?

肥胖兒童脂肪組織內質網應激促動脈粥樣硬化研究進展

2018-12-22 09:34王明夏賈麗紅翟玲玲魏薇孫琦白英龍
中國醫藥導報 2018年32期
關鍵詞:動脈粥樣硬化心血管疾病脂肪組織

王明夏 賈麗紅 翟玲玲 魏薇 孫琦 白英龍

[摘要] 心血管疾病是當前威脅我國人民健康最嚴重的公共衛生問題。動脈粥樣硬化是其主要病理基礎,可發生于兒童時期,肥胖兒童患病風險增高。內質網應激是動脈粥樣硬化發生發展的重要機制。肥胖的脂肪組織中巨噬細胞浸潤增多,內質網應激加劇,脂肪細胞與巨噬細胞間交互作用也加速動脈粥樣硬化進程,在動脈粥樣硬化性心血管疾病的發生發展中起重要作用。本文就脂肪組織內質網應激與肥胖兒童動脈粥樣硬化發生發展關系的相關機制進行綜述,旨在加深人們對肥胖加速兒童患動脈粥樣硬化疾病的理解,提高人們預防兒童肥胖的認識,并為肥胖引發的兒童動脈粥樣硬化的治療開拓新思路。

[關鍵詞] 兒童肥胖;脂肪組織;內質網應激;動脈粥樣硬化;心血管疾病

[中圖分類號] R723.14 [文獻標識碼] A [文章編號] 1673-7210(2018)11(b)-0024-04

[Abstract] Cardiovascular disease is the most serious public health problem that currently threatens the health of people in our country. Atherosclerosis is the main pathological basis and can occur in childhood, and the risk of obesity in children is increasing. Endoplasmic reticulum stress is an important mechanism for the development of atherosclerosis. Macrophage infiltration in obese adipose tissue increases, endoplasmic reticulum stress aggravates, interaction between adipocytes and macrophages accelerates atherosclerotic progression, which plays an important role in the development of atherosclerotic cardiovascular disease. For deepening people′s knowledge of obesity accelerating atherosclerosis and raising awareness of preventing childhood obesity, and exploiting new ideas for treating atherosclerosis in children with obesity, this review introduced the relationship between endoplasmic reticulum stress of adipose tissue and the development of atherosclerosis in children with obesity.

[Key words] Childhood obesity; Adipose tissue; Endoplasmic reticulum stress; Atherosclerosis; Cardiovascular disease

心血管疾?。╟ardiovascular diseases,CVDs)是當前威脅我國人民健康最嚴重的公共衛生問題。動脈粥樣硬化(AS)是CVDs的主要病理基礎[1],且兒童肥胖是患CVDs的危險因素[2]。據WHO最新數據顯示,全球有超過3.4億名5~19歲兒童和青少年超重或肥胖[3]。兒童期肥胖與成年期CVDs的發病率和死亡率增加有關[4],盡管CVDs事件直到成年期才會發生,但CVDs的發生始于兒童期,隨后一直處在進展階段。此外,已有研究人員在3歲兒童冠狀動脈中發現了脂紋[5]。

血脂異常是CVDs發生的傳統危險因素之一。兒童和青少年時期肥胖的孩子發生血脂異常的情況較常見,且其成年期AS以及CVDs的發病風險也較高[6]。青春期血脂異常會增加成年期發生頸動脈內膜中層厚度(IMT)增厚的風險[7]。超聲波檢測IMT是臨床上診斷AS進展的一個重要指標[8]。兒童時期的低密度脂蛋白膽固醇(LDL-C)水平與成年期頸動脈IMT相關,暴露于高水平的LDL-C可能會導致成年期AS的發生與發展[9]。

1 脂肪組織中的內質網應激在AS進展中發揮重要作用

1.1 內質網應激是AS發生發展的重要機制

內質網是大多數分泌蛋白和跨膜蛋白折疊和成熟的場所。能夠擾亂細胞能級、氧化還原狀態或Ca2+濃度,甚至蛋白質內的突變都可能降低內質網對蛋白質的折疊能力并且阻礙其在內質網內的進一步加工或轉運。當內質網的折疊能力不能適應未折疊蛋白質的負載時,內質網穩態受到破壞,這被稱為內質網應激(endoplasmic reticulum stress,ERs)[10]。

