?

福建番石榴環斑病菌的分離鑒定、生物學特性及抑制劑篩選

2024-04-30 09:34陳洪彬安瑩瑩陳蕾伊陳藝暉蔣璇靚林育釗
果樹學報 2024年4期
關鍵詞:生物學特性

陳洪彬 安瑩瑩 陳蕾伊 陳藝暉 蔣璇靚 林育釗

摘? ? 要:【目的】明確番石榴果實采后環斑病發生的致病病原菌及其對番石榴果實采后品質的影響,篩選能抑制該病原菌的有效抑制劑?!痉椒ā坎≡蛛x于發生環斑病的番石榴果皮病健交界處,并對該致病菌進行形態學鑒定、分子鑒定與系統發育樹分析。另外,初步研究番石榴環斑病菌的生物學特性、環斑病菌侵染對果實采后品質的影響和評價不同抑制劑(ε-聚賴氨酸、水楊酸和褪黑素)對環斑病菌的體外抑菌效果?!窘Y果】根據環斑病菌的菌絲與分生孢子的形態特征及基于rDNA-ITS、TUB和TEF-1α測序結果構建的系統發育樹,將福建番石榴環斑病菌鑒定為棒狀新擬盤多毛孢(Neopestalotiopsis clavispora)。葡萄糖和D-果糖、蛋白胨、7、25 ℃分別作為番石榴N. clavispora菌絲生長的最適碳源、氮源、pH、溫度。此外,與未接種N. clavispora番石榴果實相比,接種N. clavispora果實具有較高的病斑直徑和細胞膜透性,較低的果實硬度和色調角h值。體外試驗表明,適當濃度的ε-聚賴氨酸、水楊酸和褪黑素處理對番石榴N. clavispora的菌絲生長有明顯的抑制作用,可作為抑制N. clavispora侵染所致番石榴果實采后環斑病的抗菌劑?!窘Y論】引起福建番石榴果實環斑病的病原菌為棒狀新擬盤多毛孢(N. clavispora),且4.000 mg·mL-1 ε-聚賴氨酸對病原菌具有很好的抑制效果,可為后續番石榴環斑病的防治研究提供科學依據。

關鍵詞:番石榴果實;環斑??;棒狀新擬盤多毛孢;生物學特性;抑菌分析

中圖分類號:S667.9 文獻標志碼:A 文章編號:1009-9980(2024)04-0738-12

Isolation, identification, biological characteristics and inhibitors screening of pathogen causing ring rot disease of guava fruit in Fujian province

CHEN Hongbin1, 2, AN Yingying1, CHEN Leiyi1, CHEN Yihui1, 3*, JIANG Xuanjing1, LIN Yuzhao1*

(1College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, Fujian, China; 2Key Laboratory of Inshore Resources Biotechnology/Quanzhou Normal University, Quanzhou 362000, Fujian, China; 3College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China)

Abstract: 【Objective】 Guava, acting as a characteristic subtropical fresh fruit in southern China, is rich in vitamin C, dietary fiber and other nutrients, which has the good nutritional value and medicinal effects. However, in the harvest season at high temperature and with high humidity, the postharvest guava fruit is prone to the fungal diseases, resulting in the disease infection and fruit quality degradation. The occurrence of ring spot disease is a serious postharvest disease for guava fruit, which has seriously restricted the development of guava industry in Fujian province. The symptom of ring spot disease of guava fruit generally occurs in one week of storage at normal temperature, and the disease incidence of guava fruit Xiguahong is higher (about 30%), which has seriously restricted the maintenance of guava fruit quality after harvest. Therefore, the aim of this study was to isolate and identify the pathogen causing ring spot disease of guava fruit cv. Xiguahong in Fujian province and its biological characteristics, to study the effects of the infection of the pathogen on the postharvest quality attributes of guava fruit, and to explore the effects of key inhibitors of ε-poly-L-lysine (ε-PL), SA (salicylic acid) and melatonin (MT) on the inhibition rate of pathogen in vitro, so as to provide the theoretical references for controlling the ring spot disease and stabilizing the quality attributes of postharvest guava fruit. 【Methods】 (1) The pathogen was isolated from the rotten guava fruit, and identified via using the morphological characteristics, like mycelial morphology and conidium morphology, molecular identification and phylogenetic tree analysis based on sequences of rDNA-ITS, TUB and TEF-1α. (2) The biological characteristics of mycelia growth, including the different conditions of carbon source, nitrogen source, pH value and temperature, of the pathogen causing ring spot disease of guava fruit were studied. (3) The Xiguahong guava fruit was treated in the following two methods after washing and disinfection: Guava fruit was inoculated by 20 microliters of pathogen spore suspension at the concentration of 1×105 spores·mL-1 and treated with sterile distilled water (control group), severally. After inoculation, the treated guavas were stored at 28 ℃ with 90% relative humidity for 6 days. During storage, the effects of pathogen causing ring spot disease on the quality attributes (e. g., lesion diameter, fruit firmness, cell membrane permeability or hue angle h value) of harvested guava fruit were measured. (4) The antifungal effects of different inhibitors containing ε-PL (0, 0.125, 0.250, 0.500, 1.000, 2.000 and 4.000 mg·mL-1), SA (0, 0.500, 1.000, 1.500 and 2.000 mg·mL-1) and MT (0, 1.000, 2.000, 4.000 and 8.000 mg·mL-1) on the mycelia growth and inhibition rate of pathogen causing ring spot disease of guava fruit in vitro were evaluated, and thus the optimal inhibitor was screened out. 【Results】 (1) According to the morphological characteristics of mycelium and conidium, and the homology of more than 98% with similar strains based on phylogenetic tree by rDNA-ITS, TUB and TEF-1α sequences, the pathogen causing ring rot disease of harvested guava fruit in Fujian province was identified as Neopestalotiopsis clavispora. (2) The results of biological characteristics displayed that the glucose and D-fructose, peptone, 7, and 25 ℃ were the optimum conditions of carbon source, nitrogen source, pH value and temperature for mycelia growth of N. clavispora in guava fruit, separately. (3) Compared with non-N. clavispora-inoculated guava fruit, N. clavispora-inoculated guava fruit revealed the higher levels of lesion diameter and cell membrane permeability, but the lower values of fruit firmness and hue angle h. Specially, on the sixth day of storage, the lesion diameter and cell membrane permeability in N. clavispora-inoculated guava fruit were 29.41 times and 1.39 times more than those of non-N. clavispora-inoculated guava fruit, respectively, while the fruit firmness or hue angle h value of N. clavispora-inoculated guava fruit were 66.96% or 91.10% of non-N. clavispora-inoculated guava fruit, severally. (4) The treatments of appropriate concentrations of different inhibitors, such as ε-PL, SA and MT, showed the obvious inhibitory effects on the mycelia growth of N. clavispora in vitro, which could be used as the potential technologies for inhibiting N. clavispora-induced ring spot disease of postharvest guava fruit. Further comparison showed that the inhibitory effect of 4.000 mg·mL-1 ε-PL was the best, which could basically inhibit the mycelia growth of N. clavispora of guava fruit. 【Conclusion】 N. clavispora was the pathogen causing the ring spot disease of harvested guava fruit in Fujian province. The biological characteristics of N. clavispora of guava fruit were also obtained. The infection of N. clavispora could accelerate the occurrence of fruit disease, and seriously reduce the quality properties in guava fruit after harvest during the entire storage. The key inhibitors such as ε-PL, SA and MT could be used as the potential technologies for inhibiting N. clavispora-induced ring spot disease of postharvest guava fruit. Therefore, these results might provide a scientific basis for controlling the postharvest decay and extending the storage time for guava fruit.

