?

大氣等離子噴涂FeCoCrNiAl高熵合金涂層的高溫摩擦磨損性能

2023-11-06 06:35王躍明李晨龍韓旭航黃杰朱建勇解路劉秀波
表面技術 2023年10期
關鍵詞:深灰色磨痕磨損率

王躍明,李晨龍,韓旭航,黃杰,朱建勇,解路,劉秀波

大氣等離子噴涂FeCoCrNiAl高熵合金涂層的高溫摩擦磨損性能

王躍明1,李晨龍1,韓旭航1,黃杰1,朱建勇2,解路3,劉秀波4

(1.湖南科技大學 材料科學與工程學院,湖南 湘潭 411201;2.湖南省冶金材料研究院有限公司粉末冶金與金屬陶瓷研究所,長沙 410129;3.江蘇城鄉建設職業學院 管理工程學院,江蘇 常州 213147;4.中南林業科技大學 材料表界面科學與技術湖南省重點實驗室,長沙 410004)

研究環境溫度對FeCoCrNiAl高熵合金涂層摩擦磨損性能的影響,探討將其應用于高溫及富氧環境中的可行性。采用大氣等離子噴涂制備FeCoCrNiAl高熵合金涂層,考察噴涂功率對涂層微觀組織的影響;測試涂層的納米力學性能,分析其對涂層摩擦磨損性能的影響;基于涂層及對偶磨球磨損表面形貌、元素分布及含量、物相組成,討論涂層在室溫及高溫環境中的摩擦磨損特性與機制。涂層中形成了白色、淺灰色、深灰色及黑色4種區域,區域顏色隨O元素含量增加而加深,涂層納米力學性能逐漸增加,進而將對其摩擦磨損性能造成影響。20 kW噴涂功率制備涂層的室溫摩擦因數、磨損率及磨痕深度均達最佳值,分別為(0.70±0.02)、(9.22±0.01)×10?5mm3/(N?m)及(130±10) μm。室溫環境下,磨粒磨損、疲勞磨損及塑性變形為涂層的主要磨損機制。20 kW功率制備涂層的摩擦因數、磨損率、磨痕深度等均隨摩擦環境溫度的升高先增加而后降低,經600 ℃摩擦試驗后分別低至(0.58±0.01)、(6.14±0.01)×10?5mm3/(N?m)及(104±8) μm;涂層磨損表面的氧化程度隨環境溫度的升高而加劇,經600 ℃摩擦試驗后氧含量高達31.62%(質量分數)。當摩擦環境溫度≥400 ℃時,涂層以氧化磨損為主,以磨粒磨損、粘著磨損和疲勞磨損為輔。由于磨損表面形成連續氧化膜的保護和固體潤滑作用,高熵合金涂層在高溫環境中的耐磨性明顯提高,可廣泛應用于高溫及富氧環境中。

大氣等離子噴涂;FeCoCrNiAl高熵合金;涂層;微觀組織;摩擦磨損性能

高熵合金[1-2]因其特殊的相結構而具備遠超傳統合金的高強度、高硬度、高耐磨、高耐蝕等優異性能,可廣泛應用于航空航天、生物醫學、新能源、核工業等尖端領域。自葉均蔚[3-4]首次提出高熵合金的概念以來,高熵合金的制備及性能研究已成為全球材料科學工作者們的研究熱點。目前,高熵合金塊體主要通過電弧熔煉[5-6]、放電等離子燒結[7-8]等方法制備。然而,上述方法所制備高熵合金塊體尺寸有限、成本高昂,不利于其實際推廣應用。近年來,以高熵合金理論為基礎、結合表面工程技術所開發的高熵合金涂層,即可大幅降低制備成本,又可獲得與其塊體相似的性能[9]。因此,在實際應用中可以根據不同的工況需求,制備相應的高熵合金涂層以取代高熵合金塊體材料。

