?

液相微萃取技術在煙草分析中的應用進展

2024-03-26 08:13時林平陳滿堂趙閣劉瑞紅謝復煒
中國煙草學報 2024年1期
關鍵詞:液液有機溶劑液相

時林平,陳滿堂,趙閣,劉瑞紅,謝復煒*

綜述

液相微萃取技術在煙草分析中的應用進展

時林平1,2,陳滿堂1,趙閣1,劉瑞紅1,謝復煒1*

1 中國煙草總公司鄭州煙草研究院,鄭州高新技術產業開發區楓楊街2號 450001;2 鄭州大學,鄭州高新技術產業開發區科學大道100號 450001

利用快速高效的樣品前處理方法進行煙草成分分析可以減少煙草中基質對分析過程的影響。液相微萃取技術是一種簡單、快捷、環保的樣品前處理技術。本文介紹了液相微萃取技術的原理,分析了影響萃取效率的因素,總結了液相微萃取技術在煙草分析中的應用進展。針對液相微萃取技術在煙草樣品前處理中存在的不足,對其應用前景進行了展望。

液相微萃??;樣品前處理;煙草分析

煙草品質取決于其化學成分,因此,煙草化學成分的分析對于評價煙草質量風格至關重要。煙草成分極其復雜,且測定時各成分間往往會相互干擾,這給煙草分析帶來了較大挑戰。為減少煙草中基質的影響,提高檢測方法的靈敏度,降低檢出限,實現復雜煙草樣品的常量、半微量甚至痕量分析,選擇合適的樣品前處理技術尤為重要。固相萃?。⊿PE)[1-2]和液液萃?。↙LE)[3]是煙草分析中常用的兩種前處理技術,但這些技術往往存在耗時長、有毒有機溶劑消耗多等缺點。為克服這些缺點,微萃取技術尤其是液相微萃?。↙PME)逐漸得到發展。作為一種綠色的樣品前處理技術,液相微萃取技術具有所需樣品量少、操作簡單、環境友好等優點,已在煙草中脂肪胺[4]、氨基酸[5]、香味成分[6]和揮發性成分[7]等以及煙氣中煙堿[8-9]、多酚[10]、芳香胺[11]等的分析中得到廣泛應用。然而,目前仍缺乏對液相微萃取技術在煙草分析中應用進展的歸納總結。本文重點針對LPME技術的原理、影響因素、分類及其在煙草分析中的應用進行系統綜述,并展望了其在煙草分析中的發展方向。

1 LPME技術簡介

LPME技術是LLE的改進方法,以液體介質作為萃取相,采用特定負載技術將100 μL或更少體積的溶劑固載成萃取相,用于分離富集痕量目標物。與LLE相比,LPME技術無需大量有機溶劑,更安全環保,也可在一定程度上降低基質干擾。LPME包括兩相LPME和三相LPME。在兩相LPME中,萃取相與樣品溶液直接接觸,有利于萃取過程的進行,缺點是降低了樣品的選擇性,且限制萃取溶劑為水不溶的有機液體。然而,在三相LPME中,樣品溶液和最終的受體相通過第三種溶劑分離,該溶劑與兩相不混溶,可以用水作為受體相,能夠提高方法的選擇性。

2 LPME技術原理

LPME技術是一種基于分析物在樣品及小體積有機溶劑之間平衡分配,集萃取、濃縮、解吸于一體的樣品前處理技術。

對于液液微萃取體系,平衡狀態下LPME的萃取量n的計算方式為[12]:

對于液液液微萃取體系,體系達到平衡后分析物的萃取量n的計算方式為[13]:

對于靜態頂空LPME體系,平衡狀態下分析物的萃取量n的計算方式為[12]:

對于動態頂空LPME體系,平衡狀態下萃取量n的計算方式為[14]:

3 影響萃取效率的因素

LPME的萃取效率受萃取溶劑的種類、pH、萃取時間、鹽效應、溫度等的影響。

3.1 萃取溶劑

萃取溶劑的選擇依據“相似相溶”原則。為了避免萃取過程中萃取溶劑的揮發,選擇有機溶劑時應避免揮發性有機溶劑[15]。對于單滴微萃?。⊿DME),針頭懸掛液滴的大小也會影響萃取效率。萃取效率受速率常數k(s-1)的影響,k的計算方式為[16]:

3.2 其他影響因素

改變溶液pH可以改變離子在溶液中的存在形態,從而改變溶解度,增加在有機相中的分配。LPME是分析物在樣品與有機溶劑之間分配平衡的過程,當分析物在樣品與有機溶劑之間達到分配平衡時萃取量最大,延長萃取時間也可能會導致萃取率下降。對于分配系數較小物質的萃取時間則需要嚴格控制。液液分散微萃取由于萃取劑均勻地分散在水相中而能在很短時間內將分析物從水相轉移到有機相,因此萃取效率受萃取時間的影響較小。在液體樣品中加入適量無機鹽可增加離子濃度,降低待測物溶解度,增加萃取效率和分析靈敏度。升高溫度會加快分析物的擴散速度,縮短萃取時間;但也會加速有機溶劑的揮發,導致其在溶劑中的萃取量減少。因此,在實際操作過程中要綜合考慮萃取時間和萃取效率以選擇最佳萃取溫度。

4 LPME技術分類及在煙草分析中的應用

LPME技術近年來發展迅速(圖1)。1996年,Liu和Dasgupta[17]提出LPME技術;1997年He和Lee[18]采用微量注射器作為萃取微滴的支撐體和萃取結束后的進樣器,提出了靜態LPME技術和動態LPME技術,命名為SDME;2002年,Zhao和Lee[19]提出了中空纖維LPME技術(HF-LPME),克服了懸在色譜微量進樣器針頭上的有機液滴在樣品攪拌時易于脫落的缺點;Pedersen-Bjergaard和Rasmussen)[15]于1999年提出了膜輔助液液液微萃取技術(LLLME);2003年Gjelstad等[20]報道了一種膜輔助液-液-液萃取的新方法,稱為平行液膜微萃?。≒ALME);2006年Rezaee等[21]提出分散液液微萃取技術(DLLME);同年,Pedersen-Bjergaard和Rasmussen[22]提出的電膜微萃取技術(EME)已成為從復雜樣品中分離離子藥物的潛在技術。表1列舉了LPME技術在煙草分析中的應用實例。

表1 基于LPME技術的煙草分析方法①

Tab.1 Tobacco analysis methods based on the LPME technology

注:①GC-MS: 氣相色譜-質譜聯用;HPLC-UV: 高效液相色譜-紫外檢測器;UA-IL-DLLME: 超聲輔助離子液體分散液-液微萃取技術;DSDME: 直接懸浮液滴微萃??;VA-DLPME: 渦旋輔助分散液相微萃??;UA-DES-LPME: 超聲輔助低共熔溶劑液相微萃??;MALDI-FTICR-MS: 基質輔助激光解吸/電離傅里葉變換離子回旋共振質譜法;GC-MS/MS: 氣相色譜-串聯質譜;UV-Vis: 紫外可見吸收光譜儀;FAAS: 火焰原子吸收光譜儀;FTMS: 傅里葉變換質譜。

Note: ①GC-MS: gas chromatography-mass spectrometry;HPLC-UV: High performance liquid chromatography ultraviolet detector;UA-IL-DLLME: Ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction;DSDME: Direct suspension droplet microextraction;VA-DLPME: Vortex-assisted dispersive liquid phase microextraction;UA-DES-LPME: Ultrasonic-assisted liquid-liquid microextraction technique based on deep eutectic solvents;MALDI-FTICR-MS: matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry; GC-MS/MS: Gas chromatography-tandem mass spectrometry;UV-Vis: Ultraviolet-visible absorption spectroscopy;FAAS: Flame atomic absorption spectrometer;FTMS: Fourier transform mass spectrometry.