Key words: Guava fruit; Ring rot disease; Neopestalotiopsis clavispora; Biological characteristics; Antifungal analysis

番石榴(Psidium guajava Linn.)又稱芭樂、那拔,果實富含維生素C和膳食纖維,具有較高的營養價值和藥用功效,是我國南方地區極為暢銷的一種亞熱帶鮮食果品[1-4]。根據清代泉州知府高拱乾1695年纂修的《臺灣府志》記載,番石榴傳入中國迄今已有300多年,臺灣、福建、廣東、海南、廣西是目前我國番石榴主要栽培省份(地區)[5-6]。然而,在高溫高濕的采收季節,番石榴果實采后容易發生真菌性病害。其中常見的番石榴真菌性病害包括炭疽病、環斑病、紫腐病、黑斑病、焦腐病等,這些病害的發生嚴重影響了番石榴果實采后品質及其果實產業的健康發展[7-8]。

2017—2022年期間,筆者從采摘于福建省漳州詔安、漳州漳浦、漳州華安、泉州洛江、泉州晉江、泉州永春等地區的番石榴果實中發現環斑病。該環斑病癥狀一般發生于番石榴果實采后常溫貯藏1周左右,且在西瓜紅番石榴果實中發病率較高(發病率約30%),嚴重制約果實采后品質的保持。該番石榴果實環斑病的發病癥狀為果實表面出現水漬狀凹陷褐色病斑,病斑逐漸擴大后,病斑邊緣有一圈黃褐色環斑,且在病斑中心有大量的黑色分生孢子堆。

為了延長番石榴果實的貨架期、控制其采后病害的發生,咪鮮胺等化學殺菌劑能有效起到果實防腐作用,進而穩定果實采后品質[9]。然而,長期使用化學殺菌劑造成化學殘留、污染環境和危害人體健康等問題,因而有必要尋找安全的處理技術以控制番石榴果實病害的發生。ε-聚賴氨酸(ε-poly-L-lysine,ε-PL)是一種無毒無害、易溶解、抗真菌的天然防腐劑,在食品工業中得到了廣泛應用[10]。另外,水楊酸(salicylic acid,SA)與褪黑素(melatonin,MT)均能延緩果實衰老,保持采后品質[11-12]。因此,筆者在本研究中通過分離鑒定福建省西瓜紅番石榴環斑病菌,研究該致病菌侵染對番石榴果實采后品質的影響,探討ε-PL、SA和MT處理對該致病菌體外抑制作用的影響,進而為控制番石榴果實采后環斑病發生、提高果實品質提供理論參考。

1 材料和方法

1.1 材料與儀器

西瓜紅番石榴(成熟度為八成熟),福建省漳州市詔安縣曉豐農業科技有限公司;馬鈴薯葡萄糖瓊脂(potato dextrose agar,PDA)培養基,青島高科技工業園海博生物技術有限公司。

JENCO-6173臺式pH計,上海任氏電子有限公司;TA-XT Plus質構儀,英國SMS公司;SQ510C高壓滅菌器,重慶雅馬拓科技有限公司;DM2000LED生物顯微鏡,徠卡顯微系統公司;CR400色差儀,日本柯尼卡美能達公司;PRX-450A恒溫人工氣候箱,浙江寧波賽福實驗室有限公司;SW-CJ-1FD超凈工作臺,蘇州安泰空氣技術有限公司;S230型電導率儀,梅特勒托利多儀器有限(上海)公司。

