?

不同干細胞來源外泌體抗心肌纖維化的研究進展及中醫藥干預現狀

2024-04-30 02:34王文潔周睿邢作英邱伯雍朱明軍王永霞
中西醫結合心腦血管病雜志 2024年5期
關鍵詞:外泌體綜述干細胞

王文潔 周睿 邢作英 邱伯雍 朱明軍 王永霞

摘要 心肌纖維化是與心力衰竭等多種心血管疾病密切相關的一種病理表現,適度的纖維化有利于保護心臟,過度纖維化導致嚴重的心功能不全甚至死亡。因此,積極尋找確切、有效的防治心肌纖維化手段對心血管疾病診療具有重要意義。心肌在體內和體外發生病理性促纖維化病變時,不同干細胞來源的外泌體可有效阻止或延緩心肌纖維化進程,且在中醫藥干預作用下增強整體治療效果。綜述不同類型干細胞來源的外泌體抗心肌纖維化作用及中醫藥干預現狀,以期為心血管疾病的防治提供新思路和新方法。

關鍵詞 心肌纖維化;干細胞;外泌體;中醫藥;綜述

doi:10.12102/j.issn.1672-1349.2024.05.014

基金項目 國家自然科學基金項目(No.82074229);國家中醫藥管理局中醫藥循證能力建設項目(No.2019XZZX-XXG003)

作者單位 1.河南中醫藥大學(鄭州? 450000);2.河南中醫藥大學第一附屬醫院(鄭州? 450000)

通訊作者 王永霞,E-mail:wyxchzhq@163.com

引用信息 王文潔,周睿,邢作英,等.不同干細胞來源外泌體抗心肌纖維化的研究進展及中醫藥干預現狀[J].中西醫結合心腦血管病雜志,2024,22(5):847-851.

心肌纖維化是以成纖維細胞活化,細胞外基質如膠原蛋白Ⅰ和Ⅲ過度沉積[1],心臟間質擴張纖維化為特征,存在于高血壓、心力衰竭、心肌梗死、心房顫動、風濕性心臟病和擴張型心肌病等多種心血管疾病中的一種共性病理表現,是心臟重構的關鍵誘因?;罨某衫w維細胞是心肌纖維化的中心效應細胞,基質蛋白產生的主要參與者。膠原蛋白的適度產生可補償損傷產生的死亡細胞,有利于保持心臟結構完整性,避免心臟破裂。然而,過度沉積導致心肌僵硬,心臟收縮、舒張功能障礙和傳導異常[2],甚至發生嚴重心功能不全或心源性猝死[3]。心肌纖維化發病機制復雜,涉及腎素-血管緊張素-醛固酮系統、氧化應激[4]、炎癥反應、線粒體功能障礙[5]、非編碼RNA[6]等,對其進行早期診斷、評估及治療至關重要。目前臨床用于治療心力衰竭的藥物如血管緊張素轉換酶抑制劑、β受體阻滯劑、沙庫巴曲纈沙坦鈉片雖可一定程度延緩心肌纖維化進程,但并不能滿足臨床需求,心肌纖維化防治仍需更多安全、可靠的解決方案。

干細胞療法在心血管保護、再生修復、抑制纖維化和凋亡、增強心肌收縮力及改善心功能等方面發揮著重要作用,但供應不穩定、輸注毒性、低存活率和免疫排斥等問題限制了干細胞療法的應用[7-8]。進一步研究顯示,其有益效果主要是旁分泌產生的外泌體介導的[9]。外泌體是由多種類型細胞分泌的直徑30~200 nm的細胞外囊泡,可攜帶特定的蛋白質、脂質、核酸和糖偶聯物,參與細胞間通信[10-11],在調節癌癥在內的較多疾病生理病理過程中充當重要的分子載體[12],并作為藥物載體輸送至靶器官,可增加治療藥物的局部濃度,最大限度地減少副作用,具有低毒性、低免疫原性和高工程性,可能為各種疾病提供無細胞治療[13-14]。相關研究表明,在體內和體外心肌發生病理性促纖維化病變時,不同干細胞來源的外泌體可顯著減小或抑制心肌纖維化,替代干細胞進行心臟修復,在心血管疾病的治療方面具有巨大潛力。綜述不同類型干細胞來源的外泌體抗心肌纖維化作用的最新研究及中醫藥干預現狀,并對外泌體包含的內容物進行梳理總結(見表1),以期挖掘出具有潛力的心肌纖維化診斷標志物和治療靶點。

