?

重復低能量紅光干預改善青少年近視的研究現狀

2024-04-13 06:29
激光生物學報 2024年1期
關鍵詞:近視紅光安全性

收稿日期:2023-07-24;修回日期:2023-10-07。

通信作者:康宏向,副研究員,主要從事激光生物學效應的研究。E-mail: khx007@163.com。

劉智搏 馬瓊 李卉 康宏向

摘 要:近視作為眼科最常見的疾病已經發展成一項嚴重的國際化公共健康負擔,發展形勢不容樂觀,有必要提出新的有效的干預措施,以遏制近視流行的浪潮。近幾年,紅光干預延緩近視進展成為新的研究熱點。本文從近視的流行現狀、近視的誘因入手,簡要介紹目前臨床常用治療手段,總結紅光干預近視的研究現狀,討論紅光干預改善近視可能的機制機理,并提出一些潛在的激光安全問題,希望能夠對未來的相關研究提供參考。

關鍵詞:近視;紅光;光生物調節;安全性;青少年

中圖分類號:R779.7? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼:ADOI:10.3969/j.issn.1007-7146.2024.01.003

Repeated Low-level Red-light Intervention to Improve the Research Status of Adolescent Myopia

LIU Zhibo1, MA Qiong1, LI Hui2, KANG Hongxiang1*

(1. Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China;2. Beijing Childrens Hospital, Capital Medical University, Beijing 100045, China)

Abstract: Myopia, as the most common disease in ophthalmology, has developed into a serious international public health burden, the development situation is not optimistic. It is necessary to put forward new and effective intervention measures to curb the prevalence of myopia. In recent years, red light intervention to delay the progress of myopia has become a new research hotspot. Starting with the epidemic situation and inducement of myopia, this paper briefly introduces the commonly used clinical treatment methods, summarizes the research status of red light intervention in myopia, and discusses the possible mechanism of red light intervention in improving myopia. Some potential laser safety problems are put forward, hoping to provide reference for related research in the future.

Key words: myopia; red light; photobiological regulation; security; adolescence

(Acta Laser Biology Sinica, 2024, 33(1): 024-030)

進入眼睛的平行光在視網膜前聚焦引起視力模糊的屈光不正現象稱為近視(myopia)。近視在青少年時期會持續發展,并伴隨著患者的日常工作生活,造成的健康負擔除了與光學矯正屈光不正有關的直接成本,還包括與視力損害有關的社會經濟影響和生活質量下降[1],產生的危害不可估量。如近視進展可能會引起青光眼、白內障、視網膜脫離、黃斑變性等并發癥[2-4],甚至存在致盲風險。因此,近視的防控與治療是患者與醫生關心的焦點。近視的主要特征包括軸向伸長和脈絡膜顯著變薄缺血等[5]。最新研究顯示,重復低能量紅光(repeated low-level red-light,RLRL)干預下近視進展狀況能夠得到改善,有望成為一種新的防控近視的手段。

1 疾病流行現狀

1.1 近視流行現狀

Holden等[6]預計,未來50年東亞近視患病人群,包括高度近視人群,將大幅度增長,全球近視患病率將高達50%。值得關注的是,東亞國家的兒童和青少年近視患病率最高[7-8],在東亞約95%的近視人群需要通過佩戴光學鏡片來獲得清晰的矯正視力[9]。Grzybowski等[10]的報告指出了不同地區的近視患病率,亞洲近視患病率約為60%,明顯高于歐洲約40%的患病率,北美近視患病率約為42%,東亞學齡兒童的近視患病率約為73%,僅非洲和南美兒童的近視患病率低于10%??偠灾?,不僅東亞地區,近視的國際發展形勢均不容樂觀。雖然,目前臨床有針對性的治療手段,但是僅僅靠治療來減輕近視負擔是非常困難的,急需有效的防控手段,以防止近視發病和減緩近視進展[11]。其中,預防兒童和青少年近視發生并減緩其發展是重中之重[12-15]。