1.2 環斑病菌的分離與形態鑒定

1.2.1 分離和純化 參考陳蓬蓮等[13]、亓政良等[14]的方法,用75%乙醇消毒發生環斑病的番石榴果皮病健交界處,用常規組織分離法獲得組織塊(3 mm×3 mm),經乙醇浸泡30 s、無菌水清洗、晾干后,接種到PDA培養基(直徑為90 mm,下同),在28 ℃下培養。當菌絲長到3 cm時,將邊緣菌絲接種于新PDA培養基上,4次重復后獲得純化菌株(命名為F2)。

1.2.2 致病性測定和形態鑒定 參考陳蓬蓮等[13]、Chen等[15]及Chen等[16]的方法,采用柯赫氏法則,將菌株F2的菌絲塊(直徑為5 mm,下同)接種至已消毒的健康果實表面,以接種不含菌株F2的PDA培養基塊為對照。將果實裝袋后貯藏在28 ℃下,待果實發病后再分離病原菌并培養,與原接種菌株再對比,根據其菌落與分生孢子形態進行初步判定。

1.3 分子生物學鑒定

DNA提取、PCR擴增及病原菌基因測序等委托青島億信檢測技術服務有限公司完成。利用GenBank數據庫中的Basic Local Alignment Search Tool(BLAST)對菌株F2的ITS、TUB和TEF-1α測序結果進行分析;再通過比較菌株F2的序列與數據庫中已有的其他物種序列之間的相似度[17]。最后,參考施俊鳳等[18]的方法,采用MEGA 11.0軟件繪制系統發育樹(鄰接法)和Bootstraps法檢驗(1000次重復數)。

1.4 環斑病菌的生物學特性初探

1.4.1 碳源對菌落生長的影響 參考張居念等[19]、陳南泉等[20]及Cui等[21]的方法,基于Czapek固體培養基,將其中的蔗糖換成等質量葡萄糖、可溶性淀粉和D-果糖等碳素,以無蔗糖為對照。將菌株F2菌絲塊接種至上述PDA培養基中,在28 ℃、相對濕度(RH) 90%下培養,10 d后測定菌落直徑。

1.4.2 氮源對菌落生長的影響 參考張居念等[19]、陳南泉等[20]及Cui等[21]的方法,基于Czapek固體培養基,將其中的硝酸鈉換成等質量蛋白胨、硝酸鉀等氮素,以無硝酸鈉為對照。將菌株F2菌絲塊接種至上述PDA培養基,在28 ℃、RH 90%下培養,10 d后測定菌落直徑。

1.4.3 pH值對菌落生長的影響 參考張居念等[19]、陳南泉等[20]及Cui等[21]的方法,將菌株F2菌絲塊接種到pH值分別為4、5、6、7、8、9、10、11的PDA培養基(用1.0 mol·L-1的鹽酸/氫氧化鈉預先調節pH值),在28 ℃、RH 90%下培養,10 d后測定菌落直徑。

1.4.4 溫度對菌落生長的影響 參考張居念等[19]、陳南泉等[20]及Cui等[21]的方法,將菌株F2的菌絲塊接種于PDA培養基,在溫度分別為20、25、30和35 ℃、RH 90%下培養,10 d后測量菌落直徑。

1.5 接種棒狀新擬盤多毛孢(Neopestalotiopsis clavispora)對番石榴果實采后品質的影響

西瓜紅番石榴果實采后經清洗與消毒(NaClO浸泡10 s)后,用無菌打孔器在果實赤道面打孔(1個,直徑為5 mm,深度為3 mm),隨后進行以下兩組處理:(1)接種20 μL的1×105個孢子·mL-1的N. clavispora孢子懸浮液;(2)接種20 μL的無菌水(對照組)。

最后,果實經晾干、聚乙烯薄膜袋包裝(5個·袋-1)后放于28 ℃、RH 90%下貯藏。在貯藏期間,隨機取樣測定相關品質指標。參照Wang等[17]的方法測定番石榴果實病斑直徑;參照陳洪彬等[5]的方法測定番石榴果實硬度、細胞膜透性和色調角h值。

1.6 ε-PL、SA和MT處理對N. clavispora菌絲生長和抑制率的影響

體外抑菌研究參考Wang等[17]和Fan等[22]的方法。將不同質量濃度的ε-PL(0.125、0.250、0.500、1.000、2.000、4.000 mg·mL-1)、SA(0.500、1.000、1.500、2.000 mg·mL-1)和MT(1.000、2.000、4.000、8.000 mg·mL-1)分別添加到PDA培養基中,再把菌株F2的菌絲塊接種至上述培養基中,置于28 ℃、RH 90%下培養,每天測定菌落直徑。以不含上述抑制劑為對照組。

1.7 數據處理

生物學特性、體外試驗等研究均設3次重復,結果以平均值±標準誤表示,用軟件SPSS 22.0進行差異性顯著分析。

2 結果與分析

2.1 番石榴環斑病癥狀

由圖1可知,剛采收的番石榴果實(貯藏0 d)果皮顏色呈現光亮的黃綠色(圖1-A);把果實放在室溫(25 ℃、RH 85%)下貯藏,隨著貯藏時間的推移,番石榴果實的果皮顏色不斷轉黃,且果皮亮度逐漸下降;當貯藏10 d時,果實出現嚴重的環斑病癥狀,發病率為30%。番石榴環斑病癥狀特征為果實表面出現水漬狀凹陷褐色病斑,病斑逐漸擴大后,病斑邊緣會有一圈黃褐色環斑,且在病斑中心有大量的黑色分生孢子堆,伴有白色菌絲(圖1-B~C)。

