?

Rosenau方程的顯式行波解及動力學行為

2024-04-21 16:10林府標楊欣霞張千宏

林府標 楊欣霞 張千宏

摘 要:找到Rosenau方程的顯式精確解十分困難,研究方法常采用數值離散求解技術.首先,采用李群分析法給出了Rosenau方程的對稱群、約化常微分方程和群不變解;其次,構造了一種精確求解非線性偏微分方程的exp(-φ(ξ))展式法,利用此方法找到了Rosenau方程的顯式行波解,分析了解的動力學行為;最后,所獲得的顯式行波解既證明了Rosenau方程顯式精確解的存在性,又可用于驗證數值解的精度、檢驗數值離散方案的優劣,為工程領域的實際應用提供理論依據和參考.

關鍵詞:Rosenau方程;顯式行波解;動力學行為

中圖分類號:O175.4;O175.29文獻標志碼:A文章編號:1000-2367(2024)02-0033-08

在探究離散系統稠密性的動態性時,為了克服KdV方程不能準確預測坡度和高振幅波性態的缺點,ROSENAU[1-2提出了五階非線性偏微分Rosenau方程

Lu= ut+uxxxxt+ux+upux=0, ???(1)

其中,t表示時間,x代表平衡水平面上沿波傳播方向上的坐標,p為非零常數.當p=1時,方程(1)稱為Rosenau方程,當p≠1時,方程(1)稱為廣義Rosenau方程.為了進一步考慮動力學系統中非線性波及耗散現象,PARK[3討論了含黏性項-uxx的Rosenau-Burgers方程

ut+uxxxxt-μuxx+ux+uux=0 ???(2)

的解的存在性和唯一性,其中,μ代表非負黏性系數.方程(1)和(2)在研究緊離散動力學系統、 模擬無線電及計算機領域、 波與波相撞、波與障礙物或墻相互作用等方面具有重要應用.但鑒于方程(1)和(2)精確解的缺乏,初值和邊值問題解的存在唯一性、 柯西問題的適定性、 算法的收斂性和穩定性、誤差估計、解的漸近性、永久性、動力學行為性質等常借助于數值離散及實驗技術進行研究[4-13.

雖然歷經多年的研究和探索,構造非線性偏微分方程的精確解,已找到了許多方法與技巧[14,如李群分析法[15,Tanh函數法和廣義Tanh函數法[14,齊次平衡法[14,16等.但鑒于諸多新方程不斷從各個學科領域中涌現,在非線性科學和工程技術領域,至今仍然存在眾多的方程很難找到精確解[14.就現有文獻[1-13]來看,尋求方程(1)和(2)的精確解及方法,仍是一個亟待探索和解決的問題.

論文擬不僅對方程(1)和(2)作經典李群分析,而且構造一種精確求解非線性偏微分方程的exp(-φ(ξ))展式法.針對方程(1)的結構和特征及性質,利用此方法探索方程(1)的顯式行波解及孤立波解.對找到的行波解,分析解的相關動力學行為及性質.希望所獲得的解可用于驗證數值解的正確性和精度,以及檢驗數值離散方案的優劣,也為精確描述、解釋、模擬及應用許多自然科學現象提供理論依據和策略.

1 李群分析法

2 exp(-φ(ξ))展式法

3 顯式行波解

4 解的動力學行為

5 結束語

找到了方程(1)和(2)的對稱群和群不變解.構造了一種精確求解非線性偏微分方程的exp(-φ(ξ))展式法.采用該方法獲得了方程(1)的行波解,文獻[1-13]均未報道過這些解.找到的解表明了文獻[4]中方程(1)的解的存在性理論證明的正確性,而且對進一步研究和尋找方程(1)的精確解,既有理論價值又有實際意義,也為數值解提供了理論依據和參考.構造的exp(-φ(ξ))展式法可用于求解其他非線性偏微分方程,如廣義Rosenau方程ut+αuxxxxxtpux=0,變系數的Burgers方程ut+αuxx+βux=0和KdV方程ut+αuxxx+βux=0,其中α,β,γ,p為常數.如何構造行之有效的精確求解方法,挖掘出方程(1)和(2)中蘊藏著的更多類型的精確解,值得在今后的研究中進一步探索和創新.