等離子噴涂[10]熱源溫度高達10 000 ℃以上,對基體熱影響極小,易于控制、成本較低,適用于大規模生產,工業應用潛力巨大。近年來,大氣等離子噴涂(APS)已成為高熵合金涂層常見制備技術之一。Hsu等[11]詳細對比了APS制備NiCo0.6Fe0.2Cr1.5SiAlTi0.2涂層與其塊體性能的差異。Ang等[12]系統研究了AlCoCrFeNi 和MnCoCrFeNi兩種納米級高熵合金涂層微觀形貌和顯微硬度隨APS過程中粒子速度、溫度及粒徑的變化規律。Anupam等[13]延續了Ang等[12]的研究思路,并深入研究了APS制備AlCoCrFeNi涂層過程中飛行顆粒的氧化行為,利用DPV2000設備監測噴涂過程中不同速度、溫度、粒徑大小的飛行粒子特征,最后綜合對比了不同粒徑、溫度條件下所制備的涂層性能。Lin等[14]分別對APS制備FeCoCrNiAl涂層進行熱處理和激光重熔,以改善其性能。Wang等[15]利用APS制備了CoCrFeMnNi涂層,并深入研究了激光重熔后涂層的相演變與凝固開裂機理的相關性。Cheng等[16]分別采用真空氣體霧化及APS制備了AlCoCrFeNi粉體及其涂層。研究發現,高熵合金粉體粒徑影響AlCoCrFeNi涂層的物相組成,粗粉(60~90 μm)可抑制涂層中FCC相的形成,而AlCoCrFeNi涂層孔隙率、硬度、飽和磁化強度等物理性能可通過其物相組成來調整。Xiao等[17]研究了H2流量對APS制備FeCoNiCrMn涂層微觀組織及性能的影響,并對比分析了噴涂態涂層及經800 ℃、2 h退火處理的涂層的摩擦磨損性能。Hsu等[18]分別采用APS及超音速火焰噴涂(High Velocity Oxy Fuel Spray,HVOF)制備了Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2涂層。研究結果表明,HEA涂層的硬度約為800Hv,其耐磨性幾乎是SUJ2軸承鋼的2倍,且HEA涂層相對于MCrAlY涂層而言具備更加優良的耐高溫氧化性能。Jin等[19]采用APS和激光重熔工藝制備了6種不同硅含量的FeCoCrNiAl0.5Si涂層。研究結果表明,隨著Si含量的增加,涂層硬度及體心立方相的體積分數均增加,而磨損系數、磨痕輪廓深度和質量損失均有所降低,耐磨性有所提高。Shi等[20]研究發現,在APS制備的AlCoCrFeNi涂層中添加Ag和BaF2/CaF2共晶自潤滑相后,復合涂層室溫磨損率降低達10倍。在高溫摩擦環境中,添加潤滑劑改變了高熵合金涂層氧化產物組成,抑制了氧化層的分層,可減輕涂層磨損行為,顯著降低磨損率。Xiao等[21]采用APS制備了鋁含量(物質的量分數)分別為0.5%、1.0%和1.5%的FeCoNiCrSiAl涂層,并研究了FeCoNiCrSiAl涂層在干態和水潤滑條件下的摩擦磨損性能。Wang等[22]系統研究了退火處理對APS制備AlCoCrFeNi涂層組織及性能的影響。Meghwal等[23]在多尺度水平上建立了APS制備AlCoCrFeNi涂層微觀組織與硬度及磨損性能之間的聯系,還評估了涂層整體殘余應力分布及其在海水環境中的電化學性能。

迄今為止,關于APS工藝參數(噴涂功率、噴涂距離等)對高熵合金涂層微觀組織及摩擦磨損性能的影響的研究報道較少。為此,本文選用真空氣霧化FeCoCrNiAl類球形粉體,采用APS制備涂層,對比分析了噴涂功率對該型涂層顯微組織及摩擦磨損性能的影響,并系統分析了該型涂層的室溫及高溫摩擦磨損特性與機制。

1 試驗

1.1 大氣等離子噴涂

由圖1a可以看出,采用氣體霧化法制備的粉末具有良好的球形度。由單個粉體截面EDS面掃元素分布圖1c~g表明,Fe、Co、Cr、Ni、Al元素均勻分布在粉末截面中,說明經氣霧化技術所制備粉末具有良好的成分均勻性。經測定,該型粉體的平均粒度為40 μm,其粒徑分布范圍為10~90 μm,其霍爾流速及松裝密度分別為24.3 s/50 g及3.52 g/cm3。

圖1 APS用粉末SEM形貌及EDS面掃元素分布圖

為提高粉末流動性,噴涂前需將其置于100 ℃干燥箱中處理1 h。為改善涂層與基材界面結合效果,需用丙酮清除304不銹鋼基材(尺寸為140 mm× 30 mm×5 mm)表面油污,然后在0.2 MPa壓力下用120#(0.125 mm)棕剛玉砂對其表面作噴砂粗化處 理[24]。采用DH-1080型等離子噴涂設備制備高熵合金涂層,1號樣品(S1)、2號樣品(S2)及3號樣品(S3)的具體噴涂工藝參數見表1。

1.2 性能檢測

采用Tescan Mira4型掃描電鏡觀察粉末、APS涂層、磨屑、摩擦試驗后涂層及Si3N4磨球磨痕表面形貌,能譜面掃描測量樣品元素分布。采用Bruker D8 Advance型XRD衍射儀分析粉末及涂層相組成,選用Cu靶Kα射線(=1.540 56 ?),電壓、電流、掃描速度及步長分別設定為40 kV、40 mA、2 (°)/min及0.02°,掃描范圍0°~100°[24]。采用LA-950型激光粒度分析儀測試粉末粒度。采用納米壓痕儀(G200,Agilent Technologies)及Berkovich金剛石壓頭測定高熵合金涂層的納米硬度和約化彈性模量[25],加載載荷、加載速率、卸載速率及保載時間分別設定為10 mN、20 mN/min、20 mN/min和 10 s。每種壓痕都在相同顏色區域打 10個點,并取其平均值。高熵合金涂層室溫及高溫摩擦磨損試驗在GF-I型高溫摩擦磨損試驗機上進行,載荷為60 N,轉速為600 r/min,時間為30 min,對磨球為直徑6 mm的Si3N4球,磨球往復長度5 mm,溫度分別設定為室溫、200、400、600 ℃。試驗過程中摩擦因數由計算機記錄,并取相同試驗條件下3次摩擦試驗的算術平均值;采用MT-500型探針式材料表面磨痕測量儀分析磨痕截面形貌、計算磨損體積,探針運行長度為3 mm[24]。