1 MSCs

MSCs是從骨髓、臍帶、脂肪和胎盤組織等較多生物來源中分離出的非造血、多能、成體干細胞[15],外泌體在MSCs相關的心臟保護作用中發揮著重要作用。有研究表明,MSCs來源的外泌體(MSCs-derived exosomes,MSC-Exo)通過抑制zeste基因增強子同源物2(enhancer of zeste homolog 2,EZH2)激活下游高遷移率族蛋白A2(high mobility group A2,HMGA2)并影響磷脂酰肌醇3-激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B,PI3K/AKT)通路,抑制膠原蛋白Ⅰ和膠原蛋白Ⅲ表達,增加上皮-間質轉化(epithelial-mesenchymal transition,EMT),減輕心肌梗死大鼠纖維化[16]。MSC-Exo可能通過抑制轉化生長因子(TGF)-β1/Smad2/3信號通路抑制高糖誘導的成纖維細胞轉化,降低糖尿病大鼠左心室膠原水平,減輕糖尿病誘導的心肌損傷和纖維化[17-18]。另有研究顯示,源自HIF-1α修飾的MSC-Exo可促進心肌梗死大鼠新血管形成,抑制纖維化,保留心臟功能,較單純外泌體治療更有效[19]。來自年輕的MSC-Exo減小纖維化的作用優于來自衰老MSC-Exo,上調衰老MSC-Exo中miR-221-3p表達可能通過張力蛋白同源物(phosphate and tension homology,PTEN)/AKT通路顯著減小膠原蛋白面積、纖維化區域,抑制心肌纖維化[20]。MSC-Exo在經干擾素-γ處理后外泌體中miR-21顯著上調,并靶向抑制BTG2表達減少纖維化,改善心功能[21]。

1.1 骨髓間充質干細胞(bone marrow MSCs,BMSCs)

成人MSCs常見的來源是骨髓[22]。BMSCs來源的外泌體(BMSCs-derived exosomes,BMSC-Exo)通過提高miR-133a表達以下調決定因子樣蛋白1(mastermind-like 1,MAML1)水平,顯著改善病毒性心肌炎大鼠心功能和心肌纖維化[23]。有研究表明,BMSC-Exo可降低暴露于血管緊張素(Ang)Ⅱ下的成纖維細胞中膠原蛋白Ⅰ和Ⅲ表達,增加周期蛋白依賴性激酶抑制因子4a(the inhibitor of cyclin-dependent kinase 4a,p16INK4a)表達,促進成纖維細胞衰老,抑制纖維化反應,減少心臟纖維化[24]。Pu等[25]采用過表達miR-30e的BMSC-Exo治療心肌梗死大鼠,可抑制血凝素樣氧化型低密度脂蛋白受體1(lectin-like oxidized low density lipoprotein receptor-1,LOX1)的表達,下調核因子(NF)-κB p65/Caspase-9信號通路活性,改善心肌組織病理損傷和纖維化。Wang等[26]采用過表達miR-129-5p的BMSC-Exo治療心肌梗死小鼠,表現出對心肌梗死保護作用并抑制了纖維化。BMSC-Exo過表達Nrf2通過Nrf2/血紅素加氧酶1(heme oxygenase 1,HO-1)通路減輕心房顫動誘導的心肌纖維化[27]。有研究發現,在脂多糖刺激下產生的BMSC-Exo可降低心肌梗死后小鼠炎性因子表達,改善心肌收縮功能和纖維化[28]。缺氧處理的BMSC-Exo增強了外泌體中miR-210表達,減少了纖維化[29]。有研究將過表達miR-19a/19b的BMSC-Exo和骨髓間充質干細胞移植聯合應用于心肌梗死的臨床前模型,顯著促進了心臟功能的恢復,減小了心臟纖維化面積[30]。

1.2 人臍帶間充質干細胞(human umbilical cord MSCs,UMSCs)

