?

Banach空間中關于m-增生算子零點的黏性隱式迭代序列的強收斂定理

2023-05-24 02:10潘靈榮王元恒
貴州大學學報(自然科學版) 2023年3期
關鍵詞:變分范數黏性

潘靈榮,王元恒

(1.浙江開放大學 溫嶺學院,浙江 溫嶺 317500;2.浙江師范大學 數學與計算機科學學院,浙江 金華 321004)

1 引言與預備知識

設E是Banach空間,E*是E的對偶空間,對偶映射J:E→2E*定義為

J(x)={f∈E*:〈x,f〉=‖x‖2=‖f‖2},?x∈E

其中〈·,·〉表示對偶配對。

令C是E的非空閉凸子集,映射f:C→C稱為壓縮映射,若存在ρ∈[0,1),使得

‖f(x)-f(y)‖≤ρ‖x-y‖,?x,y∈C

定義映像A:C→E,如果存在j(x-y)∈J(x-y),滿足〈Ax-Ay,j(x-y)〉≥0,?x,y∈C,那么稱A是增生算子。如果R(I+rA)=E,?r>0,那么稱A是m-增生算子。記Jr=(I+rA)-1(r>0)為m-增生算子A的預解式,眾所周知,Jr是非擴張映射且有F(Jr)=N(A),這里N(A)={x∈E:0∈Ax},F(Jr)是Jr的不動點集,所以非擴張映射的不動點問題可應用到m-增生算子的零點問題[1-3]。

黏滯迭代方法是研究不動點理論和變分不等式問題的重要工具之一,隱中點規則是求解微分代數方程和普通微分方程的計算方法,許多學者將兩者結合構造了黏性隱式迭代方法并進行收斂性分析[4-9]。

2016年,JUNG[10]在一致凸Banach空間中引入關于m-增生算子零點和非擴張映射的迭代序列如下:

xn+1=Jrn(αnf(xn)+(1-αn)Sxn),?n≥0

xn+1=Jrn(αnf(xn)+(1-αn)Sxn+en),?n≥0

證明了該序列強收斂到m-增生算子零點和非擴張映射的公共點,也是下列變分不等式問題的解。

〈(I-f)p,j(x-p)〉≥0,?x∈F(S)∩N(A)

2017年,LI[11]在自反Banach空間中,構造關于m-增生算子零點和非擴張映射新的迭代序列。

同年,LUO[12]在一致光滑Banach空間中研究了關于非擴張映射的黏性隱式中點法則,如下:

2018年,ZHANG[13]在上述研究的基礎上,在Banach空間中構造了下列迭代序列

在適當的參數條件下,證明了該生成序列的強收斂定理。

受以上結果的鼓舞和啟發,我們在Banach空間中給出關于m-增生算子的廣義黏性隱式迭代序列

(1)

當滿足一定的條件后,證明了序列的強收斂結果,推廣和改進了文獻[9—13]的相關結論。

為得到本文結果,還需要以下引理。

引理1[14]若λ,μ>0,x∈E,有

引理2[13]令{an},{bn}和{cn}是三個非負實序列,且滿足an+1≤(1-tn)an+bn+cn,?n≥0。這里{tn}?(0,1),如果有

那么limn→∞an=0。

引理3[13]Banach空間E是一致凸的,當且僅當存在一個連續嚴格遞增凸函數g: 「0,+∞)|→「0,+∞),g(0)=0,使得

‖λx+(1-λ)y‖2≤λ‖x‖2+(1-λ)‖y‖2-λ(1-λ)g(‖x-y‖)成立。

引理4[15]在Banach空間E中,以下不等式成立

‖x+y‖2≤‖x‖2+2〈y,j(x+y)〉,?x,y∈E。

這里j(x+y)∈J(x+y)。

引理5[16]設E是自反的一致凸Banach空間,具有一致G-微分范數,C?E是非空閉凸集,具有正規結構。設T:C→C是非擴張映射且F(T)≠?,f:C→C是壓縮映射,定義序列{xv}如下:

xv=vf(xv)+(1-v)Tx,v∈(0,1)

該序列強收斂到F(T)上一點p,且p是如下變分不等式的唯一解。

〈f(p)-p,j(q-p)〉≤0,?q∈F(T)

2 主要結論

定理1設E是自反的一致凸Banach空間,具有一致G-微分范數。C是E中的非空閉凸子集,且具有正規結構。令f:C→C是壓縮映像,壓縮系數ρ∈[0,1)。A是E中的m-增生算子且N(A)≠?。對于任一x0∈C,?n∈N,序列{xn}由(1)式生成,若{αn},{δn},{μn}和{rn}?(0,1),{en}?E,滿足如下條件:

那么序列{xn}強收斂于一點p∈N(A),也是下列變分不等式問題的解。

〈f(p)-p,j(q-p)〉≤0,?q∈N(A)

(2)

證明證明過程分以下步驟。第一步證明序列{xn},{yn}有界。取p∈N(A),有

‖yn-p‖=‖μnun+(1-μn)Jrn(un+en)-p‖

≤‖un-p‖+(1-μn)‖en‖

≤δn‖xn-p‖+(1-δn)‖xn+1-p‖+‖en‖

由序列{xn}的定義知

‖xn+1-p‖=‖αnf(yn)+(1-αn)Jrnyn-p‖

≤αn‖f(p)-p‖+αnρ‖yn-p‖+

(1-αn)‖yn-p‖

≤δn(1-αn+ραn)‖xn-p‖+αn‖f(p)-p‖+

(1-αn+ραn)(1-δn)‖xn+1-p‖+

(1-αn+ραn)‖en‖

移項整理得

所以{xn}是有界的,從而{f(xn)},{Jrnyn},{Jrnxn},{un},{f(yn)}和{yn}是有界的。

第二步證明limn→∞‖xn+1-xn‖=0。

由式(1)定義可知

‖yn-yn-1‖=‖μnun+(1-μn)Jrn(un+en)-

μn-1un-1-(1-μn-1)Jrn-1(un-1+en-1)‖

≤μn‖un-un-1‖+|μn-μn-1|‖un-1‖+

(1-μn)‖Jrn(un+en)-Jrn-1(un-1+en-1)‖+

|μn-μn-1|‖Jrn-1(un-1+en-1)‖

(3)

‖un-un-1‖=‖δnxn+(1-δn)xn+1-

δn-1xn-1-(1-δn-1)xn‖

≤δn‖xn-xn-1‖+|δn-δn-1|‖xn-1‖+

(1-δn)‖xn+1-xn‖+ |δn-δn-1|‖xn‖

=δn‖xn-xn-1‖+ (1-δn)‖xn+1-xn‖+

|δn-δn-1|(‖xn-1‖+‖xn‖)

(4)

根據引理1得

‖Jrn(un+en)-Jrn-1(un-1+en-1)‖

Jrn-1(un-1+en-1)‖

(un-1+en-1)‖

≤‖un-un-1‖+‖en-en-1‖+

≤δn‖xn-xn-1‖+|δn-δn-1|(‖xn-1‖+

‖xn‖)+‖en-en-1‖+ (1-δn)‖xn+1-xn‖+

(5)

結合(3)式,(4)式和(5)式,有

‖xn+1-xn‖=‖αnf(yn)+(1-αn)Jrnyn-

αn-1f(yn-1)-(1-αn-1)Jrn-1yn-1‖

≤αnρ‖yn-yn-1‖+|αn-αn-1|‖f(yn-1)‖+

(1-αn)‖Jrnyn-Jrn-1yn-1‖+

|αn-αn-1|‖Jrn-1yn-1‖

≤|αn-αn-1|(‖f(yn-1)‖+‖Jrn-1yn-1‖)+

Jrn-1yn-1‖+αnρ‖yn-yn-1‖

≤|αn-αn-1|(‖f(yn-1)‖+‖Jrn-1yn-1‖)+

αnρ‖yn-yn-1‖+(1-αn)‖yn-yn-1‖+

≤(1-αn+αnρ) [δn‖xn-xn-1‖+

(1-δn)‖xn+1-xn‖+(1-μn)‖en-en-1‖+

|δn-δn-1|(‖xn‖+‖xn-1‖)+

|μn-μn-1|(‖un-1‖+‖Jrn-1(un-1+en-1)‖)+

|αn-αn-1|(‖f(yn-1)‖+‖Jrn-1yn-1‖)+

從而有

|μn-μn-1|(‖un-1‖+‖Jrn-1(un-1+en-1)‖)+

(1-μn)‖en-en-1‖+

這里

M1=supn∈N{‖f(yn-1)‖+‖Jrn-1yn-1‖}

M2=supn∈N{‖un-1‖+‖Jrn-1(un-1+en-1)‖}

M3=supn∈N{‖Jrn(un+en)-un-en‖}

M4=supn∈N{‖xn‖+‖xn-1‖}

M5=supn∈N{‖Jrnyn-yn‖}

根據條件(i),得到bn=o(tn)。

limn→∞‖xn+1-xn‖=0。

(6)