2.2 番石榴果實環斑病菌的致病性評價和形態鑒定

健康的番石榴果實經表面消毒后接種菌株F2的菌絲塊,在接種后3 d,接種處果實表面出現凹陷(圖2-A);接種后6 d,果實表面出現黃褐色環斑,且在病斑中心有黑色分生孢子堆,伴有大量白色菌絲,果實嚴重腐爛(圖2-B)。經對比后發現,番石榴果實接種菌株F2菌絲塊所發生的環斑病癥狀與其在自然條件下所發生的病癥相一致(圖2-A~B和圖1-C)。

從接種菌株F2菌絲塊的果實再次分離病原菌,其菌絲、分生孢子形態與自然分離的一致。由圖2-C可知,菌株F2的菌絲塊在PDA培養基上培養時為白色,菌落近圓形、棉絮狀,同心輪紋且邊緣明顯。經顯微鏡觀察發現,菌株F2的分生孢子呈紡錘形,由5個細胞(中間3個為褐色,頭尾為無色)構成,頭部細胞有附屬絲2~4根,尾部細胞有中生式尾毛1根;分生孢子大小為(15.4~19.5)μm ×(4.3~5.8)μm(圖2-D)。根據上述結果并結合梁嘉莉等[23]、唐鑫彪等[24]和馮友仁等[25]的報道,初步鑒定菌株F2為新擬盤多毛孢屬(Neopestalotiopsis)。

2.3 番石榴果實環斑病菌的分子生物學鑒定

根據BLAST分析可知,基于ITS測序,菌株F2與棒狀新擬盤多毛孢(N. clavispora)(MZ381262.1)的同源性為100%;基于TUB測序,菌株F2與N. clavispora(MN626479.1、MN626478.1)的同源性為99%;基于TEF-1α測序,菌株F2與N. clavispora(MZ494654.1)的同源性為98%。從ITS測序的系統發育分析結果可知,菌株F2與N. clavispora(MZ381262.1)屬于同一分支(圖3-A);從TUB測序的系統發育分析結果可得,菌株F2與N. clavispora(MN626478.1、MN626481.1、MN626479.1)屬于同一分支(圖3-B);從TEF-1α測序的系統發育分析結果發現,菌株F2與N. clavispora(MH423932.1、MH423927.1、MZ494654.1、MZ494658.1、ON494654.1)屬于同一分支(圖3-C)。此外,根據ITS、TUB和TEF-1α測序的結果構建系統發育樹,菌株F2與登錄號為MZ381262.1的N. clavispora處于同一個分支中(圖3-D),說明菌株F2與N. clavispora的親緣關系最近。因此,結合致病性試驗和形態學分析,從福建省西瓜紅番石榴采后環斑病中分離到的菌株F2鑒定為N. clavispora。

2.4 N. clavispora的生物學特性

由圖4-A可知,N. clavispora菌絲在果糖、葡萄糖、蔗糖、淀粉等碳源下均可快速生長,其菌落直徑都顯著大于對照。其中,當碳源是葡萄糖或D-果糖時,其菌落直徑分別是(80.84±0.61) mm、(81.75±1.05) mm,進一步分析發現,兩者無顯著差異,但均顯著高于其他碳源處理組。

由圖4-B可知,N. clavispora菌絲在硝酸鈉、蛋白胨、硝酸鉀等氮源下均可快速生長,菌落直徑都顯著大于對照。其中,當氮源是蛋白胨時,N. clavispora菌落直徑最大,為(80.84±0.61) mm,顯著高于其他氮源處理組。

由圖4-C可知,N. clavispora菌落在pH范圍為4~11均可生長。在pH范圍為4~7時,菌落直徑整體呈現增大趨勢,而在pH范圍為7~11時,菌落直徑整體呈現減小趨勢。當pH為7時,N. clavispora菌落直徑最大,具體為(82.11±0.31) mm,顯著高于其他pH處理組。

由圖4-D可知,N. clavispora菌落直徑在20 ℃~25 ℃加快增大,而在25 ℃~35 ℃卻急劇減小。當溫度為25 ℃時,N. clavispora菌絲生長最快,菌落直徑為(88.52±0.73) mm,顯著高于其他溫度處理組。

因此,N. clavispora菌落生長的最適宜碳源是葡萄糖與D-果糖,最適宜氮源是蛋白胨,最適宜pH為7,最適宜溫度為25 ℃。

2.5 N. clavispora侵染對番石榴果實病斑直徑、硬度、細胞膜透性和色調角h值的影響

由圖5-A可知,對照番石榴果實病斑直徑在貯藏0~6 d時增大速率較為緩慢。接種N. clavispora番石榴果實病斑直徑在貯藏0~6 d時急劇增大,并在貯藏2~6 d極顯著高于對照。其中,在貯藏6 d時,接種組的病斑直徑是對照的29.41倍。

由圖5-B可知,兩個處理組的果實硬度均在貯藏0~6 d時快速下降。與對照相比,接種N. clavispora番石榴果實硬度處于較低水平,且在貯藏4 d時顯著低于對照。

由圖5-C可知,對照番石榴果實細胞膜透性在貯藏0~3 d時快速升高,3~5 d呈下降趨勢,隨后快速上升。接種N. clavispora番石榴果實的細胞膜透性在貯藏0~6 d內處于較高水平,且在貯藏1 d、6 d時極顯著高于對照。

由圖5-D可知,對照番石榴果實的色調角h值從113.7°(0 d)下降到97.7°(6 d),而接種N. clavispora果實的色調角h值從113.7°(0 d)下降到89.0°(6 d)。經過對比發現,接種組具有較低的色調角h值,并在貯藏2 d、4 d和5 d時顯著低于對照。