UMSCs來源的外泌體可顯著降低擴張型心肌病大鼠α-平滑肌肌動蛋白、Smad2、心肌組織膠原蛋白Ⅰ表達,減輕心肌纖維化水平,改善心功能[31],通過遞送環狀RNA同源域相互作用蛋白激酶3(circular RNA homeodomain-iteracting protein kinase 3,circHIPK3)降低心肌梗死小鼠梗死區域纖維化程度[32]。Zou等[33]將UMSCs來源外泌體結合一種可注射的導電水凝膠,產生Gel@Exo復合系統,Gel@Exo給藥顯著改善了心臟受傷大鼠心臟功能,縮小了纖維化面積,并延長了外泌體在缺血心肌中的保留時間。人白細胞抗原輕鏈β2微球蛋白缺失的UMSCs來源外泌體中富含miR-24,通過靶向Bim發揮抑制心臟纖維化作用,較來自UMSCs的外泌體更有效[34]。由巨噬細胞遷移抑制因子工程化的UMSCs來源外泌體中miR-133a-3p顯著升高,增加了AKT蛋白的磷酸化,在體內外均可減少纖維化,保護心臟功能[35]。

1.3 脂肪間充質干細胞

脂肪干細胞(adipose derived stem cells,ADSCs)是在毛囊底部的皮下、真皮片、毛囊間真皮和皮下組織中鑒定的間充質干細胞[36]。有研究顯示。ADSCs來源外泌體過表達miR-126可降低H9c2細胞纖維化相關蛋白表達,顯著減輕心肌梗死大鼠心臟纖維化[37]。ADSCs來源外泌體過表達miR-146a通過下調早期生長反應1(early growth response 1,EGR1)表達逆轉心肌梗死或缺氧誘導的Toll樣受體4(Toll-like receptor 4,TLR4)/NF-κB信號激活,進而抑制心肌梗死誘導的纖維化,且作用優于單純外泌體治療組[38]。ADSCs來源的外泌體顯著降低了多柔比星/曲妥珠單抗給藥大鼠心臟組織中纖維化標志物結締組織生長因子(connective tissue growth factor,CTGF)、膠原蛋白Ⅰ和基質金屬蛋白酶-9(matrix metalloproteinase-9,MMP-9)的mRNA水平[39],可能通過激活1-磷酸鞘氨醇(sphingosine 1-phosphate,S1P)/鞘氨醇激酶1(sphingosine kinase 1,SK1)/1-磷酸鞘氨醇受體1(sphingosine-1-phosphate receptor 1,S1PR1)信號傳導和促進巨噬細胞M2極化,抑制心肌梗死誘導的心肌纖維化,改善心肌梗死后心臟損傷[40]。Wang等[41]將adMSCs來源的外泌體(adipose-derived MSCs-Exo,adMSCs-Exo)作用到氧-葡萄糖剝奪處理的小鼠心肌細胞中,miR-671在細胞中顯著上調,并直接靶向轉化生長因子β受體2(transforming growth factor β receptor 2,TGFBR2),降低Smad2磷酸化,從而在體內和體外減少了心肌纖維化。adMSCs-Exo可能通過降低miR-423-5p表達,抑制PI3K/AKT信號通路,改善心力衰竭大鼠心肌損傷和纖維化[42]。有研究表明,adMSCs-Exo通過上調沉默信息調節因子1(silent information regulator 1,SIRT1)減少急性心肌梗死后梗死面積和心房纖維化面積[43]。

2 CPCs

CPCs又稱為心臟干細胞,是由心臟干細胞分化而來。CPCs來源的外泌體高度富集miR-146a-5p,可減弱間質膠原蛋白Ⅰ沉積,預防阿霉素/曲妥珠單抗誘導的心肌纖維化,在心肌細胞的更新和修復中發揮著重要作用[44]。有研究顯示,來自新生兒的CPCs外泌體可減少纖維化,改善心功能,來自較大兒童的CPCs外泌體在缺氧條件下可發揮修復作用[45]。

3 CDCs

CDCs是來源于心臟組織本身的干細胞[46],心臟球來源細胞分泌的外泌體(CDC-secreted exosome,CDCex)高度富含miR-146a-5p,通過抑制促炎細胞因子和轉錄物減少心肌纖維化[47]。CDCex來源的YF1可逆轉肥厚型心肌病相關纖維化信號通路,降低c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)磷酸化、c-Jun表達和Smad2磷酸化,減輕AngⅡ誘導的纖維化[48-49]。