第三步證明limn→∞‖xn-Jrnxn‖=0。

由引理1,引理3,引理4和序列{xn}的定義,

‖xn+1-p‖2≤αn‖f(yn)-p‖2+(1-

αn)‖Jrnyn-p‖2

≤αn‖f(yn)-p‖2+(1-αn)‖yn-p‖2

≤αn‖f(yn)-p‖2+μn(1-αn)‖un-p‖2+

(1-αn)(1-μn)‖Jrn(un+en)-p‖2

=αn‖f(yn)-p‖2+μn(1-αn)‖un-p‖2+

(1-αn)(1-μn)·

≤αn‖f(yn)-p‖2+μn(1-αn)‖un-p‖2+

(1-αn)(1-μn)·

≤αn‖f(yn)-p‖2+μn(1-αn)‖un-p‖2+

(1-αn)(1-μn)·

≤αn‖f(yn)-p‖2+μn(1-αn)‖un-p‖2+

(1-αn)(1-μn)‖un+en-p‖2-

≤αn‖f(yn)-p‖2+μn(1-αn)‖un-p‖2+

(1-αn)(1-μn) [‖un-p‖2+

2〈en,j(un+en-p)〉]-

≤αn‖f(yn)-p‖2+(1-αn)‖un-p‖2+

2(1-αn)(1-μn)‖en‖·‖un+en-p‖-

≤αn‖f(yn)-p‖2+δn(1-αn)‖xn-p‖2+

2(1-αn)(1-μn)‖en‖·‖un+en-p‖+

(1-αn)(1-δn)‖xn+1-p‖2-

結合條件(iii),有

2(1-αn)(1-μn)‖en‖‖un+en-p‖-

g(‖Jrn(un+en)-un-en‖)

移項整理得

如果

limn→∞g(Jrn(un+en)-un-en‖)=0。

如果

‖xN+1-p‖2≤‖x0-p‖2<∞

所以,得

即有

limn→∞g(‖Jrn(un+en)-un-en‖)=0。

根據g的性質,可知

limn→∞‖Jrn(un+en)-un-en‖=0

(7)

觀察

‖Jrnxn-xn‖≤‖xn-un-en‖+

‖un+en-Jrn(un+en)‖+‖Jrn(un+en)-Jrnxn‖

≤2(1-δn)‖xn-xn+1‖+2‖en‖+

‖Jrn(un+en)-un-en‖

limn→∞‖xn-Jrnxn‖=0

(8)

第四步證明limn→∞‖yn-Jrnyn‖=0。

limn→∞‖un-xn‖=limn→∞(1-δn)‖xn+1-

xn‖=0;

limn→∞‖xn+1-Jrnyn‖=limn→∞αn‖f(yn)-

Jrnyn‖=0;

limn→∞‖yn-un‖

=limn→∞(1-μn)‖Jrn(un+en)-un‖

≤limn→∞(1-μn)‖Jrn(un+en)-un-en‖+

limn→∞(1-μn)‖en‖=0。

進一步,得

limn→∞‖yn-Jrnyn‖≤limn→∞(‖yn-un‖+

‖un-xn‖+‖xn-xn+1‖+‖xn+1-Jrnyn‖)

limn→∞‖xn-yn‖≤limn→∞(‖xn-un‖+

‖un-yn‖)

即有

limn→∞‖yn-Jrnyn‖=0;limn→∞‖xn-yn‖=0

(9)

第五步證明limn→∞‖yn-Jrxn‖=0。

由引理1可知

‖yn-Jryn‖≤‖yn-Jrnyn‖+‖Jrnyn-Jryn‖

‖yn-Jrnyn‖

根據(9)式和條件limn→∞rn=r,有

limn→∞‖yn-Jryn‖=0

(10)

另外

‖xn-Jrxn‖≤‖xn-yn‖+‖yn-Jryn‖+

‖Jryn-Jrxn‖

≤2‖xn-yn‖+‖yn-Jryn‖

結合(9)式和(10)式,可知

limn→∞‖xn-Jrxn‖=0

(11)

