?

芝麻素對氧糖剝奪損傷大鼠皮質神經元的作用及機制

2023-04-08 16:16陳淑君何佳林萬芪
青島大學學報(醫學版) 2023年6期
關鍵詞:腦缺血神經元

陳淑君 何佳林 萬芪

[摘要] 目的 探討芝麻素(SSM)是否通過磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)/核因子-紅細胞樣2相關因子2(Nrf2)信號通路對氧糖剝奪(OGD)損傷的大鼠皮質神經元發揮神經保護作用。

方法 原代培養SD大鼠大腦皮質神經元8 d后,構建體外腦缺血模型。采用CCK-8法檢測不同濃度SSM對神經元存活率的影響,采用免疫印跡法檢測最適作用濃度SSM處理后磷酸化絲氨酸/蘇氨酸激酶(p-Akt)、Akt、Nrf2、血紅素氧化酶-1(HO-1)蛋白表達水平。

結果 與Control組相比,OGD組神經元存活率下降,不同濃度的SSM處理均可增加OGD損傷后神經元的存活率(F=35.93,P<0.01),以25 μmol/L的SSM作用最明顯。各組氧化應激相關蛋白p-Akt、Nrf2、HO-1表達差異有統計學意義(F=23.47~32.21,P<0.01)。與OGD組相比,OGD+SSM組p-Akt、Nrf2、HO-1蛋白表達量均顯著上調(P<0.05);與OGD+SSM組相比,OGD+SSM+LY294002組p-Akt、Nrf2、HO-1蛋白上調均被抑制(P<0.05)。各組Akt比較差異無顯著性(P>0.05)。

結論 SSM通過激活PI3K/Akt/Nrf2信號通路,提高OGD損傷后神經元的存活率,發揮神經保護作用。

[關鍵詞] 芝麻脂素;大腦皮質;神經元;腦缺血;神經保護

[中圖分類號] R338.2

[文獻標志碼] A

[文章編號] 2096-5532(2023)06-0791-05

doi:10.11712/jms.2096-5532.2023.59.189

[網絡出版] https://link.cnki.net/urlid/37.1517.R.20231230.1152.001;2024-01-03 10:07:27

EFFECT OF SESAMIN ON CORTICAL NEURON INJURY INDUCED BY OXYGEN-GLUCOSE DEPRIVATION IN RATS AND RELATED MECHANISM

CHEN Shujun, HE Jialin, WAN Qi

(Institute of Neuroregeneration & Neurorehabilitation, Qing-

dao University, Qingdao 266071, China)

; [ABSTRACT]ObjectiveTo investigate whether sesamin (SSM) exerts a neuroprotective effect on rat cortical neurons with oxygen-glucose deprivation (OGD) injury through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway.

MethodsPrimary cortical neurons of Sprague-Dawley rats were cultured for 8 days to construct an in vitro model of cerebral ischemia. CCK-8 assay was used to observe the effect of different concentrations of SSM on the viability of neurons, and Western blotting was used to measure the protein expression levels of phosphorylated Akt (p-Akt), Akt, Nrf2, and heme oxygenase-1 (HO-1) after treatment with the optimal concentration of SSM.

ResultsCompared with the Control group, the OGD group had a significant reduction in the viability of neurons, and SSM treatment at different concentrations could increase the viability of neurons after OGD injury (F=35.93,P<0.01), with the most obvious effect at the concentration of 25 μmol/L. There were significant differences between groups in the expression levels of the oxidative stress-rela-

ted proteins p-Akt, Nrf2, and HO-1 (F=23.47-32.21,P<0.01). Compared with the OGD group, the OGD+SSM group had significantly upregulated protein expression of p-Akt, Nrf2, and HO-1 (P<0.05), and compared with the OGD+SSM group, the OGD+SSM+LY294002 group had inhibited upregulation of p-Akt, Nrf2, and HO-1 proteins (P<0.05). There was no significant difference in Akt between groups (P>0.05).

ConclusionSSM plays a neuroprotective role by activating the PI3K/Akt/Nrf2 signaling pathway and increasing the viability of neurons after OGD injury.