4 EPCs

EPCs修復心臟的作用與旁分泌機制密切相關。有研究表明,內皮祖細胞來源的外泌體(endothelial progenitor cell-derived exosomes,EPC-Exos)富含miR-363-3p和miR-218-5p,可上調p53并下調調節Y蛋白(junctional mediating and regulator Y protein,JMY)表達,通過靶向腫瘤抑制基因p53(tumor suppressor gene p53,p53)/連接介導和JMY信號通路促進間充質-內皮細胞轉化,抑制心肌纖維化[50]。EPC-Exos過表達miR-1246或miR-1290分別誘導ELF5、SP1表達增加,抑制心臟組織α-平滑肌肌動蛋白表達,改善心肌梗死后心臟纖維化[51]。人外周血中EPC-Exos在體外可抑制間充質-內皮轉化和降低高遷移率族蛋白1(high mobility group protein 1,HMGB1)、α-平滑肌肌動蛋白、波形蛋白、膠原蛋白Ⅰ及TGF-β、腫瘤壞死因子(TNF)-α心肌纖維化調節蛋白表達[52]。

5 中醫藥干預外泌體

中醫古籍中無關于心肌纖維化的明確記載,現代醫家根據臨床癥狀將其歸屬于“心悸”“心衰”“胸痹”等范疇,病機特點以氣血陰陽虧損為本,痰、飲、瘀、火擾心為標[53]。中醫藥具有多成分、多靶點、多途徑及整體觀念、辨證論治等特點,在防治心肌纖維化方面顯示出獨特優勢。一些中藥復方及中成藥如生脈飲、黃芪桂枝五物湯、芪參益氣滴丸、參松養心膠囊等,中藥黃芪、鹿茸、川芎、丹參、益母草、三七[53-54]等提取物均對心肌纖維化的治療起到良好的作用。有研究顯示,外泌體在中醫藥干預下可增強整體治療效果,中醫藥有效防治心肌纖維化的機制可能與調控外泌體及相關內容物有關,黃芪及其配方的有效活性成分,尤其是黃芪甲苷Ⅳ、黃芪多糖、黃芪總皂苷、黃芪三萜皂苷和環黃芪醇具有對抗心肌纖維化的潛在作用[55],黃芪甲苷Ⅳ可提高人EPCs分泌的外泌體功能,并增強外泌體中miRNA-126表達[56]。黃芪總皂苷聯合甘草酸預處理的外泌體可抑制細胞中膠原蛋白Ⅰ和α-平滑肌肌動蛋白表達,發揮抗纖維化作用[57]。人參皂苷Rh2通過促進肌成纖維細胞衰老和逆轉內皮-間充質轉化中已建立的肌成纖維分化減輕纖維化[58],增強BMSCs外泌體對心肌損傷的保護作用,改善炎癥微環境[59]。

6 小結與展望

綜上所述,包括MSCs、CPCs、CDCs、EPCs在內多種干細胞來源的外泌體均可顯著抑制心肌纖維化的發生發展,中醫藥可能通過調控外泌體及其相關內容發揮有效抗心肌纖維化作用。然而,目前的研究存在一些不足:1)不同干細胞來源的外泌體抗心肌纖維化作用是否有差異、供體年齡對其作用的影響及是否具有不良作用需進一步探索。2)干細胞來源的外泌體中包含的內容物復雜,尚未明確哪些在防治心肌纖維化中發揮關鍵作用,缺乏大型臨床試驗驗證,應結合現代醫學代謝組學、蛋白組學、基因組學技術等新技術、新方法深入挖掘其抗心肌纖維化的作用機制,為今后臨床治療提供充分的科學依據。3)干細胞分泌的外泌體數量較少,不能滿足臨床試驗需求,提高其穩定性、靶向性及延長半衰期的工程化改造外泌體的方法值得研究者在抗心肌纖維化方面進行深入研究。4)中醫藥防治心肌纖維化具有獨特優勢,其是否通過調控外泌體發揮抗心肌纖維化的作用有待進一步體內外實驗驗證。今后基于中醫藥有效成分開發具有協同治療效果和靶向能力的外泌體藥物遞送載體以防治心肌纖維化有較大的研究空間。

參考文獻:

[1] FAN D,KASSIRI Z.Modulation of cardiac fibrosis in and beyond cells[J].Frontiers in Molecular Biosciences,2021,8:750626.