第六步證明limn→∞sup〈p-f(p),j(p-xn)〉≤0。

設xt=tf(xt)+(1-t)Jrxt,由引理5知,{xt}強收斂到p,也是(2)式的唯一解。對?t∈(0,1),有

‖xt-xn‖2=t〈f(xt)-xt+xt-xn,j(xt-xn)〉+

(1-t)〈Jrxt-Jrxn+Jrxn-xn,j(xt-xn)〉

≤t‖xt-xn‖2+t〈f(xt)-xt,j(xt-xn)〉+

(1-t)‖xt-xn‖2+

(1-t)〈Jrxn-xn,j(xt-xn)〉

≤‖xt-xn‖2+t〈f(xt)-xt,j(xt-xn)〉+

(1-t)‖Jrxn-xn‖‖xt-xn‖

移項整理得

〈xt-f(xt),j(xt-xn)〉

根據第一步結果和(11)式,得

limn→∞sup〈xt-f(xt),J(xt-xn)〉≤0。

注意到,當t→0+時,xt→p,

|〈p-f(p),j(p-xn)〉-〈xt-f(xt),j(xt-xn)〉|

≤|〈p-f(p),j(p-xn)〉-

〈p-f(p),j(xt-xn)〉|+

|〈p-f(p),j(xt-xn)〉-

〈xt-f(xt),j(xt-xn)〉|

≤‖p-f(p)-xt+f(xt)‖‖xt-xn‖+

‖p-f(p)‖‖p-xt‖→0,t→0+

?ε>0,?δ>0,對?t∈(0,δ),有

〈p-f(p),j(p-xn)〉

≤〈xt-f(xt),j(xt-xn)〉+ε

易得

lim supn→∞〈p-f(p),j(p-xn)〉

≤lim supn→∞〈xt-f(xt),j(xt-xn)〉+ε

由ε的任意性,有

lim supn→∞〈p-f(p),j(p-xn)〉≤0

lim supn→∞〈p-f(p),j(p-xn+1)〉≤0

(12)

第七步證明當n→∞時,xn→p。

‖xn+1-p‖2=αn〈f(yn)-p,j(xn+1-p)〉+

(1-αn)〈Jrnyn-p,j(xn+1-p)〉

≤(1-αn)‖yn-p‖‖xn+1-p‖+αnρ‖yn-p‖·

‖xn+1-p‖+αn〈f(p)-p,j(xn+1-p)〉

αn〈f(p)-p,j(xn+1-p)〉

≤αn〈f(p)-p,j(xn+1-p)〉+

(δn‖xn-p‖+(1-δn)‖xn+1-p‖+

‖en‖)2]

=αn〈f(p)-p,j(xn+1-p)〉+

‖xn+1-p‖2+(1-δn)2‖xn+1-p‖2+

2δn‖xn-p‖‖en‖+2δn(1-δn)‖xn-

p‖‖xn+1-p‖+2(1-δn)‖xn+1-p‖‖en‖]

‖en‖(‖en‖+2δn‖xn-p‖+2(1-

δn)‖xn+1-p‖)+(2-δn)‖xn+1-p‖2]+

αn〈f(p)-p,j(xn+1-p)〉

這表明

2δn‖xn-p‖+2(1-δn)‖xn+1-p‖]+

2δn‖xn-p‖+2(1-δn)‖xn+1-p‖]

已知ρ∈ [0,1),αn∈(0,1)和0<δ≤δn<1,有

2-[1-αn(1-ρ)](2-δn)>2-2+δn>δ,

進一步有

cn<

p‖]

推論1設E是自反的一致凸Banach空間,具有一致G-微分范數。C是E中的非空閉凸子集,且具有正規結構。令f:C→C是壓縮映像,壓縮系數ρ∈[0,1)。A是E中的m-增生算子且N(A)≠?。對于任一x0∈C,?n∈N,序列{xn}由下式生成

若{αn},{μn}和{rn}?(0,1),{en}?E,滿足如下條件:

那么序列{xn}強收斂于一點p∈N(A),也是變分不等式問題(2)的解。

推論2設E是自反的一致凸Banach空間,具有一致G-微分范數。C是E中的非空閉凸子集,且具有正規結構。令f:C→C是壓縮映像,壓縮系數ρ∈[0,1)。A是E中的m-增生算子且N(A)≠?。對于任一x0∈C,?n∈N,序列{xn}由下式生成

若{αn},{δn},{μn}和{rn}?(0,1),滿足如下條件:

那么序列{xn}強收斂于一點p∈N(A),也是變分不等式問題(2)的解。

猜你喜歡
變分范數黏性
逆擬變分不等式問題的相關研究
求解變分不等式的一種雙投影算法
富硒產業需要強化“黏性”——安康能否玩轉“硒+”
如何運用播音主持技巧增強受眾黏性
關于一個約束變分問題的注記
玩油灰黏性物成網紅
基于加權核范數與范數的魯棒主成分分析
矩陣酉不變范數H?lder不等式及其應用
一個擾動變分不等式的可解性
基層農行提高客戶黏性淺析
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合