因此,在貯藏期,與對照番石榴果實相比,接種N. clavispora可提高果實采后病斑直徑和細胞膜透性,而降低果實硬度與色調角h值,進而降低果實采后品質。

2.6 ε-PL、SA和MT處理對N. clavispora菌絲生長的影響

由圖6-A~C可知,ε-PL、SA和MT能有效地抑制N. clavispora菌落的生長。隨著ε-PL、SA和MT濃度的增加,N. clavispora菌絲的生長速率持續下降。在培養5 d時,對照的菌落基本長滿整個PDA平板,而ε-PL、SA和MT能抑制N. clavispora菌落的生長,其菌落直徑均小于對照(圖5-A~C)。進一步對比可知,0.125~4.000 mg·mL-1 ε-PL、0.500~2.000 mg·mL-1 SA、2.000~8.000 mg·mL-1 MT均能顯著抑制N. clavispora菌落的生長。

此外,ε-PL、SA和MT對N. clavispora的抑制率隨著濃度的升高而急劇升高(圖6-A~C)。0.125、0.250、0.500、1.000、2.000、4.000 mg·mL-1 ε-PL對N. clavispora菌絲生長的抑制率分別為50.68%、63.85%、65.42%、70.69%、77.42%、89.15%(圖6-A),0.5、1.0、1.5、2.0 mg·mL-1 SA對N. clavispora菌絲生長的抑制率分別為25.36%、47.19%、50.83%、69.37%(圖6-B),1、2、4、8 mg·mL-1 MT對N. clavispora菌絲生長的抑制率分別為 3.29%、25.99%、35.86%、38.18%(圖6-C)。和未添加抑制劑處理組比較,0.125~4.000 mg·mL-1 ε-PL、0.500~2.000 mg·mL-1 SA、2.000~8.000 mg·mL-1 MT對番石榴N. clavispora菌絲生長的抑制率均具有顯著差異性。經對比可知,4.000 mg·mL-1 ε-PL的抑制效果最好,基本可抑制N. clavispora菌絲生長。

綜上,ε-PL、SA和MT均能抑制N. clavispora菌絲的生長,其中以4.000 mg·mL-1 ε-PL的抑制效果最佳。

3 討 論

N. clavispora是一種廣泛分布在熱帶、亞熱帶地區的致病菌,可以引發多種植物發生病害癥狀,例如能夠導致植物發生果腐病[26]、枯萎病[27-28]、根腐病[29]、冠腐病[30]、枝枯病[31]等病害,從而致使植物發生腐爛。番石榴是我國南方暢銷的特色熱帶果品,明確福建省番石榴環斑病的病原菌,對其病害的針對性防治具有重要意義。筆者從福建省番石榴果實中觀察到環斑病癥狀,經過對該致病菌進行分離、形態學觀察、致病性評價及分子鑒定等,確定引起福建省番石榴果實發生環斑病的致病菌為N. clavispora。另外,與前人研究報道比較發現,在不同植物中,N. clavispora所引起的病癥并不一致。N. clavispora是致使刺葡萄葉斑病的致病菌[24],引起草莓發生冠腐病的致病菌是N. clavispora[32]。

為了揭示引起番石榴果實發生環斑病致病菌(N. clavispora)的生物學特性,筆者在本研究中也對不同的溫度、pH、氮源、碳源等對N. clavispora菌落生長的影響進行了初步探究。根據結果可知,不同的溫度、pH、氮源、碳源等對N. clavispora菌落生長呈現出不同的影響作用,經過分析可得,25 ℃、7、蛋白胨、葡萄糖和D-果糖分別是其最佳溫度、pH、氮源和碳源。本研究結果與前人報道有相似之處。番石榴N. clavispora菌落生長最佳溫度為25 ℃,與馮友仁等[25]報道的月季葉枯病菌(N. clavispora)的最適宜溫度為25 ℃一致。然而,薛德勝等[33]報道的藍莓N. clavispora菌絲生長的最適溫度為25~30 ℃、最適pH范圍為5~9、最適氮源為硝酸鈉、硫酸銨和蛋白胨、最適碳源為葡萄糖,這與筆者在本研究中的結果存在一定的差異。

有研究報道,病原菌侵染可加速采后果實品質降低[17]。在本研究中,N. clavispora侵染降低了番石榴果實品質,這與其增大果實病斑直徑和細胞膜透性、降低果實硬度與色調角h值有關。筆者前期研究發現Diaporthe passiflorae侵染提高黃金西番蓮果實的病斑直徑、細胞膜透性,降低色調角h值,從而致使果實采后品質喪失[17]。另外,Gong等[34]研究報道Penicillium expansum侵染可提高蘋果果實病斑直徑與細胞膜透性,進而降低果實品質,與本文研究結果一致。

由于病原菌入侵,番石榴果實采后商業價值喪失,嚴重制約番石榴果實產業發展?;瘜W殺菌劑的應用雖然可以保持番石榴果實品質和延長貯藏期,但是長期不合理地使用化學殺菌劑危害人體健康及污染環境。因此,尋找安全有效的處理技術來抑制病原菌的生長,對保持番石榴果實采后品質至關重要。作為一種安全的、無毒的抗菌劑,ε-PL被廣泛應用于食品工業中[35]。有研究報道,ε-PL可抑制果實采后病害發生,ε-PL能控制采后蘋果病害發生,同時在體外抑菌試驗中對Penicillium expansum具有抑制作用[36]。Liu等[37]研究發現,ε-PL對Alternaria alternata的菌絲生長具有較強的抑制能力。另外,SA和MT也可抑制病原菌侵染而保持較高的果實品質。SA可減少病原菌對柑橘的侵染,從而保持較高的果實品質[38]。孫華山等[39]研究,發現SA對綠蘿葉斑病均具有明顯的抑制作用。MT對Botrytis cinerea侵染引起的番茄果實灰霉病有抑制作用[40]。另外,筆者課題組前期研究也發現,ε-PL、SA和MT對D. passiflorae菌絲生長也具有明顯的抑制效果[17]。筆者研究了ε-PL、SA和MT對N. clavispora菌落生長的體外抑菌效果,結果表明,0.125 mg·mL-1 ε-PL、0.500 mg·mL-1 SA、2.000 mg·mL-1 MT在體外均能顯著地抑制N. clavispora菌絲的生長,并且其抑制能力隨著抑制劑濃度的升高而增強。因此,ε-PL、SA和MT可作為有效的采后抑制劑,從而控制番石榴果實采后環斑病的發生,穩定果實采后品質。