[KEY WORDS]sesamin; cerebral cortex; neurons; brain ischemia; neuroprotection

缺血性腦卒中是世界范圍內致死和致殘的主要原因之一[1]。其最常見的發病機制是大腦中動脈短暫性閉塞,再通后活性氧(ROS)自由基過量生成,通過氧化應激造成不同程度的腦損傷[2]。因此,具有抗氧化性質的化合物可以減輕由氧化應激引起的腦損傷[3]。芝麻素(SSM)是一種抗氧化劑,具有抗氧化和抗炎的作用,它通過減輕氧化應激和抑制神經炎癥來提供神經保護[4-7]。磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)信號通路在調控氧化應激中發揮重要作用,許多化合物可能通過上調磷酸化絲氨酸/蘇氨酸激酶(p-Akt)來減輕缺血性損傷[8-9]。核因子-紅細胞樣2相關因子2(Nrf2)是Akt發揮神經保護作用的下游關鍵因子并參與調節氧化應激,調節ROS和抗氧化基因的表達[10-11]。Nrf2被激活后,轉位到細胞核,啟動血紅素氧化酶-1(HO-1)等多種抗氧化酶的轉錄,從而減輕氧化應激損傷[12-13]。目前仍然不清楚SSM能否通過調控PI3K/Akt/Nrf2信號通路發揮神經保護作用。本研究通過制備大鼠皮質神經元氧糖剝奪(OGD)模型對此進行探討,以期為腦卒中提供一種潛在的治療策略。

1 材料與方法

1.1 實驗材料

1.1.1 實驗動物 孕18 d的健康成年雌性SD大鼠,由濟南朋悅實驗動物繁育有限公司提供,動物合格證號SCXK(魯)20190003,飼養于青島大學醫學部實驗動物中心。本實驗經青島大學實驗動物倫理委員會批準。

1.1.2 實驗試劑 Neurobasal Medium、多聚賴氨酸(10×)、glutaMax(100×)、2.5 g/L胰蛋白酶溶液、B-27 Supplement均購自Gibco公司;胎牛血清購自四季青公司;青霉素-鏈霉素(100×)購自武漢普諾賽生命科技有限公司;Nrf2抗體、HO-1抗體均購自Abcam公司;β-actin抗體、p-Akt抗體、Akt抗體均購自CST公司;兔二抗、鼠二抗均購自武漢科瑞生物技術有限公司;DMEM高糖培養液、苯甲基磺酰氟(0.1 mol/L)、蛋白磷酸酶抑制劑混合物(100×)、D-Hanks溶液、磷酸鹽緩沖液、SSM均購自北京索萊寶科技有限公司;二甲基亞砜(DMSO)購自美國Sigma公司;RIPA裂解液購自北京普利萊基因技術有限公司;CCK-8試劑盒購自北京博奧森生物技術有限公司;LY294002購自MCE公司,先使用DMSO溶解后再用培養液稀釋至工作濃度(DMSO體積分數≤0.001);ECL發光液購自美國Milipore公司。

1.2 實驗方法

1.2.1 原代神經元培養 準備10 cm培養皿若干,倒入D-Hanks溶液后置于冰盒上備用。用異氟烷氣體麻醉健康SD大鼠(孕18 d),以體積分數0.75乙醇消毒后脫頸處死,在無菌環境中取出胎鼠并置于備好的培養皿中,在顯微鏡下剝離胎鼠大腦皮質后暫存于含DMEM培養液的15 mL離心管中。全部剝離結束后,將離心管置于離心機中,以1 000 r/min離心5 min,取出離心管,吸棄上清,加入0.5 g/L胰蛋白酶溶液1 mL,吹打均勻后置于37 ℃培養箱中消化20 min,然后按1∶1的比例加入含體積分數0.10胎牛血清的DMEM培養液終止消化?;旌弦航?0 μm細胞濾網過濾后以1 000 r/min離心10 min,吸棄上清,加入神經元培養液,反復緩慢吹打,待均勻懸浮后進行細胞計數。最后將細胞接種于提前6 h用稀釋的多聚賴氨酸(1×)包被的孔板中,此后每間隔3 d更換1次神經元培養液。神經元培養液按照Neurobasal Medium∶B-27 Supplement(50×)∶青霉素-鏈霉素雙抗(100×)∶glutaMax(100×)=100∶2∶1∶1的比例配制。細胞48孔板接種密度為3×105/cm2,6孔板接種密度為20×105/cm2。