1.2 近視治療

1.2.1 近視的影響因素

關于近視形成的原因,大多數學者認為,近視與多種因素有關,除地域及種族因素外,還包括遺傳因素[16]與環境因素。屈光不正與近視的遺傳學全基因組關聯研究能夠幫助了解近視與遺傳之間復雜的相互作用,并制定可能的預防和治療措施以對抗近視流行。對于環境因素來講,有研究表明,近視會受到空氣污染物的影響,空氣污染物濃度與近視的發展密切相關[17-19]。這提示,個人盡量不要或減少暴露在可預防的風險中,以防止近視的發生和發展。除此之外,大量研究表明,長時間的戶外活動能夠有效降低近視患病率[20],反之,戶外時間不足會導致近視發生以及近視進展加快[21]。例如,中小學生由于在新型冠狀病毒感染期間長時間使用屏幕進行學習和娛樂,導致近視進展加快[22]。

1.2.2 臨床治療手段

近視是屈光力和眼軸長度(axial length,AL)不匹配造成的結果[23],導致物體的圖像被聚焦到視網膜前面。臨床醫生通過采用一些特殊手段嘗試使成像的位置后移達到矯正視力的目的,除常用的佩戴框架鏡之外,其他矯正方式主要包括有佩戴角膜塑形鏡(即OK鏡)、激光角膜削切手術和人工晶體(implantable collamer lens,ICL)植入術等。佩戴角膜塑形鏡屬于一種可逆性非手術的物理矯形治療方法[24],通過逆幾何設計的鏡片形成中央的下壓力以及旁周邊的外拉力,能有效地改變角膜形態,降低中央角膜前表面曲率,從而達到矯正視力的目的。數字化角膜塑形鏡作為近幾年提出的新技術,是基于全角膜數據進行數字化設計的新一代全吻合角膜再成形鏡,與傳統角膜塑形鏡相比具有長期佩戴安全有效、視覺穩定性好、可預測性和可逆性強等優點[25]。中高度成年近視患者多采用激光角膜削切手術矯正視力[26],利用激光作用于角膜,汽化一定厚度的角膜基質層組織,改變角膜的曲率,從而達到矯正屈光不正的目的,但該手術不適用于部分角膜較薄的患者。而ICL植入手術[27]適用人群廣泛,可用于矯正較大度數范圍的近視、遠視和散光。另外,低濃度阿托品是常用的藥物干預手段[28],作為M受體阻斷劑麻痹睫狀肌,同時通過拮抗視網膜和脈絡膜上M受體抑制眼軸的增長,延緩近視發展。角膜塑形鏡與低濃度阿托品單獨或聯合應用均適用于近視發展初期度數較低的青少年患者[29-30],但停止使用后近視的視力狀況會出現反彈現象。

2 紅光與近視防控

最新研究結果顯示,650 nm波長的紅光作用于青少年近視患者眼部,能夠改善脈絡膜厚度(choroicl thickness,ChT)、減緩AL與屈光度變化進展[31-33],從而改善視力并延緩近視發展。本文通過檢索PubMed、Web of Science、CNKI篩選試驗研究類文獻,以發表時間為順序總結RLRL干預改善近視的最新臨床研究進展,旨在闡述RLRL在改善青少年近視發展中的應用,對激光干預方式、近視治療效果、可能的影響因素與機制機理及潛在的激光安全問題進行系統總結,展望其臨床應用前景,為下一步研究與實踐提供指導與參考。其中,近視治療效果即視力改善情況,通過對比試驗條件與試驗結果進一步闡述。

2.1 紅光干預方式及其療效

近兩年發表的針對紅光干預近視研究論文[34-45]的結果如表1所示,使用的光源均為波長為650 nm的半導體激光器。參與試驗的患者被要求每天治療2次、每次3 min,且2次之間相隔時間4 h以上。其中,Xiong等[34]、Tian等[39,45]臨床治療研究使用的是近弱視治療儀(同仁醫院生產),而其余研究使用的是弱視臺式治療儀(蘇州宣佳光電科技有限公司生產)。研究結果顯示,RLRL干預有效改善了ChT,減緩了AL與等效球鏡屈光度(spherical equivalent refraction,SER)的增長。