4 結 論

明確了引起番石榴果實發生環斑病的致病菌是N. clavispora。N. clavispora侵染可加快番石榴果實采后品質的下降。另外,初步得出了影響N. clavispora菌絲生長的最適溫度、pH、氮源、碳源分別為25 ℃、7、蛋白胨、葡萄糖和D-果糖。此外,ε-PL、SA和MT對N. clavispora的體外生長均有抑制作用,其中以4.000 mg·mL-1 ε-PL的抑制效果最好。研究結果不僅提高對N. clavispora、環斑病的認識,還為番石榴果實采后病害的有效防治提供了有價值的理論與技術參考。

參考文獻 References:

[1] CHEN H B,LIN H T,JIANG X J,LIN M S,FAN Z Q. Amelioration of chilling injury and enhancement of quality maintenance in cold-stored guava fruit by melatonin treatment[J]. Food Chemistry:X,2022,14:100297.

[2] 陳洪彬,王慧玲,蔣璇靚,陳彩萍,程永強. γ-氨基丁酸處理對冷藏番石榴果實品質和耐冷性的影響[J]. 食品與發酵工業,2021,47(14):130-136.

CHEN Hongbin,WANG Huiling,JIANG Xuanjing,CHEN Caiping,CHENG Yongqiang. Effects of γ-aminobutyric acid treatment on the quality properties and chilling tolerance of guava fruit during cold storage[J]. Food and Fermentation Industries,2021,47(14):130-136.

[3] 宋曉兵,崔一平,彭埃天,凌金鋒,陳霞. 廣東省番石榴褐斑病的病原分離及鑒定[J]. 植物病理學報,2021,51(3):456-459.

SONG Xiaobing,CUI Yiping,PENG Aitian,LING Jinfeng,CHEN Xia. Pathogen isolation and identification of brown spot disease of Psidium guajava Linn. in Guangdong[J]. Acta Phytopathologica Sinica,2021,51(3):456-459.

[4] 呂冰冰,謝筆鈞,孫智達. 紅肉番石榴果膠的理化特性及其體外降脂作用[J]. 食品工業科技,2021,42(20):51-60.

L? Bingbing,XIE Bijun,SUN Zhida. Physical and chemical properties of red-flesh guava pectin and its lipid-lowering effect in vitro[J]. Science and Technology of Food Industry,2021,42(20):51-60.

[5] 陳洪彬,楊菁美,吳錦雯,蔣璇靚,張朝坤. 1-MCP處理提高采后 “紅心” 番石榴果實品質和耐貯性[J]. 食品與發酵科技,2021,57(2):49-55.

CHEN Hongbin,YANG Jingmei,WU Jinwen,JIANG Xuanjing,ZHANG Chaokun. 1-MCP treatment improves quality and storability of postharvest “Hongxin” guava fruit[J]. Food and Fermentation Sciences & Technology,2021,57(2):49-55.

[6] 王正賢,朱文倩,黃奕蔓,廖詠梅. 廣西玉林市番石榴焦腐病的病原菌鑒定[J]. 植物病理學報,2021,51(5):813-816.

WANG Zhengxian,ZHU Wenqian,HUANG Yiman,LIAO Yongmei. Identification of the pathogen causing guava black-rot in Yulin,Guangxi[J]. Acta Phytopathologica Sinica,2021,51(5):813-816.

[7] 陳洪彬,林毅雄,陳南泉,林福興,林河通. 番石榴果實采后生理和采后病害研究進展[J]. 包裝與食品機械,2013,31(6):45-50.

CHEN Hongbin,LIN Yixiong,CHEN Nanquan,LIN Fuxing,LIN Hetong. Advances in the studies on postharvest physiology and postharvest disease of guava fruit[J]. Packaging and Food Machinery,2013,31(6):45-50.

[8] 郭溪遠,藍荷英,林艷,劉皓良,陳團偉. 一株引起番石榴黑斑病病原菌的分離與鑒定[J]. 食品工業科技,2022,43(10):158-164.

GUO Xiyuan,LAN Heying,LIN Yan,LIU Haoliang,CHEN Tuanwei. Isolation and identification of a pathogen causing guava black spot[J]. Science and Technology of Food Industry,2022,43(10):158-164.

[9] 陳洪彬,林毅雄,陳南泉,林福興,林河通. 番石榴果實采后處理與保鮮技術研究進展[J]. 包裝與食品機械,2013,31(5):39-43.

CHEN Hongbin,LIN Yixiong,CHEN Nanquan,LIN Fuxing,LIN Hetong. Advances in the studies on postharvest handling and fresh-keeping methods of guava fruits[J]. Packaging and Food Machinery,2013,31(5):39-43.