1.2.2 實驗分組 為了探討不同濃度SSM對OGD損傷神經元存活率的影響,實驗分為Control組、OGD組、OGD+不同濃度(1、5、25、50、75 μmol/L)SSM組。為了探討最適濃度SSM對OGD損傷神經元p-Akt、Akt、Nrf2、HO-1蛋白表達的影響,實驗分為Control組(A組)、OGD組(B組)、OGD+SSM組(C組)、OGD+SSM+LY294002組(D組),25 μmol/L SSM和20 μmol/L LY294002在復氧時加入。

1.2.3 OGD損傷模型制備 提取的原代神經元培養8 d后進行OGD損傷模型制備,制備方法參照相關文獻[14]。Control組神經元加入含糖細胞外液后置于37 ℃正常培養箱中培養,OGD組及其他處理組神經元加入等體積無糖細胞外液后置于厭氧箱(溫度37 ℃,含體積分數0.01 O2+體積分數0.94 N2+體積分數0.05 CO2)中進行培養,1.5 h后均更換為正常神經元培養液并轉移至正常培養箱中復糖復氧6 h。

1.2.4 CCK-8法檢測神經元存活率 復糖復氧時加入不同濃度(1、5、25、50、75 μmol/L)SSM,24 h后檢測神經元的存活率,更換神經元培養液并加入10%體積的CCK-8溶液,37 ℃避光孵育2~4 h,用酶標儀測定450 nm波長下的吸光度,以此反映細胞存活率。

1.2.5 免疫印跡法檢測氧化應激相關蛋白的表達

各組在復糖復氧6 h時提取細胞蛋白,所有操作均在冰上進行。用RIPA裂解液裂解細胞后將其刮取至離心管中,在4 ℃下以12 000 r/min離心10~15 min,取上清,采用BCA法測定蛋白濃度,用裂解液和上樣緩沖液配平,100 ℃預變性10 min,冷卻后于-80 ℃保存。配制100 g/L的10孔SDS聚丙烯酰胺凝膠,電泳分離每孔8 μg的蛋白,以300 mA、90 min濕轉至PVDF膜上。膜用含50 g/L脫脂牛奶的TBST溶液室溫封閉2 h,加一抗4 ℃孵育過夜,所用一抗包括p-Akt抗體、Akt抗體、β-actin抗體、Nrf2抗體、HO-1抗體(均1∶2 000稀釋)。次日以TBST溶液洗滌3次,每次10 min,加二抗室溫孵育1 h后重復洗滌3次,用ECL發光液顯影。相同或相近分子量的蛋白經膜洗脫再生后重新孵育。用Image J軟件定量分析蛋白條帶的灰度值,蛋白的表達水平以目的蛋白與內參蛋白的比值表示。實驗重復3次。

1.3 統計學處理

應用GraphPad Prism 9.0軟件進行統計學分析。計量數據以±s表示,多組比較采用單因素方差分析,組間兩兩比較采用Tukey檢驗。以P<0.05為差異有統計學意義。

2 結? 果

2.1 不同濃度SSM對OGD損傷神經元存活率的影響

Control組、OGD組以及OGD+不同濃度(1、5、25、50、75 μmol/L)SSM組的神經元存活率分別為(90.62±4.73)%、(46.63±3.72)%、(57.64±6.97)%、(60.90±6.63)%、(65.12±6.73)%、(57.53±

4.68)%和(58.55±4.64)%(n=6)。與Control組相比,OGD組神經元存活率下降,不同濃度的SSM處理均可增加OGD損傷后神經元的存活率(F=35.93,P<0.01),其中以25 μmol/L的SSM作用最明顯。

2.2 SSM對OGD損傷后神經元氧化應激相關蛋白表達的影響

免疫印跡法檢測結果顯示,各組氧化應激相關蛋白p-Akt、Nrf2、HO-1的表達差異有統計學意義(F=23.47~32.21,P<0.01)。與OGD組相比較,OGD+SSM組p-Akt、Nrf2、HO-1蛋白的表達量均顯著上調(P<0.05);與OGD+SSM組相比較,OGD+SSM+LY294002組p-Akt、Nrf2、HO-1蛋白上調均被抑制(P<0.05)。各組Akt比較差異無顯著性(P>0.05)。見圖1、表1。