[2] KUROSE H.Cardiac fibrosis and fibroblasts[J].Cells,2021,10(7):1716.

[3] TRAVERS J G,KAMAL F A,ROBBINS J,et al.Cardiac fibrosis:the fibroblast awakens[J].Circulation Research,2016,118(6):1021-1040.

[4] GYNGYSI M,WINKLER J,RAMOS I,et al.Myocardial fibrosis:biomedical research from bench to bedside[J].European Journal of Heart Failure,2017,19(2):177-191.

[5] LI X Y,ZHANG W,CAO Q T,et al.Mitochondrial dysfunction in fibrotic diseases[J].Cell Death Discovery,2020,6:80.

[6] YU Y H,SUN J H,WANG R,et al.Curcumin management of myocardial fibrosis and its mechanisms of action:a review[J].The American Journal of Chinese Medicine,2019,47(8):1675-1710.

[7] 張海峰,韋植.干細胞在心血管疾病治療中的應用研究[J].微創醫學,2022,17(3):267-271.

[8] HADE M D,SUIRE C N,SUO Z C.Mesenchymal stem cell-derived exosomes:applications in regenerative medicine[J].Cells,2021,10(8):1959.

[9] BARRECA M M,CANCEMI P,GERACI F.Mesenchymal and induced pluripotent stem cells-derived extracellular vesicles:the new frontier for regenerative medicine?[J].Cells,2020,9(5):1163.

[10] KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.

[11] PEGTEL D M,GOULD S J.Exosomes[J].Annual Review of Biochemistry,2019,88:487-514.

[12] ZHU L,SUN H T,WANG S,et al.Isolation and characterization of exosomes for cancer research[J].Journal of Hematology & Oncology,2020,13(1):152.

[13] BATRAKOVA E V,KIM M S.Using exosomes,naturally-equipped nanocarriers,for drug delivery[J].Journal of Controlled Release,2015,219:396-405.

[14] LIANG Y J,DUAN L,LU J P,et al.Engineering exosomes for targeted drug delivery[J].Theranostics,2021,11(7):3183-3195.

[15] MAQSOOD M,KANG M Z,WU X T,et al.Adult mesenchymal stem cells and their exosomes:sources,characteristics,and application in regenerative medicine[J].Life Sciences,2020,256:118002.

[16] JIAO W,HAO J,XIE Y N,et al.EZH2 mitigates the cardioprotective effects of mesenchymal stem cell-secreted exosomes against infarction via HMGA2-mediated PI3K/AKT signaling[J].BMC Cardiovascular Disorders,2022,22(1):95.

[17] LIN Y,ZHANG F,LIAN X F,et al.Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-β1/Smad2 signaling pathway[J].Cellular and Molecular Biology,2019,65(7):123-126.

[18] 蘭蓓蓓,王娟娟,邵聯波,等.間充質干細胞來源的外泌體通過TGF-β1/Smad2/3信號通路抑制高糖誘導的成纖維細胞轉分化[J].中國細胞生物學學報,2017,39(7):916-925.

[19] SUN J C,SHEN H,SHAO L B,et al.HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis[J].Stem Cell Research & Therapy,2020,11(1):373.

[20] SUN L,ZHU W W,ZHAO P C,et al.Down-regulated exosomal microRNA-221-3p derived from senescent mesenchymal stem cells impairs heart repair[J].Frontiers in Cell and Developmental Biology,2020,8:263.

[21] ZHANG J,LU Y,MAO Y M,et al.IFN-γ enhances the efficacy of mesenchymal stromal cell-derived exosomes via miR-21 in myocardial infarction rats[J].Stem Cell Research & Therapy,2022,13(1):333.

[22] LIU Y,HOLMES C.Tissue regeneration capacity of extracellular vesicles isolated from bone marrow-derived and adipose-derived mesenchymal stromal/stem cells[J].Frontiers in Cell and Developmental Biology,2021,9:648098.