Xiong等[34]為期6個月和Zhou等[35]為期9個月的臨床治療研究發現,RLRL治療組患者的ChT顯著增加,出現AL縮短和SER改善現象;Xiong等[37]為期24個月的臨床治療結果發現,與對照組相比,RLRL治療組患者的ChT明顯增加,AL和SER增長減緩。以上研究對比發現,RLRL持續治療時間對ChT、AL和SER參數變化存在影響。Jiang等[36]、He等[43]試驗中患者進行了為期12個月每周5 d的 RLRL治療,治療組患者的ChT、AL和SER 3組參數分別為:12.1 μm、0.13 mm、-0.20 D和12.3 μm、0.17 mm、-0.41 D。2項試驗參數變化顯示出較高的一致性,前者ChT、AL和SER 3組參數變化均優于對照組,表現出明確地延緩近視進展的治療作用。同樣,Tian等[45]、Lin等[44]和Dong等[38]的臨床試驗也發現了AL縮短和SER改善的治療作用。Chen等[40]的試驗中RLRL治療組患者采用為期12個月每周7 d的治療方法,結果顯示,AL和SER分別為0.08 mm、-0.03 D。對比Chen等[40]與Jiang等[36]的2項試驗發現,在為期12個月的RLRL干預條件下,每周7 d的RLRL治療效果好于每周5 d,提示不間斷地持續使用RLRL干預近視效果較好。Xiong等[37]進行的周期約24個月的紅光干預近視療效和安全性評估,包括停止干預后的潛在反彈效應,治療組結果顯示,AL和SER分別為0.16 mm、-0.31 D,與周期為12個月的結果相比(AL和SER分別為-0.01 mm、

-0.19 D)AL與屈光度均略有增長。同團隊的Wang等[42]的研究結果顯示,治療1個月時觀察到最大的AL相對縮短值,之后AL縮短的程度逐漸減小,AL的變化保持在穩定的水平。這些數據表明,干預引起的AL變化有可能維持在一定的水平,AL長度趨于穩定水平后便不再隨著時間的推移增加,探索RLRL治療的長期有效性至關重要。

2.2 影響因素

紅光干預改善近視效果主要存在以下3個方面的影響因素:1)治療依從性,患者良好的依從性是治療延續性及試驗結果的保證;2)每周干預天數以及總的干預周期,相關參數的變化會隨著干預時間延長而趨于平穩狀態;3)年齡與性別,年齡越小、近視程度越高的患者AL縮短幅度越大,另外性別差異表現為女性經歷AL縮短的頻率更高(在臨界點上有統計學意義),根據個體差異定制干預方案也是必要的。

2.3 可能的機制機理

目前,紅光干預改善近視的相關研究處于初步階段,并不能將其改善近視進展的機制機理解釋清楚。研究表明,光生物調節(photobiomodulation,PBM)在老年性黃斑變性、視網膜病變、弱視等多種視網膜疾病的治療中都發揮著積極的作用[46-48],所以PBM可以作為探究紅光干預近視治療的研究方向。

通過研究紅外/近紅外光(infrared ray/near infrared ray,FR/NIR)輻射下細胞產生的各種反應,發現細胞能夠吸收600~1 000 nm波長范圍內單色光的光子能量,以非破壞性和非熱的方式影響細胞信號轉導過程[49],即PBM作用下的“光信號傳導”過程,其中由線粒體觸發傳遞至細胞核的信號被稱為“線粒體逆行信號”[50]。目前,FR/NIR普遍被認為能夠與線粒體內膜上的細胞色素C(cytochrome C,Cyt c)中的生色團相互作用,增加膜上復合體I、II、III、IV的活性,同時存在活性氧(reactive oxygen species,ROS)的生成、Ca2+流量的變化以及一氧化氮(nitric oxide,NO)與細胞色素C氧化酶(cytochrome C oxidase,CCO)的結合[51]。這些信號分子均參與介導線粒體逆行信號[52]。線粒體呼吸鏈產生能量,以膜電位的形式儲存起來,形成膜電位梯度,驅動三磷酸腺苷(adenosine triphosphate,ATP)的合成,同時能夠調控Ca2+在亞細胞區的局部濃度,進而激活不同的生化過程。CCO被認為是PBM的光受體[53]。NO通過與CCO直接結合來調節線粒體的呼吸,影響O2的消耗與呼吸鏈的氧化還原狀態,低水平的NO可以在不影響ATP合成的情況下調節線粒體ROS的生成。線粒體產生的ROS主要是超氧陰離子(O2-),其主要來源是呼吸鏈復合體III在電子傳遞鏈Q循環過程中形成的泛半醌自由基中間體(QH·)。當FR/NIR 介入時, CCO的氧化還原狀態改變,表現為ROS產生增加,同時NO與 CCO 上的結合位點光解,增強 CCO 的活性[54],促進釋放的NO擴散到細胞質中。NO和ROS可以由不同的酶或相同的酶通過交替的還原和氧化過程產生,在PBM作用中NO和ROS扮演著重要角色。ROS是細胞生長和轉錄因子激活的重要信號分子,在較低濃度下能夠促進細胞增殖、誘導神經元分化、激活某些氧合蛋白基因表達等。NO是一種有效的血管擴張劑,調節微循環,增加組織供氧,也可作為神經遞質,在神經細胞之間傳遞信號。