3 討? 論

卒中占全球死亡人數的9%,是繼缺血性心臟各組p-Akt、Nrf2、HO-1表達比較,F=23.47~32.21,P<0.01。與A組相比較,*P<0.05,**P<0.01;與B組比較,△P<0.05,△△P<0.01;與C組比較,#P<0.05,##P<0.01。

病之后的第二大死因,其特點是致死率和致殘率高[15]。目前卒中的治療方法有限,有效和安全的藥物仍有待開發[16]。從機制上來講,卒中涉及能量衰竭[17]、鈣超載[18]、興奮性氨基酸毒性[19]、線粒體損傷[20]、氧化應激和炎癥反應等多種復雜的病理生理過程。

氧化應激被認為是缺血性腦損傷發病的關鍵機制之一,并伴隨著凋亡、炎癥等其他病理變化[21]。

近年來,氧化應激被認為是ROS增加與機體抗氧化保護系統失平衡,越來越多的研究結果表明,抑制氧化應激有助于控制疾病的進展[22-23]。在正常的生理條件下,Nrf2與細胞質中的天然抑制劑Kelch樣ECH關聯蛋白1結合,以保持活性的穩定性[24]。PI3K/Akt信號通路被激活會導致Kelch樣ECH關聯蛋白1釋放并激活Nrf2,隨后,激活的Nrf2移位到細胞核,結合啟動子區的抗氧化反應元件序列,啟動包括HO-1和NQO1在內的抗氧化基因的轉錄[25-26],轉錄生成的抗氧化分子通過各種酶催化反應保護細胞免受氧化應激損害[27]。

SSM以其抗氧化和抗炎特性而聞名[28],可通過抑制炎癥和氧化應激改善大鼠腎毒性[29-30],通過抑制ROS誘導的成骨細胞凋亡保護股骨頭從而避免發生骨壞死[31],通過降低離子鈣結合適配器分子1、環氧合酶2等炎癥和氧化應激標記物在缺血性腦損傷小鼠模型中發揮神經保護作用[32]。本研究旨在探討SSM在大鼠皮質神經元OGD損傷中是否具有神經保護作用。結果顯示,與Control組相比較,OGD損傷顯著降低了神經元存活率,而不同濃度的SSM均能夠提高OGD損傷后的神經元存活率,并在25 μmol/L時達到峰值,驗證了SSM的神經保護作用。近期有研究顯示,在潰瘍性結腸炎中,給予SSM后,小鼠結腸組織的相關癥狀得到顯著改善,并且觀察到激活的Akt和增強的Nrf2信號,表明該保護作用與Akt/Nrf2信號通路有關[33]。PI3K/Akt信號通路激活后可以調節神經退行性疾病、卒中等多種疾?。?4],并且在氧化應激中發揮重要作用[35]。Nrf2在調控ROS中起關鍵作用,能夠維持氧化還原穩態,也是治療卒中和炎癥相關疾病的潛在靶點[36-37]。在腦卒中的機制研究中,已證實有多種藥物通過介導PI3K/Akt/Nrf2信號通路保護神經元免受氧化應激損傷[38-40]。本研究采用P13K/Akt信號通路抑制劑LY294002來探討SSM是否也能通過上述通路發揮神經保護作用。結果顯示,SSM能夠上調OGD損傷后p-Akt以及Nrf2蛋白的表達,進而促進下游抗氧化蛋白HO-1的表達,隨著LY294002抑制Akt的磷酸化,Nrf2的激活也被抑制。這表明SSM的神經保護作用依賴于PI3K/Akt/Nrf2信號通路。

綜上,在大鼠皮質神經元OGD損傷中SSM可以通過介導PI3K/Akt/Nrf2信號通路發揮神經保護作用,這為缺血性腦損傷的治療開辟了新的視角,提供了潛在的治療策略。但本研究未探討單獨給予SSM是否影響p-Akt、Akt、Nrf2、HO-1的表達,同時本研究僅初步探討了SSM在細胞層面的作用及可能的信號機制,未進一步檢測NQO1等其他氧化應激蛋白的變化趨勢,這些不足有待在今后的研究中加以改進。

[參考文獻]

[1]BOESE A C, LEE J P, HAMBLIN M H. Neurovascular protection by peroxisome proliferator-activated receptor α in ischemic stroke[J]. Experimental Neurology, 2020,331:113323.

[2]RODRIGO R, FERNNDEZ-GAJARDO R, GUTIRREZ R, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities[J]. CNS & Neurological Disorders Drug Targets, 2013,12(5):698-714.