2 結果與分析

2.1 APS涂層形貌及物相分析

由圖2a可見,S1涂層截面為明顯的層狀結構,涂層孔隙較少,涂層厚度較均勻,為(780±10) μm。圖2b為圖2a中白色方框區域放大照片,涂層中可觀察到白色、淺灰色、深灰色和黑色4種不同顏色區域,還可觀察到較多未熔顆粒。S2涂層仍保留了明顯的層片結構特征,其厚度為(880±10) μm,見圖2c。圖2d為圖2c局部區域放大照片,圖中大部分顆粒得以充分熔化鋪展,仍存在一定數量未熔顆粒。噴涂功率增大至25 kW時,S3涂層厚度為(490±10) μm,見圖2e。白色方框區域局部放大圖2f中幾乎觀察不到未熔顆粒存在。

表1 大氣等離子噴涂工藝參數

Tab.1 APS parameters

圖2 APS涂層SEM照片

圖3為S2的EDS元素面掃分布圖。由圖3b、c、e可見,Fe、Co和Ni元素主要分布在白色區域;Cr元素則均勻分布在APS涂層中,見圖3d。而Al元素則偏聚在涂層的淺灰色、深灰色和黑色區域,且區域顏色越深,Al元素含量越高,見圖3f。值得引起注意的是,涂層中Al元素分布與O元素(圖3g)幾乎完全一致。分析表明,等離子噴涂過程中,HEA粉體中Al元素與大氣環境中O元素優先反應生成氧化物,而Fe、Co、Cr、Ni元素與O元素之間的反應則相對較弱。

由表2中EDS面掃數據可見,氣霧化所制備FeCoCrNiAl高熵合金粉末屬于等原子配比粉體,而APS高熵合金涂層中氧含量高達28.56%(原子數分數),這是由于APS過程中高熵合金粉體與大氣環境中的氧劇烈反應造成的。

選定圖3a中的白色(Area 1)、淺灰色(Area 2)、深灰色(Area 3)、黑色(Area 4)4個區域分別做EDS分析,表3為其各不同顏色區域元素成分表。由表3可見,S2涂層隨著區域逐漸由白色過渡至淺灰色、深灰色及黑色,Fe、Co、Cr、Ni元素含量依次降低,而Al元素及O元素含量顯著增大,進而再次印證了APS過程中HEA粉體中Al元素優先與大氣環境中氧氣發生反應而形成氧化物。

由圖4可見,HEA粉末出現了對應于BCC單相固溶體(110)、(200)、(211)、(220)的衍射峰,APS涂層中可觀察到分別對應于FCC相的(111)、(200)、(220)、(311)和(222)晶面的衍射峰,Shi等[20]也發現了類似現象。圖4中還可觀察到位于30.61°及36.26°處的對應于AB2O4(A=Ni/Co/Fe,B=Cr/Al)型混合氧化物的弱衍射峰,Ang等[12]、Anupam等[13]及Meghwal等[23]也觀察到了類似的現象。分析表明,Al是一種已知的BCC相穩定元素,由于APS過程中HEA粉末顆粒的氧化現象使得Al元素被消耗殆盡,導致高熵合金涂層僅可觀察到以FCC相為主、AB2O4相為輔的衍射峰,而無明顯BCC相衍射峰存在。

圖3 S2面掃區域SEM形貌照片及EDS元素面分布圖

表2 FeCoCrNiAl粉末及APS涂層EDS面掃數據表

Tab.2 EDS map results of FeCoCrNiAl powder and APS coating

表3 圖3a中4個不同顏色區域EDS數據表

Tab.3 EDS results of four different color areas in Fig.3a

圖4 粉末喂料及APS涂層XRD圖譜

2.2 APS涂層的力學性能分析

2.2.1 納米力學性能分析

由S2中各區域的載荷-位移曲線圖5可見,隨著O含量的增加,白色、淺灰色、深灰色及黑色區域的最大位移max逐漸降低,分別為324、251、176及171 nm,表明這些區域的硬度逐漸增加。Pharr[26]經研究指出,熱噴涂層和基材的納米硬度和彈性模量可以經載荷與位移曲線計算得出。計算結果表明,白色、淺灰色、深灰色及黑色區域的納米硬度()及彈性模量(r)是單調增加的,詳見表4。納米硬度和彈性模量的比值(/r)為抗塑性指數,它是說明高熵合金涂層變形機制的有效手段,也是預測其抗耐磨性的重要指標之一。經計算,S2中白色、淺灰色、深灰色及黑色區域的抗塑性指數均小于0.1,說明該型涂層主要發生塑性變形[27]。S2中白色、淺灰色、深灰色及黑色區域的另一比值3/r2隨著O含量的增加而增大,其值越大則表明材料抵抗塑性變形的能力越強[28]。