參 考 文 獻

[1]ROSENAU P.A quasi-continuous description of a nonlinear transmission line[J].Physica Scripta,1986,34:827-829.

[2]ROSENAU P.Dynamics of dense discrete systems high order effects[J].Progress of Theoretical Physics,1988,79(5):1028-1042.

[3]PARK M A.On the Rosenau equation in multidimensional space[J].Nonlinear Analysis:Theory,Methods & Applications,1993,21(1):77-85.

[4]PARK M A.On the Rosenau equation[J].Computation and Applied Mathematics,1990,9:145-152.

[5]ZHOU D Q,MU C L.Control and stabilization of the Rosenau equation posed on a periodic domain[J].Journal of Systems Science and Complexity,2018,31(4):889-906.

[6]SHI D Y,JIA X.Nonconforming Quasi-Wilson finite element approximation for the nonlinear Rosenau equation[J].Applied Mathematics Letters,2021,119:1-8.

[7]ERBAY H A,ERBAY S,ERKIP A.Numerical computation of solitary wave solutions of the Rosenau equation[J].Wave Motion,2020,98:1-10.

[8]何挺,胡兵,徐友才.廣義Rosenau方程的有限元方法[J].四川大學學報(自然科學版),2016,53(1):1-6.

HE T,HU B,XU Y C.Finite element method for the generalized Rosenau equation[J].Journal of Sichuan University (Natural Science Edition),2016,53(1):1-6.

[9]WANG M,LI D S, CUI P.A conservative finite difference scheme for the generalized Rosenau equation[J].International Journal of Pure and Applied Mathematics,2011,71(4):539-549.

[10]HUSSAIN M,HAQ S.Numerical simulation of solitary waves of Rosenau-KdV equation by Crank-Nicolson meshless spectral interpolation method[J].The European Physical Journal Plus,2020,135(98):1-22.

[11]高啟存,阿不都熱西提·阿布都外力.非齊次Rosenau-Burgers方程的三種數值方法比較[J].數學的實踐與認識,2021,51(6):246-256.

GAO Q C,ABUDUREXITI A.Comparison on the three numerical methods for nonhomogeneeous Rosenau-Burgers equation[J].Mathematics in Practice and Theory, 2021,51(6):246-256.

[12]OMRANI K,DEBEBRIA H,BAYARASSOU K.On the numerical solution of two-dimensional Rosenau-Burgers (RB) equation[J].Engineering with Computers,2020:827-829.

[13]ZHANG J,LIU Z X,LIN F B,et al.Asymptotic analysis and error estimate for Rosenau-Burgers equation[J].Mathematical Problems in Engineering,2019,1-8.

[14]范恩貴.可積系統與計算機代數[M].北京:科學出版社,2004.

[15]OVSIANNIKOV L V.Group Analysis of Differential Equations[M].New York:Academic Press,1982.

[16]WANG M L,ZHOU Y B,LI Z B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Physics Letters A,1996,216(1-5):67-75.

[17]吳文俊.數學機械化[M].北京:科學出版社,2003.

Explicit travelling wave solutions and dynamic behaviors of the Rosenau equation

Lin Fubiao, Yang Xinxia, Zhang Qianhong

(School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China)

Abstract: It is typically difficult to obtain explicit exact solutions of the Rosenau equation, it was usually intensively investigated by use of the numerical schemes and techniques. Firstly, symmetric groups, reduced ordinary differential equations and group invariant solutions of the? Rosenau equation were given by the method of classical Lie group analysis. Secondly, an exp(-φ(ξ))-expansion method for solving analytically? nonlinear partial differential equation was constructed. Moreover, explicit travelling wave solutions of the Rosenau equation were found by using the exp(-φ(ξ))-expansion method, the corresponding dynamic behaviors of solutions were also analyzed. Finally, on the one hand, the existence of solutions of the Rosenau equation was demonstrated by these obtained explicit travelling wave solutions. These obtained exact solutions can be used to verify accuracy of numerical solution, test advantages and disadvantages of numerical discrete scheme, and study dynamic behaviors of solutions. In addition, it also provides a theoretical basis for the practical application in the field of engineering.

Keywords: Rosenau equation; explicit travelling wave solution; dynamic behavior

[責任編校 陳留院 趙曉華]

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合