ERs在AS進展中具有重要作用。在人類[11]和動物[12]的AS病變細胞中,尤其是在巨噬細胞和內皮細胞中都可觀察到一些ERs和未折疊蛋白反應(unfolded protein reaction,UPR)的標志物,如葡萄糖調節蛋白78(glucose-regulated protein,GRP78)、磷酸化雙鏈RNA激活的蛋白激酶樣內質網激酶(double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase,PERK)和C/EBP同源蛋白(C/EBP homologous protein,CHOP)等。值得注意的是,只有當人類血液單核細胞分化為巨噬細胞后,斑塊中才會出現UPR標志物[13]。持續過度的ERs通過需求肌醇激酶1(inositol-requiring kinase 1α,IRE-1α)和CHOP可誘導巨噬細胞凋亡和晚期AS斑塊壞死,并在AS的發展惡化過程中發揮關鍵作用[14]。一些與AS相關的ERs誘導物,包括氧化應激、飽和脂肪酸、氧化磷脂等均可促進巨噬細胞的凋亡[15],尤其在肥胖、胰島素抵抗和糖尿病等疾病的發展中被加劇[16]。

1.2 肥胖的脂肪組織中巨噬細胞ERs導致AS

除脂質紊亂以外,巨噬細胞積聚和炎性細胞因子表達增加也是AS病理過程的重要組成部分[17]。脂肪組織不僅包含脂肪細胞,還包含許多其他類型的細胞,如前脂肪細胞、巨噬細胞和血管基質細胞。脂肪組織巨噬細胞的數量與人類肥胖程度成正比,巨噬細胞在正常個體的脂肪組織中所占比例不足10%,而在肥胖人和小鼠的脂肪組織中可達40%~50%[18]。

此外,肥胖時脂肪組織內的免疫細胞群體不僅數量增多,而且炎癥表型也發生了變化。肥胖時脂肪組織中各種T-淋巴細胞的浸潤性增強,并且浸潤到脂肪組織中的巨噬細胞數量也增加,致使一些炎性細胞因子如白細胞介素-6(IL-6)和腫瘤壞死因子(TNF)大量釋放[19-20]。依據表型特點,巨噬細胞通常被分為ATM1和ATM2兩種類型。ATM1產生大量的炎性細胞因子,如TNF-α、IL-1β和IL-6等,均可以引起脂肪組織發生胰島素抵抗;而ATM2則通過產生抗炎細胞因子來增強局部組織的胰島素敏感性[21]。巨噬細胞浸潤能夠加劇脂肪組織內炎性標志物的表達[22]。飲食誘導的肥胖可引起巨噬細胞表型轉變。高脂飲食誘導肥胖大鼠的白色脂肪組織炎癥具有部位特異性,同時伴有ATM2表達減少[23]。AS患者的ATM1/ATM2值增高,血清中M1相關的趨化因子水平也升高。推測ATM1/ATM2比值的變化可能是導致AS發生發展的重要原因[24]。

巨噬細胞內發生ERs導致AS。巨噬細胞源性泡沫細胞位于血管壁內皮下,是AS病理改變的重要標志[25]。氧化型低密度脂蛋白(ox-LDL)可誘導巨噬細胞在形成泡沫細胞過程中發生ERs,主要是通過PERK上調CHOP的表達,進而加快巨噬細胞凋亡,最終促進AS斑塊壞死[26],人群調查也證實肥胖兒童的血脂異常,其血中ox-LDL的含量顯著高于正常體重同伴[27]。

巨噬細胞作為崗哨細胞,可通過各種表面受體和分泌的分子來監測和響應局部微環境信號[28]。脂肪組織是最大的內分泌器官,可分泌多種具有生物活性的脂肪因子,如TNF-α、單核細胞趨化蛋白1、脂聯素和抵抗素都能在外周和內臟脂肪細胞中產生和分泌[29]。機體發生肥胖后,脂肪因子的表達和分泌被修飾,會導致脂肪細胞的分泌特征向致炎譜偏移。高脂飲食誘導肥胖動物內臟脂肪組織來源的外泌體可促進巨噬細胞源性泡沫細胞生成,并通過調節巨噬細胞極性轉變來發揮致AS作用[30]。