由圖5計算得到S2中白色、淺灰色、深灰色及黑色區域在加載過程中的總變形能隨O含量的增加而降低。而該樣品白色、淺灰色、深灰色及黑色區域在卸載過程中的彈性變性能elastic分別為0.22、0.36、0.38、0.35。此外,值表示拉伸試驗過程中材料韌性的彈性比率[29]。表4中的涂層的納米力學性能(包括、r、/r3/r2、total、elastic及等參數)均為APS涂層摩擦磨損性能的重要影響因素[29],隨著涂層中氧化物含量增加,其納米力學性能提高,耐摩擦磨損性能隨之而增大。

圖5 S2中白色、淺灰色、深灰色及黑色區域的載荷-位移曲線

Fig.5 Load-displacement curves of white, light grey, dark grey and black phases of S2

2.2.2 摩擦磨損性能分析

室溫摩擦試驗結果表明,S1、S2、S3的平均室溫摩擦因數分別為0.77±0.03、0.70±0.01及0.77±0.02,磨痕深度分別為(153±10)、(130±6)、(137±8) μm,平均體積磨損率為(12.25±0.03)×10?5、(9.22±0.01)×10?5、(9.34±0.02)×10?5mm3/(N?m)。分析表明,摩擦因數、磨痕深度及平均磨損率隨樣品制備功率的變化趨勢是一致的。通常情況下,摩擦因數、磨痕深度及磨損率越低,則耐磨性越優異。因此,3組涂層樣品中,S2的耐磨性是最佳的。

因其具備最佳室溫摩擦性能,本文選擇S2開展高溫摩擦試驗。由圖6可見,該樣品在室溫、200、400、600 ℃下的平均摩擦因數分別為0.70±0.03、0.81±0.04、0.67±0.02及0.58±0.01[24]。隨著摩擦環境溫度逐漸升高,摩擦因數先增大,而后有所降低。

此外,S2在室溫、200、400、600 ℃下的磨痕輪廓深度分別為(130±10)、(143±12)、(117±9)、(104±8) μm,相同條件下的平均體積磨損率分別為(9.22±0.03)×10?5、(10.33±0.04)×10?5、(7.77±0.02)×10?5及(6.14±0.01)× 10?5mm3/(N?m)。當摩擦環境溫度由室溫升高至200 ℃時,由于熱軟化效應,磨痕輪廓深度及平均體積磨損率稍有增大,耐磨性有所降低。而經400、600 ℃高溫摩擦試驗后,磨痕輪廓深度反而逐漸降低,L?bel 等[30]也報道了類似的研究成果。

表4 S2中白色、淺灰色、深灰色及黑色區域的納米力學性能

Tab.4 Nano-mechanical properties of white, light grey, dark grey and black phases of S2

圖6 S2摩擦因數-時間曲線圖

圖7為S2的磨損表面形貌圖。由圖7a可見,S2經室溫摩擦30 min后的磨痕寬度約為2 166.3 μm,其局部放大形貌圖中還可分別觀察到剝落坑、平行于磨球運動方向的摩擦溝槽及垂直于磨球運動方向的微裂紋。當摩擦環境溫度升高至200 ℃時,S2的磨痕寬度增大至2 261.0 μm,見圖7b。當摩擦溫度進一步升高至400 ℃及600 ℃后,S2的磨痕寬度分別縮小至2 059.9 μm(見圖7c)及1 876.1 μm(見圖7d)。此外,S2磨痕局部放大圖7b及圖7d中可觀察到磨屑、摩擦溝槽及剝落坑。圖7c中還可觀察到磨痕表面存在大量納米顆粒,這是由于磨痕表面形成了大量氧化物所致。僅從磨損表面形貌可見,室溫摩擦過程中S2主要為磨粒磨損、疲勞磨損及塑性變形,而高溫摩擦過程中則發生了磨粒磨損、粘著磨損及塑性變形等多種磨損機制。

Fig.7 Panorama and local magnification SEM image of worn surfaces of S2after wear test at different temperature: a) wear test at RT; b) wear test at 200 ℃; c) wear test at 400 ℃; d) wear test at 600 ℃

經室溫摩擦試驗后,S2磨痕表面圖8a中可觀察到淺灰色及深灰色物相存在。EDS面掃描分析表明,深灰色區域O元素集中分布,為磨痕表面的氧化物;淺灰色區域Cr元素含量高,為合金涂層區;為了簡化起見,Fe、Co、Ni、Al元素能譜面分布圖并未放入本文中。隨摩擦溫度升高至200 ℃,涂層磨痕表面淺灰色區域減少,深灰色區域有所增加,見圖8b。而當溫度升高至400及600 ℃后,磨痕表面基本被深灰色相所覆蓋,即高溫摩擦試驗后涂層磨痕表面形成了連續的氧化物層,詳見圖8c及圖8d。能譜檢測結果表明,經室溫摩擦試驗后S2磨損表面氧含量約為16.02%(質量分數)。當摩擦環境溫度升高至200、400及600 ℃后,涂層磨損表面氧含量分別增大至20.20%、26.53%、31.62%(質量分數),氧化磨損隨摩擦溫度升高加劇。在400及600 ℃高溫下,氧化磨損已成為高熵合金涂層的主要磨損機制。