4.1 SDME

SDME包括直接單滴微萃?。―I-SDME)和頂空SDME(HS-SDME)。DI-SDME是直接將有機液滴浸沒到樣品溶液中,常用于萃取熱不穩定或沸點較高的目標分析物;HS-SDME是將一滴萃取劑暴露在樣品溶液上方的頂空中,用于萃取揮發性和半揮發性分析物[18]。Sha等[4]采用HS-SDME-同步衍生氣相色譜-質譜聯用(GC-MS)技術測定了煙草樣品中的脂肪胺,該方法線性良好。Xie等[28]用SDME-同步衍生-基質輔助激光解吸/電離傅里葉變換離子回旋共振質譜法(EDSD/MALDI-FTICR-MS)技術分析測定單口煙氣中的小分子醛,該方法簡單、快速、溶劑和試劑消耗量少。需要注意的是,SDME存在液滴不穩定、容易從針頭尖端脫落、重復性差等缺點。

4.2 HF-LPME

HF-LPME的發展解決了SDME中出現的問題,其原理是中空纖維浸入有機溶劑中,中空纖維的孔隙通過毛細管力與纖維壁結合形成薄支撐液膜(SLMs),溶劑穿過SLMs,從而防止位于纖維腔內的萃取相溶解到樣品中[19, 38]。在兩相LPME采樣模式中,分析物從樣品中萃取到固定在中空纖維孔隙中的萃取劑中;在三相LPME萃取模式中,中空纖維孔隙中的有機溶劑與中空纖維腔內的受體溶劑不同,形成“液液液”三相萃取體系。Esrafili等[25]基于在線HF-LPME-高效液相色譜-紫外檢測(HPLC-UV)自動化儀器定量分析卷煙煙氣中的吡啶,該方法操作簡單、溶劑消耗量低、易于實現自動化。

4.3 PALME

PALME的提出解決了HF-LPME不能在商業設備中應用的缺點,其原理與HF-LPME相同。PALME基于96孔濾板,每個孔的底部都對應含有多孔過濾器的濾板;用浸漬有機溶劑的平膜將水樣品和水受體相分開,形成三明治式的體系[20,39]。PALME技術操作過程簡單,只消耗幾微升的樣品體積,可以同時進行多個樣品的萃取,PALME形成的三相萃取體系減少了基質效應的影響[40]。

4.4 DLLME

DLLME是將萃取劑和分散劑混合物用注射器快速注入盛有液體樣品的錐形離心管中,形成萃取劑-分散劑-液體樣品三相混合狀態溶液;萃取完成后以低速離心分離萃取劑和樣品,收集底部的萃取劑層進行分析[21]。Tabrizi和Abdollahi[41]建立了DLLME-HPLC法測定卷煙主流煙氣中苯甲醛、丁醛和糠醛等醛類物質,該方法新穎、簡單且對環境友好。Li等[30]用衍生化-超聲輔助-DLLME技術測定煙草中11種主要碳水化合物,并將該方法成功應用于煙草添加劑中碳水化合物的測定。雖然DLLME萃取效率高,但還有以下限制: 使用有害的有機溶劑(如氯化溶劑)作為萃取劑;乳化需要一種與萃取溶劑競爭的分散溶劑,從而降低萃取效率;萃取后需要離心分離,難以實現自動化。為解決以上問題,研究者們逐步將ILs、DESs等新型綠色溶劑應用于DLLME技術。Memon等[26]建立了一種基于DESs的超聲輔助LPME方法,用于測定煙草樣品中的鉛含量,該方法環保、方便、簡單。