[10] WU J J,HU J J,JIAO W X,DU Y M,HAN C,CHEN Q M,CHEN X,FU M R. Inhibitory effect of ε-poly-L-lysine on fruit Colletotrichum gloeosporioides through regulating organic acid metabolism and exerting membrane-targeted antifungal activity[J]. Postharvest Biology and Technology,2023,200:112339.

[11] JIANG B,LIU R L,FANG X J,TONG C,CHEN H J,GAO H Y. Effects of salicylic acid treatment on fruit quality and wax composition of blueberry (Vaccinium virgatum Ait)[J]. Food Chemistry,2022,368:130757.

[12] YAN R,XU Q H,DONG J X,KEBBEH M,SHEN S L,HUAN C,ZHENG X L. Effects of exogenous melatonin on ripening and decay incidence in plums (Prunus salicina L. cv. Taoxingli) during storage at room temperature[J]. Scientia Horticulturae,2022,292:110655.

[13] 陳蓬蓮,陳南泉,林河通,林育釗,陳藝暉. 橄欖果實潛伏病原真菌的分離與鑒定[J]. 食品科學,2020,41(18):165-171.

CHEN Penglian,CHEN Nanquan,LIN Hetong,LIN Yuzhao,CHEN Yihui. Isolation and identification of latent fungal pathogens from Chinese olive fruit[J]. Food Science,2020,41(18):165-171.

[14] 亓政良,徐芳菲,王先洪,傅敏,王利平,洪霓,王國平. 福建李葉斑病病原菌種類鑒定及致病性研究[J]. 果樹學報,2023,40(11):2423-2434.

QI Zhengliang,XU Fangfei,WANG Xianhong,FU Min,WANG Liping,HONG Ni,WANG Guoping. Identification and pathogenicity of pathogenic species of plum leaf spot disease in Fujian[J]. Journal of Fruit Science,2023,40(11):2423-2434.

[15] CHEN J,DENG X,CIVEROLO E L,LEE R F,JONES J B,ZHOU C,HARTUNG J S,MANJUNATH K L,BRLANSKY R H. “Candidatus liberibacter species”:Without Kochs postulates completed,can the Bacterium be considered as the causal agent of citrus Huanglongbing (yellow shoot disease)?[J]. Acta Phytopathologica Sinica,2011,41(2):113-117.

[16] CHEN G,YANG L,LUO H L,HUANG Y C,JU Y,WEI Y W,SUN J M. First report of leaf spot on passion fruit in China,caused by Alternaria alternata[J]. Plant Disease,2022,107: 1229.

[17] WANG H L,CHEN H B,LIN Y,LI M L,LIU Q Q,LIN Y Z,JIANG X J,CHEN Y H. Insights into the isolation,identification,and biological characterization analysis of and novel control strategies for Diaporthe passiflorae in postharvest passion fruit[J]. Journal of Fungi,2023,9(10):1034.

[18] 施俊鳳,孫常青,王瀟冉,張立新. 番茄采后病原鑒定及百里香精油生物活性研究[J]. 中國食品學報,2016,16(2):224-232.

SHI Junfeng,SUN Changqing,WANG Xiaoran,ZHANG Lixin. Pathogen identification of postharvest tomato and the antifungal activities of thyme essential oil[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(2):224-232.

[19] 張居念,陳藝暉,林藝芬,陳夢茵,林河通,王宗華. 龍眼擬莖點霉(Phomopsis longanae Chi)的生物學特性研究[J]. 熱帶作物學報,2013,34(4):695-699.

ZHANG Junian,CHEN Yihui,LIN Yifen,CHEN Mengyin,LIN Hetong,WANG Zonghua. Biological characteristics of Phomopsis longanae Chi[J]. Chinese Journal of Tropical Crops,2013,34(4):695-699.

[20] 陳南泉,林河通,陳藝暉,林藝芬,王慧. 橄欖小孢擬盤多毛孢(Pestalotiopsis microspora)的生物學特性研究[J]. 保鮮與加工,2016,16(3):5-10.

CHEN Nanquan,LIN Hetong,CHEN Yihui,LIN Yifen,WANG Hui. Biological characteristics of Pestalotiopsis microspora[J]. Storage and Process,2016,16(3):5-10.

[21] CUI L X,YANG C D,JIN M J,WEI L J,YANG L P,ZHOU J J. Identification and biological characterization of a new pathogen that causes potato scab in Gansu province,China[J]. Microbial Pathogenesis,2021,161(Pt A):105276.

[22] FAN S L,LI Q,FENG S J,LEI Q M,ABBAS F,YAO Y L,CHEN W X,LI X P,ZHU X Y. Melatonin maintains fruit quality and reduces anthracnose in postharvest Papaya via enhancement of antioxidants and inhibition of pathogen development[J]. Antioxidants,2022,11(5):804.

[23] 梁嘉莉,吳啟松,陳廣全,張榮,徐春香,馮淑杰. 香蕉葉斑病病原菌芭蕉新擬盤多毛孢的鑒定[J]. 園藝學報,2023,50(2):410-420.

LIANG Jiali,WU Qisong,CHEN Guangquan,ZHANG Rong,XU Chunxiang,FENG Shujie. Identification of the Neopestalotiopsis musae pathogen of banana leaf spot disease[J]. Acta Horticulturae Sinica,2023,50(2):410-420.

[24] 唐鑫彪,倪玉潔,胡玉慈,白金慧,王琳,陳清西,文志豐. 刺葡萄棒狀擬盤多毛孢葉斑病病原菌的分離鑒定及其防治藥劑篩選[J]. 植物保護,2020,46(4):110-115.

TANG Xinbiao,NI Yujie,HU Yuci,BAI Jinhui,WANG Lin,CHEN Qingxi,WEN Zhifeng. Identification of the fungal pathogen causing Vitis davidii leaf spot and screening of fungicides for control of the disease[J]. Plant Protection,2020,46(4):110-115.

