J].Physical Review A,2002,66(1):013402.

[41]HUANG P,XIE X T,L X Y,et al.Carrier-envelope-phase-dependent effects of high-order harmonic generation in a strongly driven two-level atom[J].Physical Review A,2009,79(4):043806.

(責任編輯 孫對兄)

收稿日期:2023-07-05;修改稿收到日期:2023-11-25

基金項目:國家自然科學基金資助項目(12164044)

作者簡介:張紅牛(1997—),男,甘肅白銀人,碩士研究生.主要研究方向為強激光場中的原子分子物理.E-mail:17393154807@163.com

*通信聯系人,教授,博士,博士研究生導師.主要研究方向為強激光場中的原子分子物理.E-mail:zhaosf@nwnu.edu.cn

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合