[23] LI Q M,JIN Y P,YE X Q,et al.Bone marrow mesenchymal stem cell-derived exosomal microRNA-133a restrains myocardial fibrosis and epithelial-mesenchymal transition in viral myocarditis rats through suppressing MAML1[J].Nanoscale Research Letters,2021,16(1):111.

[24] CHEN F,LI X L,ZHAO J X,et al.Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling[J].In Vitro Cellular & Developmental Biology Animal,2020,56(7):567-576.

[25] PU L M,KONG X Y,LI H,et al.Exosomes released from mesenchymal stem cells overexpressing microRNA-30e ameliorate heart failure in rats with myocardial infarction[J].American Journal of Translational Research,2021,13(5):4007-4025.

[26] WANG S,DONG J J,LI L,et al.Exosomes derived from miR-129-5p modified bone marrow mesenchymal stem cells represses ventricular remolding of mice with myocardial infarction[J].Journal of Tissue Engineering and Regenerative Medicine,2022,16(2):177-187.

[27] XU L J,FAN Y C,WU L T,et al.Exosomes from bone marrow mesenchymal stem cells with overexpressed Nrf2 inhibit cardiac fibrosis in rats with atrial fibrillation[J].Cardiovascular Therapeutics,2022,2022:2687807.

[28] 傅小媚,霍然,鄧賽,等.脂多糖刺激的骨髓間充質干細胞來源外泌體改善小鼠心肌梗死后炎癥和纖維化[J].中國臨床藥理學與治療學,2019,24(8):841-851.

[29] ZHU J Y,LU K,ZHANG N,et al.Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way[J].Artificial Cells,Nanomedicine,and Biotechnology,2018,46(8):1659-1670.

[30] WANG S,LI L,LIU T,et al.MiR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction[J].Regenerative Medicine,2020,15(6):1749-1759.

[31] 柳爽爽,王本臻,毛成剛,等.人臍帶間充質干細胞外泌體對多柔比星致擴張型心肌病大鼠心肌纖維化的影響[J].中華實用兒科臨床雜志,2020,35(11):842-846.

[32] 張雨晴,王燕麗,嚴兵,等.人臍帶間充質干細胞來源的外泌體通過circHIPK3促進心梗修復[J].復旦學報(自然科學版),2020,59(1):40-47.

[33] ZOU Y,LI L,LI Y,et al.Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel[J].ACS Applied Materials & Interfaces,2021,13(48):56892-56908.

[34] SHAO L B,ZHANG Y,PAN X B,et al.Knockout of beta-2 microglobulin enhances cardiac repair by modulating exosome imprinting and inhibiting stem cell-induced immune rejection[J].Cellular and Molecular Life Sciences,2020,77(5):937-952.

[35] ZHU W W,SUN L,ZHAO P C,et al.Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p[J].Journal of Nanobiotechnology,2021,19(1):61.

[36] MAZINI L,ROCHETTE L,ADMOU B,et al.Hopes and limits of adipose-derived stem cells(ADSCs) and mesenchymal stem cells(MSCs) in wound healing[J].International Journal of Molecular Sciences,2020,21(4):1306.

[37] LUO Q C,GUO D F,LIU G R,et al.Exosomes from miR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J].Cellular Physiology and Biochemistry,2017,44(6):2105-2116.

[38] PAN J J,ALIMUJIANG M,CHEN Q Y,et al.Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J].Journal of Cellular Biochemistry,2019,120(3):4433-4443.

[39] EBRAHIM N,AL SAIHATI H A,MOSTAFA O,et al.Prophylactic evidence of MSCs-derived exosomes in doxorubicin/trastuzumab-induced cardiotoxicity:beyond mechanistic target of NRG-1/Erb signaling pathway[J].International Journal of Molecular Sciences,2022,23(11):5967.

[40] DENG S Q,ZHOU X J,GE Z R,et al.Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization[J].The International Journal of Biochemistry & Cell Biology,2019,114:105564.

[41] WANG X,ZHU Y H,WU C C,et al.Adipose-derived mesenchymal stem cells-derived exosomes carry microRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis[J].Inflammation,2021,44(5):1815-1830.

[42] 孫理華,呂忠英,幸世峰,等.微小RNA-423-5p在脂肪間充質干細胞外泌體治療老齡心力衰竭大鼠的作用及機制[J].中華老年心腦血管病雜志,2020,22(12):1308-1311.

