?

鐵皮石斛DcNAC1基因克隆、表達及轉錄自激活活性分析

2023-11-02 16:01陳彧邢文婷李雨欣張婷婷饒丹丹周揚
南方農業學報 2023年6期
關鍵詞:鐵皮石斛基因克隆

陳彧 邢文婷 李雨欣 張婷婷 饒丹丹 周揚

DOI:10.3969/j.issn.2095-1191.2023.06.003

摘要:【目的】克隆鐵皮石斛NAC轉錄因子基因(DcNAC1),并進行表達模式及轉錄自激活活性分析,為鐵皮石斛抗逆相關基因鑒定及其分子機制研究提供參考?!痉椒ā恳澡F皮石斛cDNA為模板,PCR擴增DcNAC1基因,運用生物信息學軟件分析DcNAC1蛋白的理化性質、保守結構域、信號肽、跨膜結構域及亞細胞定位,通過實時熒光定量PCR檢測DcNAC1基因在不同組織和不同逆境脅迫下的表達模式。同時構建該基因的酵母表達載體,分析其轉錄自激活活性?!窘Y果】從鐵皮石斛中PCR擴增獲得DcNAC1基因的開放閱讀框(ORF),全長為945 bp,與參考序列(LOC110104882)的核苷酸序列相似性為100%。該基因編碼314個氨基酸殘基,蛋白分子量為35.40 kD,理論等電點(pI)為8.16,為不穩定的親水性蛋白,定位于細胞核,不含信號肽和跨膜結構域,含有特征性的NAC保守結構域。DcNAC1基因的啟動子序列含茉莉酸甲酯響應元件(CGTCA-motif和TGACG-motif)、脅迫響應元件(TC-rich repeats)、光響應元件(G-box)、干旱誘導MYB結合位點(MBS)和低溫響應元件(LTR)。根中DcNAC1基因的相對表達量在高溫脅迫和低溫脅迫處理6 h分別達最高,顯著高于處理0 h(P<0.05,下同);莖中DcNAC1基因在鹽脅迫處理48 h的相對表達量達最高,顯著高于處理0 h。將構建的重組質粒pGBKT7-DcNAC1轉化酵母菌株Y2HGold,結果發現該重組質粒無毒性,DcNAC1蛋白具有自激活活性?!窘Y論】DcNAC1基因表達受到茉莉酸、低溫、干旱、光信號和逆境脅迫等多種信號的調控。DcNAC1蛋白具有自激活活性,通過激活下游基因的表達,參與到植物生長發育和逆境脅迫響應的轉錄調控過程中。

關鍵詞:鐵皮石斛;NAC轉錄因子;基因克??;轉錄自激活活性;逆境脅迫

中圖分類號:S567.239? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A 文章編號:2095-1191(2023)06-1612-10

Cloning,expression and trans-activation activity analysis of

DcNAC1 gene from Dendrobium catenatum

CHEN Yu1, XING Wen-ting1, 2, LI Yu-xin3, ZHANG Ting-ting3, RAO Dan-dan1, ZHOU Yang3*

(1Hainan Academy of Forestry (Hainan Academy of Mangrove),Haikou,Hainan? 571100,China;2Tropical Crops Genetic Resources Institue,Chinese Academy of Tropical Agricultural Sciences,Haikou,Hainan? 571101,China; 3School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs,School of Rural Revitalization),Hainan University/Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan

Province,Haikou,Hainan? 570228,China)