線粒體作為細胞功能的中心、細胞器和細胞核之間的信號整合者,在吸收紅光后,能夠對許多的細胞產生保護作用[55-56],能有效促進血液循環并緩解氧化應激[57]與炎癥[58]??偠灾?,PBM作用于眼部(圖1),能夠提高脈絡膜血流量并為眼部組織提供能量[59],同時刺激血管擴張使ChT增加,改善近視發展過程中鞏膜缺氧狀況,從而延緩近視發展,達到改善近視的目標。

除此之外,多巴胺(dopamine,DA)是視網膜中一種重要的神經遞質,參與調節視網膜發育、視覺信號和屈光發育等多種過程。通過一系列動物試驗研究發現,DA與近視的發展有關[60-61]。DA 受體是 G 蛋白偶聯受體,視網膜內幾乎所有神經元類別都存在 DA 受體。有研究者提出,紅光干預可能彌補了室外活動不足人群的多巴胺分泌,從而使近視狀況得到改善[62]。

2.4 安全性

RLRL在臨床上被應用于治療皮膚疾?。?3]、神經疾?。?4]、視網膜疾?。?5]已有幾十年歷史,并廣泛應用于臨床修復創面、抗炎、抗癌[66-68]等相關領域的研究。近幾年對RLRL防控兒童青少年近視的臨床試驗發現,低強度重復紅光對于延緩青少兒近視發展效果顯著。不過由于眼部特殊的聚光作用,視網膜的輻照度(每單位時間單位面積的能量)比入射到角膜的輻照度高出104倍以上[69],紅光的PBM作用可能促進眼屈光狀態的良性發展,也可能在超出一定強度后導致不良反應的發生。例如,在一項紅光的經瞳孔溫熱療法(transpupillary thermotherapy,TTT)對視網膜的安全性研究中發現,視網膜色素上皮中熱休克蛋白、腫瘤壞死因子α和血管細胞黏附分子1呈陽性反應[70]。本文觀點與《重復低強度紅光照射輔助治療兒童青少年近視專家共識(2022)》[71]一致,目前RLRL干預近視的技術已經得到較大范圍的普及應用,治療患者數量巨大而僅有少量不良反應報道,說明該技術具有較好的安全性。但少量不良反應病例的客觀存在表明,當前對RLRL技術的安全性研究有待更進一步完善,需要闡明不良反應發生的規律及機制機理,明確RLRT技術應用禁忌癥范圍、不適應人群篩查方法、治療過程中安全監測方法等,以確保RLRT技術應用安全可靠。

GB 7247.1—2012 激光輻射國家安全標準[72]規定,I類激光產品的可達發射極限為0.39 mW,認為其不會對人眼造成潛在危害。但該標準主要考慮激光對人眼的光熱損傷和光化學損傷,而RLRL近視防控作用可能并非直接的光熱、光化學作用,存在光生物調節作用等更為復雜的作用機制。鑒于目前滿足I類激光產品要求的RLRL治療儀也有極少量不良反應報道,應該開展更加全面、系統、嚴謹的研究以提升RLRL技術的安全性。

目前,紅光對近視防控效果的研究結果主要來自于臨床,安全性相關研究還極為有限,應進一步從病理學、生理學、細胞及分子水平探討紅光對近視眼結構及功能影響的機制。

3 總結及展望

低強度、重復紅光干預是臨床治療弱視[73]常見且有效的治療方法之一,已經形成了一套較為完善的診斷與治療標準[74]。近幾年提出的紅光干預近視進展成為新的研究熱點,在現階段臨床試驗中對AL、屈光度以及ChT顯示出較好的改善效果。然而,相對于良好的臨床應用態勢,在治療方案、機制機理和安全性等基礎研究方面尚存在嚴重不足。治療方案方面,有待進一步加強對最佳波長、最適起效閾值、最佳劑量、眼底最佳光斑大小等研究;機制機理方面,有待通過深入研究闡明紅光輻照誘導眼屈光狀態良性發展的關鍵信號通路;安全性方面,有待通過大量動物試驗掌握紅光眼損傷的量效關系與規律,為臨床治療方案提供可靠支撐,同時應加強臨床試驗病例總結分析,明確RLRL技術的適用人群、禁忌癥、治療過程監測方法等以避免不良反應事件的發生??偠灾?,紅光在干預近視進展的試驗中顯示出了巨大的潛力,說明紅光干預治療近視是可行的,但是現階段仍需要繼續深入研究,以提升其安全性并闡明其機制機理,在臨床應用上將具有很好的發展前景。