4.5 EME技術

EME技術是在樣品溶液中使用兩個電極,并在中空纖維腔中外加電場的一種HF-LPME模式,其原理是基于被分析物在外加電場的作用下,通過SLMs進入微升級的受體溶液中;萃取過程中,帶電目標分析物在電場的作用下快速遷移到SLMs中并穿過SLMs,最終在接收相中富集[22]。在萃取堿性化合物時,應調整接收相和樣品相pH使目標分析物帶正電,陽極置于樣品相中,陰極置于接收相中;當萃取酸性化合物時,調整接收相和樣品相pH確保目標分析物帶負電,電極位置則相反。如今,EME技術廣泛用于萃取食品及環境樣品中的有機微污染物等[42-44]。EME技術正成為一種從復雜生物樣品中分離、濃縮的新綠色方法。Chen等[37]建立了一種EME-HPLC-UV聯用技術用于傳統卷煙、電子煙和加熱不燃燒卷煙氣溶膠中煙堿含量的檢測,該方法環保、方便、簡單。

5 總結與展望

液相微萃取技術是一種新型環保的綠色萃取技術,它集采樣、萃取、濃縮等步驟于一體,在分析化學領域展現出越來越廣的應用前景,被廣泛應用于煙草成分分析。但液相微萃取技術在萃取劑的使用、重現性等方面還存在局限性。液相微萃取技術未來的發展方向在于: (1)篩選環境友好、成本低廉的萃取劑;(2)進一步提高萃取技術的選擇性;(3)與其他樣品前處理技術聯用;(4)與多種檢測手段相結合;(5)實現現場原位分析;(6)開發新型高穩健液相微萃取技術應用于煙草成分的大批量分析。

[1] ZHAO G, WANG S, FU Y, et al. Analysis of the heterocyclic aromatic amines in cigarette smoke by liquid chromatography- andem mass spectrometry[J]Chromatographia, 2014, 77(11): 813-820.

[2] CHEN Y, ZHANG W, ZHANG Y, et al. In situ preparation of core-shell magnetic porous aromatic framework nanoparticles for mixed-mode solid-phase extraction of trace multitarget analytes[J]. Journal of Chromatography A, 2018, 1556: 1-9.

[3] 嚴俊,王紅娟,陳志燕,等. 氣相色譜-串聯質譜法測定電子煙煙液中的10種生物堿含量[J]. 分析測試學報,2021, 40(7): 1037-1042.

YAN Jun, WANG Hongjuan, CHEN Zhiyan, et al. Determination of 10 alkaloids in refill solutions for electronic cigarettes by gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(7): 1037-1042.

[4] SHA Y, MENG J, LIN H, et al. Development of single-drop microextraction and simultaneous derivatization followed by GC-MS for the determination of aliphatic amines in tobacco[J]. Journal of Separation Science, 2010, 33(9): 1283-1287.

[5] LI G, WU D, XIE W, et al. Analysis of amino acids in tobacco by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method[J]. Journal of Chromatography A, 2013, 1296: 243-247.

[6] WU L, LI Q, LI C, et al. Determination of aroma components in Chinese southwest tobacco by directly suspended droplet microextraction combined with GC-MS[J]. Journal of Chromatographic Science, 2014, 52(10): 1317-1325.

[7] SUN S H, XIE J P, XIE F W, et al. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2008, 1179(2): 89-95.

[8] 吳億勤,秦云華,劉巍,等. 分散液液微萃取結合高效液相色譜測定主流煙氣中的煙堿[J]. 云南大學學報(自然科學版),2018, 40(3): 545-550.

WU Yiqin, QIN Yunhua, LIU Wei, et al. Determination of nicotine in mainstream flue gas by dispersive liquid-liquid microextraction combined with high performance liquid chromatography[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(3): 545-550.

[9] XIE J P, SUN S H, WANG H Y, et al. Determination of nicotine in mainstream smoke on the single puff level by liquid-phase microextraction coupled to matrix-assisted laser desorption/ ionization fourier transform mass spectrometry[J] Rapid Communications in Mass Spectrometry, 2006, 20(17): 2573-2578.