[3]WU J X, LI Q, WANG X Y, et al. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway[J]. PLoS One, 2013,8(3):e59843.

[4]FAN D, YANG Z, LIU F Y, et al. Sesamin protects against cardiac remodeling via Sirt3/ROS pathway[J]. Cellular Phy-

siology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2017,44(6):2212-2227.

[5]HOU R C, WU C C, YANG C H, et al. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia[J]. Neuroscience Letters, 2004,367(1):10-13.

[6]HOU R C, HUANG H M, TZEN J T, et al. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells[J]. Journal of Neuroscience Research, 2003,74(1):123-133.

[7]MANOCHKUMAR J, DOSS C P, EL-SEEDI H R, et al. The neuroprotective potential of carotenoids in vitro and in vivo[J]. Phytomedicine, 2021,91:153676.

[8]ZHANG Q, LIU J, DUAN H, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress[J]. Journal of Advanced Research, 2021,34:43-63.

[9]ZHAO H, SAPOLSKY R M, STEINBERG G K. Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke[J]. Molecular Neuro-

biology, 2006,34(3):249-269.

[10]SUN X J, CHEN L, HE Z Y. PI3K/Akt-Nrf2 and anti-inflammation effect of macrolides in chronic obstructive pulmonary disease[J]. Current Drug Metabolism, 2019,20(4):301-304.

[11]SHIH A Y, JOHNSON D A, WONG G, et al. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2003,23(8):3394-3406.

[12]KOBAYASHI A, OHTA T, YAMAMOTO M. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes[J]. Methods in Enzymo-

logy, 2004,378:273-286.

[13]MOTOHASHI H, YAMAMOTO M. Nrf2-Keap1 defines a physiologically important stress response mechanism[J]. Trends in Molecular Medicine, 2004,10(11):549-557.

[14]ZHAO L P, JI C, LU P H, et al. Oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal cell death involves mitochondrial cyclophilin-D/P53 signaling axis[J]. Neurochemical Research, 2013,38(4):705-713.

[15]MACIEJCZYK M, BIELAS M, ZALEWSKA A, et al. Sali-

vary biomarkers of oxidative stress and inflammation in stroke

patients: from basic research to clinical practice[J]. Oxidative Medicine and Cellular Longevity, 2021,2021:5545330.

[16]YUAN J C, LI L L, YANG Q H, et al. Targeted treatment of ischemic stroke by bioactive nanoparticle-derived reactive oxygen species responsive and inflammation-resolving nanotherapies[J]. ACS Nano, 2021,15(10):16076-16094.

[17]LIU B W, ZHAO T T, LI Y Y, et al. Notoginsenoside R1 ameliorates mitochondrial dysfunction to circumvent neuronal energy failure in acute phase of focal cerebral ischemia[J].? Phytotherapy Research, 2022,36(5):2223-2235.

[18]ZHANG Y Y, YANG X Y, LIU H Q, et al. The weakened interaction between HECTD4 and GluN2B in ischemic stroke promotes calcium overload and brain injury through a mechanism involving the decrease of GluN2B and MALT1 ubiquitination[J].? Molecular Neurobiology, 2023,60(3):1563-1579.

[19]VERMA M, LIZAMA B N, CHU C T. Excitotoxicity, cal-

cium and mitochondria: a triad in synaptic neurodegeneration[J].? Translational Neurodegeneration, 2022,11(1):3.

[20]CHEN L, CHEN S, YANG X F, et al. Antioxidants atte-

nuate mitochondrial oxidative damage through the Nrf2 pathway: a promising therapeutic strategy for stroke[J].? Journal of Neuroscience Research, 2023,101(8):1275-1288.

[21]CRACK P J, TAYLOR J M. Reactive oxygen species and the modulation of stroke[J]. Free Radical Biology and Medicine, 2005,38(11):1433-1444.

[22]ALIEV G, PRIYADARSHINI M, REDDY V P, et al. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease[J]. Current Medicinal Chemistry, 2014,21(19):2208-2217.

[23]QI J H, DONG F X. The relevant targets of anti-oxidative stress: a review[J].? Journal of Drug Targeting, 2021,29(7):677-686.

[24]ALFIERI A, SRIVASTAVA S, SIOW R C, et al. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke[J]. The Journal of Physiology, 2011,589(17):4125-4136.