參考文獻(References):

[1] ANG M, FLANAGAN J L, WONG C W, et al. Review: myopia control strategies recommendations from the 2018 WHO/IAPB/BHVI meeting on myopia[J]. British Journal of Ophthalmology, 2020, 104(11): 1482-1487.

[2] MODJTAHEDI B S, ABBOTT R L, FONG D S, et al. Reducing the global burden of myopia by delaying the onset of myopia and reducing myopic progression in children: the academys task force on myopia[J]. Ophthalmology, 2021, 128(6): 816-826.

[3] TIDEMAN J W, SNABEL M C, TEDJA M S, et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia[J]. JAMA Ophthalmol, 2016, 134: 1355-1363.

[4] BANASHEFSKI B, RHEE M K, LEMA G M C. High myopia prevalence across racial groups in the United States: a systematic scoping review[J]. Journal of Clinical Medicine, 2023, 12(8): 3045.

[5] MUHIDDIN H S, MAYASARI A R, UMAR B T, et al. Choroidal thickness in correlation with axial length and myopia degree[J]. Vision (Basel), 2022, 6(1): 16.

[6] HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123: 1036-1042.

[7] XIANG F, HE M, ZENG Y, et al. Increases in the prevalence of reduced visual acuity and myopia in Chinese children in Guangzhou over the past 20 years[J]. Eye (Lond), 2013, 27(12): 1353-1358.

[8] DING B Y, SHIH Y F, LIN L L K, et al. Myopia among schoolchildren in East Asia and Singapore[J]. Survey of Ophthalmology, 2017, 62(5): 677-697.

[9] SPILLMANN L. Stopping the rise of myopia in Asia[J]. Graefes Archive for Clinical and Experimental Ophthalmology, 2020, 258(5): 943-959.

[10] GRZYBOWSKI A, KANCLERZ P, TSUBOTA K, et al. A review on the epidemiology of myopia in school children worldwide[J]. BMC Ophthalmol, 2020, 20(1): 27.

[11] JOST B J, MARCUS A, PAULINE C, et al. IMI prevention of myopia and its progression[J]. Invest Ophthalmology & Visual Science, 2021, 62(5): 6.

[12] ALRAHILI N H R, JADIDY E S, ALAHMADI B S H, et al. Prevalence of uncorrected refractive errors among children aged 3~10 years in western Saudi Arabia[J]. Saudi Medical Journal, 2017, 38(8): 804-810.

[13] CARTER M J, LANSINGH V C, SCHACHT G, et al. Visual acuity and refraction by age for children of three different ethnic groups in Paraguay[J]. Arquivos Brasileiros De Oftalmologia, 2013, 76(2): 94-97.

[14] MATAMOROS E, INGRAND P, PELEN F, et al. Prevalence of myopia in France: a cross-sectional analysis[J]. Medicine (Baltimore), 2015, 94(45): e1976.

[15] LAN F D, JAMES L, CHRISTINE F, et al. Novel myopia genes and pathways identified from syndromic forms of myopia[J]. Investigative Ophthalmology & Visual Science, 2018, 59(1): 338-348.

[16] WOJCIECHOWSKI R, CHENG C Y. Involvement of multiple molecular pathways in the genetics of ocular refraction and myopia[J]. Retina, 2018, 38(1): 91-101.

[17] YUAN T, ZOU H. Effects of air pollution on myopia: an update on clinical evidence and biological mechanisms[J]. Environmental Science and Pollution Research, 2022, 29(47): 70674-70685.

[18] YANG B Y, GUO Y, ZOU Z, et al. Exposure to ambient air pollution and visual impairment in children: a nationwide cross-sectional study in China[J]. Journal of Hazardous Materials, 2021, 407: 124750.

[19] ROSE K A, MORGAN I G, IP J, et al. Outdoor activity reduces the prevalence of myopia in children[J]. Ophthalmology, 2008, 115(8): 1279-1285.