1.3 脂肪細胞與巨噬細胞間交互作用加速ERs以及AS進程

脂肪因子和趨化因子是脂肪細胞和巨噬細胞的交互作用中的關鍵角色,在調節脂肪組織炎癥中起到重要作用。由脂肪細胞和巨噬細胞組成的體外共培養系統是研究這兩種細胞間發生交互作用分子機制的良好模型。來源于巨噬細胞的TNF-α是脂肪細胞中的主要炎癥介質,而來源于脂肪細胞的游離脂肪酸(free fatty acids,FFA)可能是巨噬細胞中的主要炎癥介質。因此,推測在脂肪細胞和巨噬細胞之間存在旁分泌環,TNF-α和FFA構成了一個惡性循環,進而加重脂肪組織的炎性反應[31]。

為了解肥胖脂肪組織內脂肪細胞與巨噬細胞浸潤間相互作用的分子基礎,Yanaka團隊在體內和3T3-L1脂肪細胞與RAW264.7巨噬細胞共培養的體外體系中篩選了脂肪細胞基因,Ras相關結構域家族6(Ras association domain family 6,RASSF6)被鑒定出來,在肥胖小鼠體內脂肪細胞中和體外與活化的巨噬細胞共培養的脂肪細胞中RASSF6 mRNA的表達均減少,提示脂肪細胞與巨噬細胞交互作用可影響RASSF6的細胞功能。肥胖脂肪組織中RASSF6表達的顯著下降可能參與控制了脂肪細胞分化狀態和/或數量[32]。此外,脂肪細胞通過與活化巨噬細胞的相互作用可上調IKK-ε的表達[33]。IKK-ε是IKK(inhibitor of nuclear factor kappa-B kinase,IκB激酶)家族中的新成員,IKKε主要介導核轉錄因子κB(nuclear factor-kappa B,NF-κB)途徑,可顯著刺激NF-κB活性,超活化NF-κB途徑加速ERs,并且還可能通過調節血管中一氧化氮和超氧化物的釋放來影響血管內皮功能[29,34]。

2 脂肪組織ERs可作為治療AS的關鍵靶點

內臟脂肪組織分泌的絲氨酸蛋白酶抑制劑(vaspin)是研究的焦點之一。它是一種具有潛在的胰島素致敏性的脂肪因子[35]。肥胖和T2D患者的血清中vaspin濃度升高[36-37]。最初,人們借助免疫沉淀實驗,在發生ERs的內皮細胞表面看到vaspin與GRP78形成電壓依賴性陰離子通道復合物,其具有抑制內皮細胞凋亡、保護糖尿病患者血管損傷的作用[38]。其后,發現vaspin可以明顯抑制體外培養巨噬細胞的ATF6、CHOP和JNK1/2的表達,并且可以顯著減少vaspin轉染apoE-/-小鼠的AS斑塊中CHOP的表達和壞死面積,表明vaspin可以通過抑制ERs誘導的巨噬細胞凋亡來緩解AS的進展[39]。

3 結論與展望

綜上所述,鑒于目前兒童肥胖在全球范圍流行以及隨之帶來的代謝紊亂風險增加,人們正面臨著新的挑戰。在過去的幾十年中,人們已經認識到脂肪組織中的ERs在AS的發生和惡化中被加劇。作為最大的內分泌器官,脂肪組織將成為治療肥胖相關代謝性疾病的關鍵靶點?;蚬こ虅游锬P秃腕w外脂肪細胞-巨噬細胞共培養體系已經證明了脂肪細胞與巨噬細胞之間的相互作用,人們還需深入探索ERs在AS的病理生理進展中的作用機制。此外,脂肪組織內的其他細胞如前體脂肪細胞和血管基質細胞也可以分泌大量的信號分子和與炎性細胞因子。為了有效地治療肥胖引發的兒童AS,未來需投入更多的精力來研究減輕脂肪組織中ERs的方法和有效藥物。

[參考文獻]

[1] Clarke R,Du H,Kurmi O,et al. Burden of carotid artery atherosclerosis in Chinese adults:Implications for future risk of cardiovascular diseases [J]. Eur J Prev Cardiol,2017, 24(6):647-656.