[25]SHELTON L M, PARK B K, COPPLE I M. Role of Nrf2 in protection against acute kidney injury[J]. Kidney Internatio-

nal, 2013,84(6):1090-1095.

[26]JIANG S, DENG C, LV J J, et al. Nrf2 weaves an elaborate network of neuroprotection against stroke[J]. Molecular Neurobiology, 2017,54(2):1440-1455.

[27]YU C, XIAO J H. The Keap1-Nrf2 system: amediator between oxidative stress and aging[J].? Oxidative Medicine and Cellular Longevity, 2021,2021:6635460.

[28]MAJDALAWIEH A F, YOUSEF S M, ABU-YOUSEF I A, et al. Immunomodulatory and anti-inflammatory effects of se-

samin: mechanisms of action and future directions[J].? Critical Reviews in Food Scienceand Nutrition, 2022,62(18):5081-5112.

[29]ALI B H, SALAM S A, SULEIMANI Y A, et al. Ameliorative effect of sesamin in cisplatin-induced nephrotoxicity in rats by suppressing inflammation, oxidative/nitrosative stress, and cellular damage[J]. Physiological Research, 2020,69(1):61-72.

[30]ALSHAHRANI S, ALI THUBAB H M, ALI ZAERI A M, et al. The protective effects of sesamin against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammatory-cytokines and apoptosis in rats[J].? International Journal of Molecular Sciences, 2022,23(19):11615.

[31]DENG S, ZHOU J L, FANG H S, et al. Sesamin protects the femoral head from osteonecrosis by inhibiting ROS-induced osteoblast apoptosis in rat model[J]. Frontiers in Physiology, 2018,9:1787.

[32]AHMAD S, ELSHERBINY N M, HAQUE R, et al. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke[J]. Neurotoxicology, 2014,45:100-110.

[33]BAI X P, GOU X L, CAI P H, et al. Sesamin enhances Nrf2-mediated protective defense against oxidative stress and inflammation in colitis via AKT and ERK activation[J]. Oxidative Medicine and Cellular Longevity, 2019,2019:2432416.

[34]LONG H Z, CHENG Y, ZHOU Z W, et al. PI3K/AKT signal pathway: atarget of natural products in the prevention and treatment of Alzheimers disease and Parkinsons disease[J].? Frontiersin Pharmacology, 2021,12:648636.

[35]GU C Y, ZHANG Q K, LI Y J, et al. The PI3K/AKT pathway-the potential key mechanisms of traditional Chinese medicine for stroke[J]. Frontiers in Medicine, 2022,9:900809.

[36]ZHANG R R, XU M X, WANG Y, et al. Nrf2-a promising therapeutic target for defensing against oxidative stress in stroke[J]. Molecular Neurobiology, 2017,54(8):6006-6017.

[37]LIAO S, WU J N, LIU R M, et al. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation[J]. Redox Biology, 2020,36:101644.

[38]ZHANG W, SONG J K, YAN R, et al. Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling[J]. Acta Pharmacologica Sinica, 2018,39(8):1259-1272.

[39]HU S N, WU Y L, ZHAO B, et al. Panax notoginseng saponins protect cerebral microvascular endothelial cells against oxygen-glucose deprivation/reperfusion-induced barrier dysfunction via activation of PI3K/akt/Nrf2 antioxidant signaling pathway[J]. Molecules, 2018,23(11):2781.

[40]LIU Q, JIN Z Q, XU Z L, et al. Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo[J]. Cell Stress & Chaperones, 2019,24(2):441-452.

(本文編輯 馬偉平)

猜你喜歡
腦缺血神經元
《從光子到神經元》書評
躍動的神經元——波蘭Brain Embassy聯合辦公
大黃總蒽醌提取物對腦缺血再灌注損傷的保護作用及其機制
原花青素對腦缺血再灌注損傷后腸道功能的保護作用
血必凈對大鼠腦缺血再灌注損傷的保護作用及其機制
細胞外組蛋白與腦缺血再灌注損傷關系的初探
基于二次型單神經元PID的MPPT控制
毫米波導引頭預定回路改進單神經元控制
神經元模型的穩定性分析與Hopf分岔控制
側腦室注射DIDS對缺血再灌注腦損傷大鼠神經元凋亡的拮抗作用
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合