[20] MCBRIEN N A, GENTLE A. Role of the sclera in the development and pathological complications of myopia[J]. Progress In Retinal and Eye Research, 2003, 22(3): 307-338.

[21] XIONG S, SANKARIDURG P, NADUVILATH T, et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review[J]. Acta Ophthalmologica, 2017, 95(6): 551-566.

[22] ALTHNAYAN Y I, ALMOTAIRI N M, ALHARBI M M, et al. Myopia progression among school-aged children in the COVID-19 distance-learning era[J]. Clinical Ophthalmology, 2023, 17: 283-290.

[23] 陳靜. 近視病因與發病機制的研究進展[J]. 中華實驗眼科雜志, 2012, 30(4): 376-379.

CHEN Jing. Progression in research of the pathogenesis of myopia[J]. Chinese Journal of Experimental Ophthalmology, 2012, 30(4): 376-379.

[24] QU D, ZHOU Y. Post-Ortho-K corneal epithelium changes in myopic eyes[J]. Disease Markers, 2022, 2022(2): 3361172.

[25] YAM J C, JIANG Y, TANG S M, et al. Low-concentration atropine for myopia progression (lamp) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control[J]. Ophthalmology, 2019, 126(1): 113-124.

[26] HU P, TAO L. Comparison of the clinical effects between digital keratoplasty and traditional orthokeratology lenses for correcting juvenile myopia[J]. Technology Health Care, 2023: 1-9.

[27] ORTEGA-USOBIAGA J, ROCHA-DE-LOSSADA C, LLOVET-RAUSELL A, et al. Update on contraindications in laser corneal refractive surgery[J]. Archivos de la Sociedad Espa?ola de Oftalmología (English Edition), 2023, 98(2): 105-111.

[28] 張鐸幸,魏士飛,王寧利. 阿托品控制近視進展及作用機制研究現狀 [J]. 中華實驗眼科雜志, 2022, 40(6): 594-598.

ZHANG Duoxing, WEI Shifei, WANG Ningli. Mechanism and clinical effects of atropine on myopia progression[J]. Chinese Journal of Experimental Ophthalmology, 2022, 40(6): 594-598.

[29] ZHENG N N, TAN K W. The synergistic efficacy and safety of combined low-concentration atropine and orthokeratology for slowing the progression of myopia: a meta-analysis[J]. Ophthalmic and Physiological Optics, 2022, 42(6): 1214-1226.

[30] CHEN Z, ZHOU J, XUE F, et al. Two-year add-on effect of using low concentration atropine in poor responders of orthokeratology in myopic children[J]. British Journal of Ophthalmology, 2022, 106(8): 1069-1072.

[31] ZHANG P, ZHU H. Light signaling and myopia development: a review[J]. Ophthalmology and Therapy, 2022, 11(3): 939-957.

[32] YANG W, LIN F, LI M, et al. Immediate effect in retina and choroid after 650 nm low-level red light therapy in children[J]. Ophthalmic Research, 2022, 66 (1): 312-318.

[33] LIU G, LI B, RONG H, et al. Axial length shortening and choroid thickening in myopic adults treated with repeated low-level red light[J]. Journal of Clinical Medicine, 2022, 11(24): 7498.

[34] XIONG F, MAO T, LIAO H, et al. Orthokeratology and low-intensity laser therapy for slowing the progression of myopia in children[J]. Biomed Research International, 2021, 2021: 8915867.

[35] ZHOU L, XING C, QIANG W, et al. Low-intensity, long-wavelength red light slows the progression of myopia in children: an Eastern China-based cohort[J]. Ophthalmic and Physiological Optics, 2022, 42(2): 335-344.

[36] JIANG Y, ZHU Z, TAN X, et al. Effect of repeated low-level red-light therapy for myopia control in children: a multicenter randomized controlled trial[J]. Ophthalmology, 2022, 129(5): 509-519.

[37] XIONG R, ZHU Z, JIANG Y, et al. Sustained and rebound effect of repeated low-level red-light therapy on myopia control: a 2-year post-trial follow-up study[J]. Clinical and Experimental Ophthalmology, 2022, 50(9): 1013-1024.

[38] DONG J, ZHU Z, XU H, et al. Myopia control effect of repeated low-level red-light therapy in Chinese children: a randomized, double-blind, controlled clinical trial[J]. Ophthalmology, 2023, 130(2): 198-204.