Meghwal等[23]對APS制備AlCoCrFeNi涂層磨損表面開展了XPS分析,發現其磨損表面氧化物膜是由Al2O3、Cr2O3、Fe2O3、CoO及Co3O4等金屬氧化物組成的。Liu等[31]也報道了類似的試驗現象。本文研究表明,當摩擦環境溫度≤200 ℃時,高熵合金涂層磨痕表面未形成連續氧化膜,對磨損表面的保護和固體潤滑作用有限。相對于室溫而言,當摩擦溫度升高至200 ℃時,摩擦因數、磨痕輪廓深度和寬度以及磨損率都會由于材料熱軟化而有所增加。在更高的摩擦環境溫度下(≥400 ℃),涂層磨損表面上形成光滑、連續的氧化膜,氧化物膜的納米力學性能高于APS涂層,在穩定氧化膜的保護和固體潤滑作用下,涂層磨粒磨損、粘著磨損作用減弱,S2涂層的摩擦因數、磨痕輪廓深度和寬度以及磨損率均有所降低。

由圖9a可見,經室溫摩擦30 min后,Si3N4對偶磨球表面形成了直徑約2 107.6 μm的磨痕。當摩擦溫度升高至200 ℃后,Si3N4磨球表面磨痕直徑增大至約2 192.2 μm,見圖9b。而經400及600 ℃摩擦30 min后,Si3N4磨球表面磨痕直徑降低至約2 036.7 μm及1 887.7 μm,分別見圖9c及圖9d。值得引起注意的是,Si3N4磨球表面磨痕直徑的變化趨勢與涂層樣品表面磨痕寬度(見圖7)的變化趨勢是一致的。由EDS面掃元素分布圖9a及圖9b可見,當摩擦環境溫度≤200 ℃時,磨球表面所形成的氧化物較少;而當摩擦環境溫度≥400 ℃時,磨球磨痕中的氧化物急劇增加,并形成光滑連續的氧化物膜,分別見圖9c及圖9d。分析表明,由于對偶磨球及涂層的磨痕表面均形成了連續穩定氧化膜,在納米力學性能優異的氧化膜的保護及固體潤滑作用下,涂層磨粒磨損、粘著磨損作用減弱,高溫下涂層的摩擦因數、磨痕輪廓深度及寬度、體積磨損率等均明顯降低。

圖9 Si3N4磨球經不同溫度摩擦試驗后的磨痕表面SEM形貌照片及O、Cr元素面分布

Fig.9 SEM images and O and Cr element map distribution of wear scars of Si3N4balls after test at different temperature: a) wear test at RT; b) wear test at 200 ℃; c) wear test at 400 ℃; d) wear test at 600 ℃

圖10為S2經不同溫度摩擦試驗后所收集的磨屑SEM形貌照片。由圖10a可見,S2經室溫摩擦試驗后所收集的磨屑大多為細顆粒。經200 ℃摩擦試驗后,所收集的磨屑顆粒變粗,還可觀察到片狀顆粒,見圖10b。隨著摩擦溫度升高至400及600 ℃,磨屑的粒度逐漸增大,且片狀磨屑增多,分別見圖10c和圖10d。此外,圖10d中的片狀磨屑上還可觀察到復雜微裂紋。分析表明,摩擦環境溫度升高后,涂層磨損表面所形成的氧化物增多。隨著摩擦試驗繼續進行,氧化物變形成薄膜覆蓋在涂層磨損表面上,且疲勞磨損導致這些氧化物薄層最終出現開裂和剝落。因此,摩擦環境溫度升高后可收集到更多片狀磨屑。

圖10 S2經不同溫度摩擦試驗后所收集磨屑SEM形貌照片

總之,APS高熵合金涂層在高溫(≥ 400 ℃)下的磨損機制以氧化磨損為主,磨粒磨損、粘著磨損和疲勞磨損為輔。此外,高熵合金涂層及Si3N4對偶磨球磨痕表面連續氧化膜的保護及固體潤滑作用對APS涂層的高溫摩擦磨損性能起著重要作用。據報道[17,31-32],其他HEAs涂層體系在高溫摩擦試驗過程中磨損表面原位形成氧化物對其耐磨性也有著重要影響,從而進一步印證了本文研究結論。

3 結論

1)采用氣霧化FeCoCrNiAl高熵合金球形粉體,APS制備了高熵合金涂層。隨著噴涂功率由15 kW逐漸提高至20及25 kW,高熵合金粉體在等離子弧焰流中受熱更加充分,涂層中未熔顆粒減少。隨著涂層截面中四個區域逐漸由白色過渡至淺灰色、深灰色及黑色,區域中Fe、Co、Cr、Ni元素含量依次降低,而Al元素及O元素含量顯著增大。高熵合金粉體XRD圖譜以BCC相衍射峰為主,而涂層XRD圖譜中僅可觀察到以FCC相為主、AB2O4相為輔的衍射峰。