[2] Mendizabal B,Urbina EM. Subclinical atherosclerosis in youth:relation to obesity,insulin resistance,and polycystic ovary syndrome [J]. J Pediatr,2017,190:14-20.

[3] WHO. Obesity[EB/OL].(2017-10)[2018-5-30]. http://www.who.int/topics/obesity/en/.

[4] Yan Y,Hou D,Liu J,et al. Effect of childhood adiposity on long-term risks of carotid atherosclerosis and arterial stiffness in adulthood [J]. Zhonghua Yu Fang Yi Xue Za Zhi,2016,50(1):28-33.

[5] Olson M,Chambers M,Shaibi G. Pediatric markers of adult cardiovasculardisease [J]. Curr Pediatr Rev,2017,13(4):255-259.

[6] Nuotio J,Pitkanen N,Magnussen CG,et al. Prediction of adult dyslipidemia using genetic and childhood clinical risk factors:the cardiovascular risk in young finns study [J]. Circ Cardiovasc Genet,2017,10(3):pii:e001604.

[7] Unal E,Akin A,Yildirim R,et al. Association of subclinical hypothyroidism with dyslipidemia and increased carotid intima-media thickness in children [J]. J Clin Res Pediatr Endocrinol,2017,9(2):144-149.

[8] Wendell CR,Waldstein SR,Evans MK,et al. Distributions of subclinical cardiovascular disease in a socioeconomically and racially diverse sample [J]. Stroke,2017,48(4):850-856.

[9] Li S,Chen W,Srinivasan SR,et al. Childhood cardiovascular risk factorsand carotid vascular changes in adulthood:the bogalusa heart study [J]. JAMA,2003,290(17):2271-2276.

[10] Choy KW,Murugan D,Mustafa MR. Natural products targeting ER stresspathway for the treatment of cardiovascular diseases [J]. Pharmacol Res,2018,132:119-129.

[11] Saksi J,Ijas P,Mayranpaa MI,et al. Low-expression variant of fatty acid-binding protein 4 favors reduced manifestations of atherosclerotic disease and increased plaque stability [J]. Circ Cardiovasc Genet,2014,7(5):588-598.

[12] Rabar S,Harker M,O′Flynn N,et al. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease:summary of updated NICE guidance [J]. BMJ,2014,349:g4356.

[13] Dickhout JG,Lhotak S,Hilditch BA,et al. Induction of the unfolded protein response after monocyte to macrophage differentiation augments cell survival in early atherosclerotic lesions [J]. FASEB J,2011,25(2):576-589.

[14] Go AS,Mozaffarian D,Roger VL,et al. Executive summary:heart disease and stroke statistics--2013 update:a report from the American Heart Association[J]. Circulation,2013,127(1):143-152.

[15] Kang PP,Yao ST,Guo TT,et al. Activating transcription factor 6-C/EBP homologous protein pathway mediates advanced glycated albumin-induced macrophage apoptosis [J]. Sheng Li Xue Bao,2017,69(6):767-774.

[16] Sun J,Cui J,He Q,et al. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes [J]. Mol Aspects Med,2015,42:105-118.

[17] Wakana N,Irie D,Kikai M,et al. Maternal high-fat diet exaggerates atherosclerosis in adult offspring by augmenting periaortic adipose tissue-specific proinflammatory response [J]. Arterioscler Thromb Vasc Biol,2015,35(3):558-569.

[18] Weisberg SP,McCann D,Desai M,et al. Obesity is associated with macrophage accumulation in adipose tissue [J]. J Clin Invest,2003,112(12):1796-1808.

[19] Wensveen FM,Valentic S,Sestan M,et al. The "Big Bang" in obese fat:Events initiating obesity-induced adipose tissue inflammation [J]. Eur J Immunol,2015,45(9):2446-2456.

[20] Liu Y,Chen Y,Zhang J,et al. Retinoic acid receptor-related orphan receptor alpha stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress [J]. J Biol Chem,2017,292(34):13 959-13 969.

[21] Chylikova J,Dvorackova J,Tauber Z,et al. M1/M2 macr-ophage polarization in human obese adipose tissue [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2018.

[22] Suzuki T,Gao J,Ishigaki Y,et al. ER stress protein CHOP mediates insulin resistance by modulating adipose tissue macrophage polarity [J]. Cell Rep,2017,18(8):2045-2057.