[25] 馮友仁,劉寶生,白鵬華. 天津市新型月季葉枯病病原菌鑒定及生物學特性研究[J]. 北方園藝,2015(14):125-129.

FENG Youren,LIU Baosheng,BAI Penghua. Pathogen identification and biological characteristics of rose leaf blotch in Tianjin[J]. Northern Horticulture,2015(14):125-129.

[26] ABBAS M F,BATOOL S,KHAN T,RASHID M. First report of Neopestalotiopsis clavispora causing postharvest fruit rot of loquat in Pakistan[J]. Journal of Plant Pathology,2022,104(1):459.

[27] SHI J J,ZHANG X M,LIU Y,ZHANG Z H,WANG Z G,XUE C S,MA Y,WANG F. First report of Neopestalotiopsis clavispora causing Calyx and receptacle blight on strawberry in China[J]. Plant Disease,2022,106(4):1307.

[28] 崔一平,彭埃天,宋曉兵,凌金鋒,陳霞,程保平. 番石榴枯萎病病原菌的分離及分子生物學鑒定[J]. 植物保護學報,2021,48(2):467-468.

CUI Yiping,PENG Aitian,SONG Xiaobing,LING Jinfeng,CHEN Xia,CHENG Baoping. Isolation and molecular identification of the pathogen causing wilt in Psidium guajava[J]. Journal of Plant Protection,2021,48(2):467-468.

[29] XUE D S,LIAN S,LI B H,WANG C X. First report of Pestalotiopsis clavispora causing root rot on blueberry in China[J]. Plant Disease,2018,102(8):1655.

[30] SIGILLO L,RUOCCO M,GUALTIERI L,PANE C,ZACCARDELLI M. First report of Neopestalotiopsis clavispora causing crown rot in strawberry in Italy[J]. Journal of Plant Pathology,2020,102(1):281.

[31] 趙洪海,岳清華,梁晨. 藍莓擬盤多毛孢枝枯病的病原菌[J]. 菌物學報,2014,33(3):577-583.

ZHAO Honghai,YUE Qinghua,LIANG Chen. The pathogen causing Pestalotiopsis twig dieback of blueberry[J]. Mycosystema,2014,33(3):577-583.

[32] GILARDI G,BERGERETTI F,GULLINO M L,GARIBALDI A. First report of Neopestalotiopsis clavispora causing root and crown rot on strawberry in Italy[J]. Plant Disease,2019,103(11):2959.

[33] 薛德勝,李保華,練森,梁文星,王彩霞. 藍莓葉斑病病原菌鑒定及其生物學特性[J]. 植物保護學報,2019,46(2):323-329.

XUE Desheng,LI Baohua,LIAN Sen,LIANG Wenxing,WANG Caixia. Identification and biological characteristics of the pathogen Pestalotiopsis clavispora causing blueberry leaf spot[J]. Journal of Plant Protection,2019,46(2):323-329.

[34] GONG D,BI Y,ZHANG X M,HAN Z H,ZONG Y Y,LI Y C,SIONOV E,PRUSKY D. Benzothiadiazole treatment inhibits membrane lipid metabolism and straight-chain volatile compound release in Penicillium expansum-inoculated apple fruit[J]. Postharvest Biology and Technology,2021,181:111671.

[35] 張重陽,陳旭升. ε-聚賴氨酸的抑菌機制及其在食品防腐保鮮中的應用[J]. 中國食品學報,2023,23(3):390-405.

ZHANG Chongyang,CHEN Xusheng. The antibacterial mechanism and application of ε-poly-L-lysine in food preservation[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(3):390-405.

[36] DOU Y,ROUTLEDGE M N,GONG Y Y,GODANA E A,DHANASEKARAN S,YANG Q Y,ZHANG X Y,ZHANG H Y. Efficacy of epsilon-poly-L-lysine inhibition of postharvest blue mold in apples and potential mechanisms[J]. Postharvest Biology and Technology,2021,171:111346.

[37] HAIDER S A,AHMAD S,SATTAR KHAN A,ANJUM M A,NASIR M,NAZ S. Effects of salicylic acid on postharvest fruit quality of “Kinnow” mandarin under cold storage[J]. Scientia Horticulturae,2020,259:108843.

[38] LI S G,XU Y H,BI Y,ZHANG B,SHEN S L,JIANG T J,ZHENG X L. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest[J]. Postharvest Biology and Technology,2019,157:110962.

[39] LIU H,CHEN J G,XIA Z H,AN M N,WU Y H. Effects of ε-poly-l-lysine on vegetative growth,pathogenicity and gene expression of Alternaria alternata infecting Nicotiana tabacum[J]. Pesticide Biochemistry and Physiology,2020,163:147-153.

[40] 孫華山,陳陽,金一鋒,蘇蔚,李晨,王玉書. 綠蘿葉斑病病原菌鑒定及外源水楊酸對其影響[J]. 黑龍江農業科學,2017(3):64-67.

SUN Huashan,CHEN Yang,JIN Yifeng,SU Wei,LI Chen,WANG Yushu. Pathogen identification for Epipremnum aureum leaf spot and the effect of exogenous salicylic acid[J]. Heilongjiang Agricultural Sciences,2017(3):64-67.

猜你喜歡
生物學特性
一株野生側耳屬菌株的分離鑒定與生物學特性
山楂在城市園林綠化中的應用
珍貴樹種土沉香及其種子育苗技術
文冠果的發展與應用前景
韃靼忍冬生物學特性及繁育技術
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合