[43] HUANG H,XU Z X,QI Y,et al.Exosomes from SIRT1-overexpressing ADSCs restore cardiac function by improving angiogenic function of EPCs[J].Molecular Therapy Nucleic Acids,2020,21:737-750.

[44] MILANO G,BIEMMI V,LAZZARINI E,et al.Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity[J].Cardiovascular Research,2020,116(2):383-392.

[45] AGARWAL U,GEORGE A,BHUTANI S,et al.Experimental,systems,and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients[J].Circulation Research,2017,120(4):701-712.

[46] ASHUR C,FRISHMAN W H.Cardiosphere-derived cells and ischemic heart failure[J].Cardiology in Review,2018,26(1):8-21.

[47] HIRAI K,OUSAKA D,FUKUSHIMA Y,et al.Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy[J].Science Translational Medicine,2020,12(573):eabb3336.

[48] HUANG F,NA N,IJICHI T,et al.Exosomally derived Y RNA fragment alleviates hypertrophic cardiomyopathy in transgenic mice[J].Molecular Therapy Nucleic Acids,2021,24:951-960.

[49] CAMBIER L,GIANI J F,LIU W X,et al.Angiotensin Ⅱ-induced end-organ damage in mice is attenuated by human exosomes and by an exosomal Y RNA fragment[J].Hypertension,2018,72(2):370-380.

[50] KE X,YANG R F,WU F,et al.Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway[J].Oxidative Medicine and Cellular Longevity,2021,2021:5529430.

[51] HUANG Y L,CHEN L F,FENG Z M,et al.EPC-derived exosomal miR-1246 and miR-1290 regulate phenotypic changes of fibroblasts to endothelial cells to exert protective effects on myocardial infarction by targeting ELF5 and SP1[J].Frontiers in Cell and Developmental Biology,2021,9:647763.

[52] KE X,YANG D H,LIANG J W,et al.Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility group box 1 protein B1 expression[J].DNA and Cell Biology,2017,36(11):1018-1028.

[53] 劉顏,劉孟楠,楊廷富,等.中藥防治心肌纖維化的研究進展[J].中藥藥理與臨床,2023,39(2):101-109.

[54] 韋玉娜,莫雪梅,王強,等.黃芪桂枝五物湯合生脈飲治療糖尿病心肌病心臟功能的臨床療效[J].中國實驗方劑學雜志,2021,27(19):104-109.

[55] REN C Z,ZHAO X K,LIU K,et al.Research progress of natural medicine Astragalus mongholicus Bunge in treatment of myocardial fibrosis[J].Journal of Ethnopharmacology,2023,305:116128.

[56] XIONG W,BAI X,XIAO H,et al.Effects of Astragaloside Ⅳ on exosome secretion and its microRNA-126 expression in human endothelial progenitor cells[J].Chinese Journal of Burns,2020,36(12):1183-1190.

[57] DENG K L,DAI Z,YANG P,et al.LPS-induced macrophage exosomes promote the activation of hepatic stellate cells and the intervention study of total astragalus saponins combined with glycyrrhizic acid[J].Anatomical Record,2023,306(12):3097-3105.

[58] HOU J G,YUN Y,CUI C H,et al.Ginsenoside Rh2 mitigates doxorubicin-induced cardiotoxicity by inhibiting apoptotic and inflammatory damage and weakening pathological remodelling in breast cancer-bearing mice[J].Cell Proliferation,2022,55(6):e13246.

[59] QI Z W,YAN Z P,WANG Y Y,et al.Ginsenoside Rh2 inhibits NLRP3 inflammasome activation and improves exosomes to alleviate hypoxia-induced myocardial injury[J].Frontiers in Immunology,2022,13:883946.

(收稿日期:2023-05-04)

(本文編輯薛妮)

猜你喜歡
外泌體綜述干細胞
干細胞:“小細胞”造就“大健康”
外泌體miRNA在肝細胞癌中的研究進展
間充質干細胞外泌體在口腔組織再生中的研究進展
循環外泌體在心血管疾病中作用的研究進展
造血干細胞移植與捐獻
外泌體在腫瘤中的研究進展
SEBS改性瀝青綜述
NBA新賽季綜述
干細胞產業的春天來了?
JOURNAL OF FUNCTIONAL POLYMERS
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合