2)相對于S1及S3而言,S2室溫摩擦因數、體積磨損率及磨痕深度均為最小值,分別為(0.70±0.01)、(9.22±0.01)×10?5mm3/(N?m)及(130±6) μm。室溫環境下,磨粒磨損、疲勞磨損及塑性變形為FeCoCrNiAl高熵合金涂層的主要磨損機制。

3)隨著摩擦環境溫度升高,S2的摩擦因數、磨痕深度與寬度、體積磨損率等首先增加,而后有所降低。涂層磨損表面的氧化程度隨試驗溫度的升高而加劇,當摩擦環境溫度≥400 ℃時,高熵合金涂層以氧化磨損為主,以磨粒磨損、粘著磨損及疲勞磨損為輔。涂層及對偶磨球磨損表面連續氧化膜的納米力學性能優異,氧化膜的保護及固體潤滑作用對涂層的高溫摩擦磨損行為有著顯著影響。摩擦環境溫度越高,HEA涂層的耐磨性越好。

[1] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications[J]. Science, 2014, 345(6201): 1153-1158.

[2] HE J Y, WANG H, HUANG H L, et al. A Precipitation- Hardened High-Entropy Alloy with Outstanding Tensile Properties[J]. Acta Materialia, 2016, 102: 187-196.

[3] TSAI M H, YEH J W. High-Entropy Alloys: A Critical Review[J]. Materials Research Letters, 2014, 2(3): 107-123.

[4] YEH J W. Physical Metallurgy of High-Entropy Alloys[J]. JOM, 2015, 67(10): 2254-2261.

[5] CHEN Yong-xing, ZHU Sheng, WANG Xiao-ming, et al. Microstructure Evolution and Strengthening Mechanism of Al0.4CoCu0.6NiSi(=0-0.2) High Entropy Alloys Prepared by Vacuum Arc Melting and Copper Injection Fast Solidification[J]. Vacuum, 2018, 150: 84-95.

[6] MASEMOLA K, POPOOLA P, MALATJI N. The Effect of Annealing Temperature on the Microstructure, Mechanical and Electrochemical Properties of Arc-Melted AlCrFeMnNi Equi-Atomic High Entropy Alloy[J]. Journal of Materials Research and Technology, 2020, 9(3): 5241-5251.

[7] SINGH N, SHADANGI Y, SHIVAM V, et al. MgAlSiCrFeNi Low-Density High Entropy Alloy Processed by Mech-anical Alloying and Spark Plasma Sintering: Effect on Phase Evolution and Thermal Stability[J]. Journal of Alloys and Compounds, 2021, 875: 159923.

[8] MOAZZEN P, TOROGHINEJAD M R, CAVALIERE P. Effect of Iron Content on the Microstructure Evolution, Mechanical Properties and Wear Resistance of FeCoCrNi High-Entropy Alloy ?system Produced via MA-SPS[J]. Journal of Alloys and Compounds, 2021, 870: 159410.

[9] 黃燦, 杜翠薇, 代春朵, 等. 高熵合金涂層的研究進展[J]. 表面技術, 2019, 48(11): 15-22, 35.HUANG Can, DU Cui-wei, DAI Chun-duo, et al. Research Progress of High-Entropy Alloy Coatings[J]. Surface Technology, 2019, 48(11): 15-22, 35.

[10] 辛蔚, 王玉江, 魏世丞, 等. 熱噴涂制備高熵合金涂層的研究現狀與展望[J]. 工程科學學報, 2021, 43(2): 170-178.XIN Wei, WANG Yu-jiang, WEI Shi-cheng, et al. Research Progress of the Preparation of High Entropy Alloy Coatings by Spraying[J]. Chinese Journal of Engineering, 2021, 43(2): 170-178.

[11] HSU W L, YANG Ya-chu, CHEN C Y, et al. Thermal Sprayed High-Entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2Coating with Improved Mechanical Properties and Oxidation Resistance[J]. Intermetallics, 2017, 89: 105-110.

[12] ANG A S M, BERNDT C C, SESSO M L, et al. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi[J]. Metallur-gical and Materials Transactions A, 2015, 46(2): 791-800.

[13] ANUPAM A, KOTTADA R S, KASHYAP S, et al. Understanding the Microstructural Evolution of High Entropy Alloy Coatings Manufactured by Atmospheric Plasma Spray Processing[J]. Applied Surface Science, 2020, 505: 144117.

[14] LIN Dan-yang, ZHANG Nan-nan, HE Bin, et al. Influ-ence of Laser re-Melting and Vacuum Heat Treatment on Plasma-Sprayed FeCoCrNiAl Alloy Coatings[J]. Journal of Iron and Steel Research, International, 2017, 24(12): 1199-1205.

[15] WANG Cai-mei, YU Jian-xing, ZHANG Yu, et al. Phase Evolution and Solidification Cracking Sensibility in Laser Remelting Treatment of the Plasma-Sprayed CrMnFeCoNi High Entropy Alloy Coating[J]. Materials & Design, 2019, 182: 108040.