[23] Wang N,Guo J,Liu F,et al. Depot-specific inflammation with decreased expression of ATM2 in white adipose tissues induced by high-margarine/lard intake [J]. PLoS One,2017,12(11):e0188007.

[24] Williams H,Cassorla G,Pertsoulis N,et al. Human classical monocytes display unbalanced M1/M2 phenotype with increased atherosclerotic risk and presence of disease [J]. Int Angiol,2017,36(2):145-155.

[25] Shirai T,Hilhorst M,Harrison DG,et al. Macrophages in vascular inflammation--From atherosclerosis to vasculitis [J]. Autoimmunity,2015,48(3):139-151.

[26] Seimon TA,Nadolski MJ,Liao X,et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress [J]. Cell Metab,2010,12(5):467-482.

[27] Santanam N,Elitsur Y,Stanek R,et al. Association between retinol binding protein 4 with atherosclerotic markers in obese children [J]. Minerva Endocrinol,2016,41(3):291-297.

[28] Dutta P,Nahrendorf M. Regulation and consequences of monocytosis [J]. Immunol Rev,2014,262(1):167-178.

[29] Engin A. The Pathogenesis of Obesity-Associated adipose tissue inflammation [J]. Adv Exp Med Biol,2017,960:221-245.

[30] Xie Z,Wang X,Liu X,et al. Adipose-Derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization [J]. J Am Heart Assoc,2018,7(5):e007442.

[31] Engin AB. Adipocyte-Macrophage Cross-Talk in Obesity [J]. Adv Exp Med Biol,2017,960:327-343.

[32] Sanada Y,Kumoto T,Suehiro H,et al. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages [J]. PLoS One,2013,8(4):e61931.

[33] Sanada Y,Kumoto T,Suehiro H,et al. IkappaB kinase epsilon expression in adipocytes is upregulated by interaction with macrophages [J]. Biosci Biotechnol Biochem,2014,78(8):1357-1362.

[34] Chen J, Zhang M,Zhu M,et al. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1alpha/NF-kappaB signalingpathway [J]. Food Funct,2018,9(4):2386-2397.

[35] Hida K,Wada J,Eguchi J,et al. Visceral adipose tissue-derived serine protease inhibitor:a unique insulin-sensitizing adipocytokine in obesity [J]. Proc Natl Acad Sci USA,2005,102(30):10 610-10 615.

[36] Chang HM,Lee HJ,Park HS,et al. Effects of weight reduction on serum vaspin concentrations in obese subjects:modification by insulin resistance [J]. Obesity (Silver Spring),2010,18(11):2105-2110.

[37] Hida K,Poulsen P,Teshigawara S,et al. Impact of circulating vaspin levels on metabolic variables in elderly twins [J]. Diabetologia,2012,55(2):530-532.

[38] Nakatsuka A,Wada J,Iseda I,et al. Visceral adipose tissue-derived serine proteinase inhibitor inhibits apoptosis of endothelial cells as a ligand for the cell-surface GRP78/voltage-dependent anion channel complex [J]. Circ Res,2013,112(5):771-780.

[39] Lin Y,Zhuang J,Li H,et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE/ mice [J]. Mol Med Rep,2016,13(2):1509-1516.

(收稿日期:2018-06-08 本文編輯:任 念)

猜你喜歡
動脈粥樣硬化心血管疾病脂肪組織
高脂肪飲食和生物鐘紊亂會影響體內的健康脂肪組織
雙源CT對心臟周圍脂肪組織與冠狀動脈粥樣硬化的相關性
擴大的血管周圍間隙與腦小血管病變關系的臨床研究
短暫性腦缺血發作患者ABCD2評分與血漿同型半胱氨酸水平的關系
長期有氧運動對高血壓的影響
山楂水煎液對高脂血癥大鼠早期動脈粥樣硬化形成過程的干預機制
他汀類藥物序貫療法治療心血管疾病效果分析
新確診老年糖尿病患者降糖過快誘發心血管疾患22例臨床分析
白色脂肪組織“棕色化”的發生機制
苦瓜降低脂肪組織炎性改善肥胖小鼠糖脂代謝紊亂
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合