[10] CAI K, GAO W, YUAN Y, et al. An improved in situ acetylation with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the sensitive determination of phenols in mainstream tobacco smoke[J]. Journal of Chromatography A, 2019, 1603: 401-406.

[11] 鄧惠敏,李中皓,邊照陽,等. GC/MS法同時測定主流煙氣中9種芳香胺[J]. 煙草科技,2017, 50(12): 61-69.

DENG Huimin, LI Zhonghao, BIAN Zhaoyang, et al. Simultaneous determination of nine aromatic amines in mainstream cigarette smoke by GC/MS[J]. Tobacco Science & Technology, 2020, 53(9): 33-39, 61.

[12] PRZYJAZNY A, KOKOSA J M. Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction[J]. Journal of Chromatography A, 2002, 977(2): 143-153.

[13] 趙汝松,徐曉白,劉秀芬. 液相微萃取技術的研究進展[J]. 分析化學,2004, 32(9): 1246-1251.

ZHAO Rusong, XU Xiaobai, LIU Xiufen, et al. The advancement and application of liquid-phase microextraction[J]. Chinese Journal of Analytical Chemistry, 2004, 32(9): 1246-1251.

[14] SHEN G, LEE H K. Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection[J]. Analytical Chemistry, 2003, 75(1): 98-103.

[15] PEDERSEN-BJERGAARD S, RASMUSSEN K E. Liquid-liquid- liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Analytical Chemistry, 1999, 71(14): 2650-2656.

[16] ZHAO L, LEE H K. Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water[J]. Journal of Chromatography A, 2001, 919(2): 381-388.

[17] LIU H, DASGUPTA P K. Analytical chemistry in a drop. Solvent extraction in a microdrop[J]. Analytical Chemistry, 1996, 68(11): 1817-1821.

[18] HE Y, LEE H K. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe[J]. Analytical Chemistry, 1997, 69(22): 4634-4640.

[19] ZHAO L, LEE H K. Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry[J]. Analytical Chemistry, 2002, 74(11): 2486-2492.

[20] GJELSTAD A, RASMUSSEN K E, PARMER M P, et al. Parallel artificial liquid membrane extraction: Micro-scale liquid-liquid-liquid extraction in the 96-well format[J]. Bioanalysis, 2013, 5(11): 1377-1385.

[21] REZAEE M, ASSADI Y, MILANI HOSSEINI M R, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1-2): 1-9.

[22] PEDERSEN-BJERGAARD S, RASMUSSEN K E. Electrokinetic migration across artificial liquid membranes: New concept for rapid sample preparation of biological fluids[J]. Journal of Chromatography A, 2006, 1109(2): 183-190.

[23] Memon Z M, Yilmaz E,Soylak M. Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination[J]. Journal of Molecular Liquids, 2017, 229: 459-464.

[24] SUN S, CHENG Z, XIE J, et al. Identification of volatile basic components in tobacco by headspace liquid-phase microextraction coupled to matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(8): 1025-1030.

[25] ESRAFILI A, YAMINI Y, GHAMBARIAN M, et al. Automated preconcentration and analysis of organic compounds by on-line hollow fiber liquid-phase microextraction-high performance liquid chromatography[J]. Journal of Chromatography A, 2012, 1262: 27-33.

[26] MEMON Z M, YILMAZ E, SHAH A M, et al. A green ultrasonic-assisted liquid-liquid microextraction technique based on deep eutectic solvents for flame atomic absorption spectrometer determination of trace level of lead in tobacco and food samples[J]. Journal of the Iranian Chemical Society, 2018, 16(4): 687-694.

[27] EL Sheikh R, HASSAN W S, YOUSSEF A M, et al. Eco-friendlyultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction of nickel in water, food and tobacco samples prior to FAAS determination[J]. International Journal of Environmental Analytical Chemistry, 2020, 102(4): 899-910.