[16] CHENG K C, CHEN Jing-han, STADLER S, et al. Properties of Atomized AlCoCrFeNi High-Entropy Alloy Powders and Their Phase-Adjustable Coatings Prepared via Plasma Spray Process[J]. Applied Surface Science, 2019, 478: 478-486.

[17] XIAO Jin-kun, TAN Hong, WU Yu-qing, et al. Microstr-ucture and Wear Behavior of FeCoNiCrMn High Entropy Alloy Coating Deposited by Plasma Spraying[J]. Surface and Coatings Technology, 2020, 385: 125430.

[18] HSU W L, MURAKAMI H, YEH J W, et al. On the Study of Thermal-Sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2HEA Overlay Coating[J]. Surface and Coatings Technology, 2017, 316: 71-74.

[19] JIN Bing-qian, ZHANG Nan-nan, GUAN Sheng, et al. Microstructure and Properties of Laser re-Melting FeCoCrNiAl0.5SiHigh-Entropy Alloy Coatings[J]. Surface and Coatings Technology, 2018, 349: 867-873.

[20] SHI Pei-ying, YU Yuan, XIONG Ni-na, et al. Microstru-cture and Tribological Behavior of a Novel Atmospheric Plasma Sprayed AlCoCrFeNi High Entropy Alloy Matrix Self-Lubricating Composite Coatings[J]. Tribology Inter-na-tional, 2020, 151: 106470.

[21] XIAO Jin-kun, WU Yu-qing, CHEN Juan, et al. Micros-tructure and Tribological Properties of Plasma Sprayed FeCoNiCrSiAlHigh Entropy Alloy Coatings[J]. Wear, 2020, 448-449: 203209.

[22] WANG Liang-quan, ZHANG Fan-yong, YAN Shu, et al. Microstructure Evolution and Mechanical Properties of Atmosphere Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings under Post-Annealing[J]. Journal of Alloys and Compounds, 2021, 872: 159607.

[23] MEGHWAL A, ANUPAM A, LUZIN V, et al. Multiscale Mechanical Performance and Corrosion Behaviour of Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings[J]. Journal of Alloys and Compounds, 2021, 854: 157140.

[24] 王躍明, 唐求豪, 夏運朝, 等. 超音速火焰噴涂TiB2-50Ni復合涂層的高溫摩擦磨損性能[J]. 表面技術, 2020, 49(10): 89-98. WANG Yue-ming, TANG Qiu-hao, XIA Yun-zhao, et al. Friction and Wear Properties of TiB2-50Ni Composite Coating Fabricated by High Velocity Oxygen Flame Spraying at High Temperature[J]. Surface Technology, 2020, 49(10): 89-98.

[25] 歐陽晟, 儲志強, 唐求豪, 等. 爆炸噴涂鐵基非晶涂層的微觀結構和納米壓痕行為[J]. 粉末冶金材料科學與工程, 2020, 25(6): 480-485. OUYANG Sheng, CHU Zhi-qiang, TANG Qiu-hao, et al. Microstructure and Nano-Indentation Behavior of Deto-nation Sprayed Iron-Based Amorphous Coating[J]. Mate-rials Science and Engineering of Powder Metallurgy, 2020, 25(6): 480-485.

[26] PHARR G M. Measurement of Mechanical Properties by Ultra-Low Load Indentation[J]. Materials Science and Engineering: A, 1998, 253(1-2): 151-159.

[27] 汪利斌, 秦黎, 聞寄勤, 等. 納米壓痕法測定NiTi形狀記憶合金表面氧化膜納米硬度和彈性模量[J]. 熱加工工藝, 2019, 48(6): 182-187.WANG Li-bin, QIN Li, WEN Ji-qin, et al. Measurement of Nano Hardness and Elastic Modulus of Surface Oxid-ation Film on NiTi Shape Memory Alloy by Nano- Inde-n-tation[J]. Hot Working Technology, 2019, 48(6): 182- 187.

[28] MUSIL J, JIROUT M. Toughness of Hard Nanostructured Ceramic Thin Films[J]. Surface and Coatings Technology, 2007, 201(9-11): 5148-5152.

[29] CHENG J B, LIANG X B, XU B S. Devitrification of Arc-Sprayed FeBSiNb Amorphous Coatings: Effects on Wear Resistance and Mechanical Behavior[J]. Surface and Coatings Technology, 2013, 235: 720-726.

[30] L?BEL M, LINDNER T, LAMPKE T. High-Temperature Wear Behaviour of AlCoCrFeNiTi0.5Coatings Produced by HVOF[J]. Surface and Coatings Technology, 2020, 403: 126379.

[31] LIU Hao, LIU Jian, CHEN Pei-jian, et al. Microstructure and High Temperature Wear Behaviour of In-Situ TiC Reinforced AlCoCrFeNi-Based High-Entropy Alloy Composite Coatings Fabricated by Laser Cladding[J]. Optics & Laser Technology, 2019, 118: 140-150.

[32] TIAN Li-hui, FENG Zong-kang, XIONG Wei. Microstr-ucture, Microhardness, and Wear Resistance of AlCoCrFeNiTi/ Ni60 Coating by Plasma Spraying[J]. Coatings, 2018, 8(3): 8030112.