[39] TIAN L, CAO K, MA D L, et al. Investigation of the efficacy and safety of 650 nm low-level red light for myopia control in children: a randomized controlled trial[J]. Seminars in Ophthalmology, 2022, 11(6): 2259-2270.

[40] CHEN Y, XIONG R, CHEN X, et al. Efficacy comparison of repeated low-level red light and low-dose atropine for myopia control: a randomized controlled trial[J]. Translational Vision Science & Technology, 2022, 11(10): 33.

[41] XIONG R, ZHU Z, JIANG Y, et al. Longitudinal changes and predictive value of choroidal thickness for myopia control after repeated low-level red-light therapy[J]. Ophthalmology, 2023, 130(3): 286-296.

[42] WANG W, JIANG Y, ZHU Z, et al. Axial shortening in myopic children after repeated low-level red-light therapy: post hoc analysis of a randomized trial[J]. Ophthalmology and Therapy, 2023, 12(2): 1223-1237.

[43] HE X, WANG J, ZHU Z, et al. Effect of repeated low-level red light on myopia prevention among children in China with premyopia: a randomized clinical trial[J]. JAMA Network Open, 2023, 6(4): e239612.

[44] LIN Z H, TAO Z Y, KANG Z F, et al. A study on the effectiveness of a 650-nm red-light feeding instrument in the control and slow the progression of myopia[J]. Ophthalmic Research, 2023, 66(1): 641-648 .

[45] TIAN L, CAO K, MA D L, et al. Six-month repeated irradiation of 650 nm low-level red light reduces the risk of myopia in children: a randomized controlled trial [J]. International Ophthalmology, 2023, 43(10): 3549-3558.

[46] ZHANG C X, LOU Y, CHI J, et al. Considerations for the use of photobiomodulation in the treatment of retinal diseases[J]. Biomolecules, 2022, 12(12): 1811.

[47] SHEN W, TEO K Y C, WOOD J P M, et al. Preclinical and clinical studies of photobiomodulation therapy for macular oedema[J]. Diabetologia, 2020, 63(9): 1900-1915.

[48] AHMED S A, GHONEIM D F, MORSY M E, et al. Low-level laser therapy with 670 nm alleviates diabetic retinopathy in an experimental model[J]. Journal of Current Ophthalmology, 2021, 33(2): 143-151.

[49] KARU T I. Mitochondrial signaling in mammalian cells activated by red and Near-IR radiation[J]. Photochemistry and Photobiology, 2008, 84(5): 1091-1099.

[50] LIU Z, BUTOW R A. Mitochondrial retrograde signaling[J]. Annual Review of Genetics, 2006, 40: 159-85.

[51] FREITAS L F, HAMBLIN M R. Proposed mechanisms of photobiomodulation or low-level light therapy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 1-17.

[52] WALKER B R, MORAES C T. Nuclear-mitochondrial interactions[J]. Biomolecules, 2022, 10, 12(3): 427.

[53] KARU T I, PYATIBRAT L V, KOLYAKOV S F, et al. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation[J]. Journal of Photochemistry and Photobiology B-Biology, 2005, 81(2): 98-106.

[54] HAMBLIN M R. Mechanisms and mitochondrial redox signaling in photobiomodulation[J]. Photochemistry and Photobiology, 2018, 94(2): 199-212.

[55] HAMBLIN M R. Photobiomodulation or low-level laser therapy[J]. Journal of Biophotonics, 2016, 9: 1122-1124.

[56] BEIRNE K, ROZANOWSKA M, VOTRUBA M. Photostimulation of mitochondria as a treatment for retinal neurodegeneration[J]. Mitochondrion, 2017, 36: 85-95.

[57] GOPALAKRISHNAN S, MEHRVAR S, MALEKI S, et al. Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa[J]. Scientific Reports, 2020, 10(1): 20382.

[58] NIE F, HAO S, JI Y, et al. Biphasic dose response in the anti-inflammation experiment of PBM[J]. Lasers in Medical Science, 2023, 38(1): 66.

[59] HU X, ZHOU L, WANG H, et al. The value of photo biological regulation based on nano semiconductor laser technology in the treatment of hypertension fundus disease[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(2):1323-1330.

[60] LANDIS E G, PARK H N, CHRENEK M, et al. Ambient light regulates retinal dopamine signaling and myopia susceptibility[J]. Investigative Ophthalmology & Visual Science, 2021, 62(1): 28.