[28] XIE J, YIN J, SUN S, et al. Extraction and derivatization in single drop coupled to MALDI-FTICR-MS for selective determination of small molecule aldehydes in single puff smoke[J]. Analytica Chimica Acta, 2009, 638(2): 198-201.

[29] SHA Y, MENG J, ZHANG Y, et al. Determination of volatile organic acids in tobacco by single-drop microextraction with in-syringe derivatization followed by GC-MS[J]. Journal of Separation Science, 2010, 33(2): 212-217.

[30] LI P, ZHU X, HONG S, et al. Ultrasound-assisted extraction followed by dispersive liquid-liquid microextraction before gas chromatography-mass spectrometry for the simultaneous determination of flavouring compounds in tobacco additives[J]. Analytical Methods, 2012, 4(4): 995-1000.

[31] 朱曉蘭,洪深求,李盼盼,等. 分散液液微萃取/氣相色譜-質譜法同時測定煙用添加劑中8種烷基苯類香味有害物[J]. 分析測試學報,2012, 31(3): 351-354, 358.

ZHU Xiaolan, HONG Shenqiu, LI Panpan, et al. Simultaneous determination of allkenylbenzenes and other flavor-related compounds in tobacco additives by dispersive liquid-liquid microextraction and GC-MS[J]. Journal of Instrumental Analysis, 2012, 31(3): 351-354, 358.

[32] ZHU X, XU Y, GAO Y, et al. Pressurized liquid extraction combined with dispersive liquid-liquid micro-extraction as an efficient sample preparation method for determination of volatile components in tobacco[J]. Journal of the Chinese Chemical Society, 2012, 59(7): 909-916.

[33] TABRIZI A B, ABDOLLAHI A. Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations[J]. Journal of Hazardous Materials, 2013, 254-255: 390-396.

[34] ALOTHMAN Z A, HABILA M A, YILMAZ E, et al. Lead preconcentration as rac-(E,E)-N,N'-bis(2-chlorobenzylidene)cyclohexane-1,2-diamine complexes from water and tobacco samples by dispersive liquid-liquid microextraction[J]. Journal of Analytical Chemistry, 2015, 70(6): 691-695.

[35] 陳曉水,楊洋,湯曉東,等. 分散液液微萃取-GC-MS/MS法測定卷煙主流煙氣粒相物中的農藥殘留[J]. 煙草科技,2017, 50(1): 58-66.

CHEN Xiaoshui, YANG Yang, TANG Xiaodong, et al. Determination of pesticide residues in particulate matter of mainstream cigarette smoke by dispersive liquid-liquid microextraction and gas chromatography-tandem mass spectrometry[J]. Tobacco Science & Technology, 2017, 50(1): 58-66.

[36] 秦云華,吳億勤,張承明,等. 分散液液微萃取-微量分光光度法測定再造煙葉廢水中煙堿[J]. 分析試驗室,2018, 37(6): 696-700.

QIN Yunhua, WU Yiqin, ZHANG Chengming, et al. Determination of nicotine in reconstituted tobacco wastewater using dispersive liquid.liquid microextraction combined with microscopic spectrophotometry[J]. Chinese Journal of Analysis Laboratory, 2018, 37(6): 696-700.

[37] CHEN M, QIN Y, WANG S, et al. Electromembrane extraction of nicotine in inhaled aerosols from tobacco cigarettes, electronic cigarettes, and heated tobacco products[J]. Journal of Chromatography B, 2022, 1208: 123391.

[38] GHAMBARIAN M, YAMINI Y, ESRAFILI A. Developments in hollow fiber based liquid-phase microextraction: Principles and applications[J]. Microchimica Acta, 2012, 177(3-4): 271-294.