Friction and Wear Properties of FeCoCrNiAl High Entropy Alloy Coatings Prepared by Atmospheric Plasma Spraying at High Temperature

1,1,1,1,2,3,4

(1. School of Materials Science and Engineering, Hunan University of Science and Technology, Hunan Xiangtan 411201, China; 2. Powder Metallurgy and Cermet Institute, Hunan Metallurgy Material Institute Co., Ltd., Changsha 410129, China; 3. School of Management Engineering, Jiangsu Urban and Rural Construction Vocational College, Jiangsu Changzhou 213147, China; 4. Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China)

Highentropy alloys (HEAs) can be widely used in aerospace, biomedicine, new energy, nuclear industry, etc. for their high strength and hardness, superior wear resistance and corrosion resistance. However, the cost of HEAs is expensive due to the high price of each principal component. HEA coatings developed based on HEA theory and modern surface technology can not only reduce preparation cost, but also obtain superior properties. The work aims to prepare FeCoCrNiAl HEA coatings under a power of 15, 20 and 25 kW by atmospheric plasma spraying (APS) and investigate the effects of temperature on microstructure and wear resistance of HEA coatings.

Microstructure, element map distribution and phase structure of feedstock, APS coatings, worn surfaces of coatings and grinding balls were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD), respectively. The nano-mechanical properties of APS coatings were investigated by a NanoTest Berkovich diamond nano-indenter. Tribological properties of APS coatings were analyzed with a ball-on-disc high speed reciprocating wear tester. The Si3N4balls with a diameter of 6 mm were selected as counterparts. The cross-sectional morphology of wear marks and wear volume loss of HEA coatings were measured by Probe-type material surface wear mark measuring instrument.

The results indicated that white, light gray, dark gray and black phases formed in the APS coatings. The higher the oxygen content was, the darker the color of the phases was. Values of nano-mechanical properties including nano-indentation hardness (), Young's modulus (r), ratio of hardness to elastic modulus (/r) gradually increased as color of the phase region transformed from white to light gray, dark gray and black. The HEA powder melted more completely with the increase of spray power. The XRD patterns of HEA powder were dominated by diffraction peaks of BCC phase, while those of APS coatings were dominated by FCC phase and supplemented by AB2O4phase. The room temperature (RT) wear resistance of HEA coating sprayed under 20 kW power was the best of the three under the optimum coefficient of friction (COF), wear rate and wear track depth of (0.70±0.02) (9.22±0.01)×10?5mm3/(N?m) and (130±10) μm, respectively. Abrasive wear, adhesive wear, fatigue wear, and plastic deformation were the main wear mechanisms of APS coatings at RT. COF, wear track depth and width, wear rate of APS coating prepared under 20 kW power all initially increased and then decreased with the rise of test temperature. Most of wear debris collected from RT wear test were fine particles. Particle size of wear debris increased with more and more plate-like debris being formed during wear test at higher temperature. Oxidation degree of worn surfaces of HEA coatings increased with test temperature rising. Main oxidation wear and supplemented abrasive wear, adhesive wear and fatigue wear occurred during high temperature wear test. The wear resistance of HEA coatings was obviously improved at high temperature due to protection and solid lubrication from a continuous oxide film formed on the worn surface. APS HEA coatings may be widely used in high temperature and oxygen enriched environments in the near future.

atmospheric plasma spraying; FeCoCrNiAl high entropy alloy; coating; microstructure; friction and wear properties

2022-08-05;

2023-04-14

TG174.442

A

1001-3660(2023)10-0160-11

10.16490/j.cnki.issn.1001-3660.2023.10.012

2022-08-05;

2023-04-14

湖南省自然科學基金(2021JJ50025);湖南省重點研發計劃項目(2022GK2030);益陽市科技創新計劃項目(2022061)

Supported by Natural Science Foundation of Hunan Province (2021JJ50025); Key R&D Plan Project of Hunan Province (2022GK2030); Yiyang Science and Technology Innovative Program Project (2022061)

王躍明, 李晨龍, 韓旭航, 等. 大氣等離子噴涂FeCoCrNiAl高熵合金涂層的高溫摩擦磨損性能[J]. 表面技術, 2023, 52(10): 160-170.

WANG Yue-ming, LI Chen-long, HAN Xu-hang, et al. Friction and Wear Properties of FeCoCrNiAl High Entropy Alloy Coatings Prepared by Atmospheric Plasma Spraying at High Temperature[J]. Surface Technology, 2023, 52(10): 160-170.

責任編輯:萬長清

猜你喜歡
深灰色磨痕磨損率
世上的雨
空間組合彎頭氣固兩相流動磨損特性的數值模擬
APM列車電機碳刷磨損率超標的原因分析及解決方法
德國制造
P2離合器摩擦片磨損率臺架測試方法
四種核電用包殼材料的微動磨損性能研究*
哪個圖形面積大
哪個圖形面積大
水介質下打磨磨痕對鋼軌疲勞損傷的影響
減少GDX2包裝機組“磨痕”煙包的數量
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合