[61] CHAKRABORTY R, LANDIS E G, MAZADE R, et al. Melanopsin modulates refractive development and myopia[J]. Experimental Eye Research, 2022, 214: 108866.

[62] HUANG F, SHU Z, HUANG Q, et al. Retinal dopamine D2 receptors participate in the development of myopia in mice[J]. Investigative Ophthalmology & Visual Science, 2022, 63(1): 24.

[63] SORBELLINI E, RUCCO M, RINALDI F. Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update[J]. Lasers in Medical Science, 2018, 33: 1431-1439.

[64] TIAN Z, WANG P, HUANG K, et al. Photobiomodulation for Alzheimers disease: photoelectric coupling effect on attenuateing Aβ neurotoxicity[J]. Lasers in Medical Science, 2023, 38(1): 39.

[65] GENEVA I I. Photobiomodulation for the treatment of retinal diseases: a review[J]. International Journal of Ophthalmology, 2016, 9(1): 145-152.

[66] 魏霜, 李玉軍, 張鳳民. LED紅光在臨床疾病中的研究及應用[J]. 激光生物學報, 2019, 28(5): 405-409.

WEI Shuang, LI Yujun, ZHANG Fengmin. Study and application of red light-emitting diode (LED) in clinical diseases[J]. Acta Laser Biology Sinica, 2019, 28(5): 405-409.

[67] ZHANG X, LI H, LI Q, et al. Application of red light phototherapy in the treatment of radioactive dermatitis in patients with head and neck cancer[J]. World Journal of Surgical Oncology, 2018, 16(1): 222.

[68] ZHANG C, SHI Y, WU L, et al. Far-red light triggered production of bispecific T cell engagers (BiTEs) from engineered cells for antitumor application[J]. ACS Synthetic Biology, 2022, 11(2): 888-899.

[69] SHEN W, TEO K Y C, WOOD J P M, et al. Preclinical and clinical studies of photobiomodulation therapy for macular oedema[J]. Diabetologia, 2020, 63(9): 1900-1915.

[70] MORIMURA Y, OKADA A A, HAYASHI A, et al. Histological effect and protein expression in subthreshold transpupillary thermotherapy in rabbit eyes[J]. Archives of Ophthalmolog, 2004, 122(10): 1510-1515.

[71] 《重復低強度紅光照射輔助治療兒童青少年近視專家共識(2022)》專家組. 重復低強度紅光照射輔助治療兒童青少年近視專家共識 (2022) [J]. 中華實驗眼科雜志, 2022, 40(7): 599-603.

Expert workgroup of expert consensus on repeated low-level red-light as an anternative treatment for children myopia (2022). Expert consensus on repeated low-level red-light as an alternative treatment for childhood myopia (2022)[J]. Chinese Journal of Experimental Ophthalmology, 2022, 40(7): 599-603.

[72] 工業和信息化部. GB 7247.1—2012激光產品的安全 第1部分: 設備分類、要求[S]. 北京: 中國標準出版社, 2012.

Ministry of Industry and Information Technology. Safety of laser products―Part 1: Equipment classification and requirements: GB 7247.1—2012[S]. Beijing: Standards Press of China, 2012.

[73] PAPAGEORGIOU E, ASPROUDIS I, MACONACHIE G, et al. The treatment of amblyopia: current practice and emerging trends[J]. Graefes Archive for Clinical and Experimental Ophthalmology, 2019, 257(6): 1061-1078.

[74] PINELES S L, AAKALU V K, HUTCHINSON A K, et al. Binocular treatment of amblyopia: a report by the American Academy of Ophthalmology[J]. Ophthalmology, 2020, 127(2): 261-272.

猜你喜歡
近視紅光安全性
發紅光的蔬菜
新染料可提高電動汽車安全性
某既有隔震建筑檢測與安全性鑒定
先鋒引領致富路
——記嘉蔭縣紅光鄉燎原村黨支部
移風易俗的路徑探索——基于涴市鎮紅光村鄉村振興促進會的分析
益氣聰明湯在眼科中的應用
視覺生理性手指操對預防青少年近視及控制發展的作用探討
上海市松江區洞涇鎮普通中小學校學生視力不良情況分析
遺傳對視力影響的研究
ApplePay橫空出世 安全性遭受質疑 拿什么保護你,我的蘋果支付?
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合