[39] OLSEN K N, ASK K S, PEDERSEN-BJERGAARD S, et al. Parallel artificial liquid membrane extraction of psychoactive analytes: A novel approach in therapeutic drug monitoring[J]. Bioanalysis, 2018, 10(6): 385-395.

[40] GJELSTAD A. Three-phase hollow fiber liquid-phase microextraction and parallel artificial liquid membrane extraction[J]. TRAC Trends in Analytical Chemistry, 2019, 113: 25-31.

[41] TABRIZI A B, ABDOLLAHI A. Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations[J]. Journal of Hazardous Materials, 2013, 254-255: 390-396.

[42] WAN L, GAO H, GAO H, et al. Selective extraction and determination of steroidal glycoalkaloids in potato tissues by electromembrane extraction combined with LC-MS/MS[J]. Food Chemistry, 2022, 367: 130724.

[43] GAO H, CHEN M, GAO H, et al. Determination of ractopamine residue in animal derived foods using electromembrane extraction followed by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2022, 1675: 463179.

[44] WAN L, GAO H, LIU X, et al. Electromembrane extraction of clenbuterol from swine urine for monitoring illegal use in livestock[J]. Journal of Separation Science, 2022, 45(21): 1-8.

Progress in the application of liquid-phase microextraction technique in tobacco analysis

SHI Linping1,2, CHEN Mantang1, ZHAO Ge1, LIU Ruihong1, XIE Fuwei1*

1 Zhengzhou Tobacco Research of CNTC, Zhengzhou 450001, China;2 Zhengzhou University, Zhengzhou 450001, China

The use of rapid and efficient sample pretreatment methods for tobacco component analysis can reduce the influence of tobacco matrices on the analytical process. Liquid-phase microextraction technique is a simple, fast, and environmentally friendly sample pretreatment method. This paper introduces the principles of liquid-phase microextraction technology, analyzes the factors that affect extraction efficiency, and summarizes the progress in the application of liquid-phase microextraction technology in tobacco analysis. Addressing the shortcomings of liquid-phase microextraction technology in the pre-treatment of tobacco samples, the paper offers a perspective on its future applications.

liquid-phase microextraction; sample pre-treatment; tobacco analysis

. Email:xiefuwei@sina.com

國家自然科學基金“三維多孔碳基凈化材料對農殘及共存基質的競爭吸附機制研究”(32202166);鄭州煙草研究創新專項“基于三維多孔碳籠凈化煙草基質的農殘快速篩查和定量分析研究”(312020CR0300);國家煙草專賣局創新平臺科研活動穩定支持專項(312021AW0420)

時林平(1999—),在讀碩士研究生,主要從事煙草化學研究,Tel:0371-67672690,Email:slphxy@163.com

謝復煒(1973—),Tel:0371-67672502,Email:xiefuwei@sina.com

2023-04-14;

2023-11-10

時林平,陳滿堂,趙閣,等. 液相微萃取技術在煙草分析中的應用進展[J]. 中國煙草學報,2024,30(1). SHI Linping, CHEN Mantang, ZHAO Ge, et al. Progress in the application of liquid-phase microextraction technique in tobacco analysis[J]. Acta Tabacaria Sinica, 2024,30(1). doi:10.16472/j.chinatobacco.2023.T0058

猜你喜歡
液液有機溶劑液相
高效液相色譜法測定水中阿特拉津
反相高效液相色譜法測定食品中的甜蜜素
同種異體骨產品中有機溶劑殘留分析
超聲輔助分散液液微萃取與分光光度法聯用測定痕量銅的研究
分散液液微萃取技術在食品分析中的應用進展
農產品中6種有機溶劑殘留的氣相色譜-質譜檢測方法
原位生成離子液體分散液液萃取-高效液相色譜法測定水樣中的莠去津
反相高效液相色譜法快速分析紫脲酸
超高效液相色譜法測定藻油中的DPA和DHA
分散液液微萃取-高效液相色譜法測定白酒中的酞酸酯
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合