Abstract:【Objective】This study was to dissect the expression pattern and trans-activation activity of the NAC gene(DcNAC1) of Dendrobium catenatum,thus providing a foundation for stress-related genes identification and elucidating the molecular mechanism of D. catenatum stress-resistance. 【Method】DcNAC1 gene was amplified by PCR using D. catenatum cDNA as template. The physical and chemical properties, conserved domain, signal peptide, transmembrane domain and subcellular location of DcNAC1 protein were analyzed by bioinformatics softwares. The expression patterns of DcNAC1 gene in different tissues and under different stresses were detected by real-time fluorescence quantitative PCR. At the same time, yeast expression vector of this gene was constructed and its transcriptional self-activation activity was analyzed. 【Result】The open reading frame (ORF) of DcNAC1 gene was obtained by PCR amplification from D. catenatum. The total length was 945 bp, and the nucleotide sequence similarity to the reference sequence (LOC110104882) was 100%. This gene encoded 314 amino acid residues, had a molecular weight of 35.40 kD and a theoretical isoelectric point (pI) of 8.16. It was an unstable hydrophilic protein, localized in the nucleus, free of signal peptides and transmembrane domains, and contained a characteristic NAC conserved domain. The promoter sequences of DcNAC1 gene included jalapic acid response elements (CGTCA-motif and TGACG-motif), stress response elements (TC-rich repeats), light response elements (G-box), drought-induced MYB binding sites (MBS) and low temperature response elements (LTR). The relative expression of DcNAC1 gene in root reached the highest level at 6 h under high temperature stress and low temperature stress, respectively, and was significantly higher than that at 0 h under high temperature stress (P<0.05, the same below). The relative expression of DcNAC1 gene in stems was the highest at 48 h after salt stress treatment, which was significantly higher than that at 0 h. The recombinant plasmid pGBKT7-DcNAC1 was transformed into yeast strain Y2HGold. The results showed that the recombinant plasmid was not toxic, but DcNAC1 protein had certain self-activation activity. 【Conclusion】DcNAC1 gene expression is regulated by jasmonic acid, low temperature, drought, light signal and stress. DcNAC1 protein has self-activating activity, which is involved in transcriptional regulation of plant growth and development and response to stress by activating the expression of downstream genes.

Key words: Dendrobium catenatum; NAC transcription factor; gene cloning; transcriptional activation activity; adversity

Foundation items: Hainan Natural Science Foundation (320QN368,319MS009); Project of Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops(HD-SYSZX-202107)

0 引言

【研究意義】鐵皮石斛(Dendrobium catenatum)為多年生草本藥用植物(李以格等,2019),具有養胃、增強免疫力和抗腫瘤等多種功能(Sun et al.,2015;Tang et al.,2017)。由于鐵皮石斛生長常受到非生物脅迫影響,且長期過度采挖和棲息地遭受破壞,導致野生鐵皮石斛資源逐漸枯竭、瀕臨滅絕(Ng et al.,2012)。NAC(NAM、ATAF和CUC)是植物特有的轉錄因子,參與植物生長發育和非生物脅迫應答(Gao et al.,2021),如促進側根的生長,增強耐旱性(Tran et al.,2004);靶向調控氣孔閉合和活性氧(ROS)穩態來調節非生物脅迫和氧化應激耐受性(You et al.,2013);增強滲透、鹽和低溫脅迫的耐受性(Hénanff et al.,2013)。因此,克隆鐵皮石斛NAC1基因(DcNAC1),分析其在非生物脅迫下的表達情況,并探究DcNAC1蛋白轉錄自激活活性,以期了解DcNAC1基因的非生物脅迫響應機制,對鐵皮石斛抗逆育種具有重要的意義?!厩叭搜芯窟M展】在植物生長發育過程中,高溫、低溫、干旱、鹽和重金屬等非生物脅迫會改變植物生物合成和養分獲取的能力,并成為制約植物生長、影響作物產量和品質的因素(Bechtold and Field,2018)。在漫長的進化過程中,植物形成了一系列生理生化和分子機制來應對非生物脅迫(王計平等,2006)?;蛲ㄟ^轉錄和表達調控著植物細胞內許多重要的生命活動,如細胞形態發生、信號轉導和環境脅迫響應(榮歡等,2020)。轉錄因子(TF)是一種調節蛋白,通過與特定的順式作用元件結合來刺激或抑制其目標基因的表達,從而調控植物生長發育及非生物和生物脅迫響應(Singh et al.,2002;Chen and Tong,2004;Huang et al.,2012)。因此,轉錄因子對植物生長發育及抗逆響應起重要作用(Jin et al.,2014)。根據靶基因啟動子中DNA結合結構域(DNA binding domain,DBDs)的不同,轉錄因子可分為NAC、WRKY、MYB、HB、bZIP和AP2/ERF等多個不同的家族(Mun et al.,2017;Baillo et al.,2019)。NAC轉錄因子為植物特有的轉錄因子家族,NAC蛋白的N末端包含1個將目標基因和順式作用元件結合起來的高度保守NAM結構域,由約160個氨基酸殘基組成,而C末端包含可變的轉錄激活區(Souer et al.,1996;Aida et al.,1997;Olsen et al.,2005)。研究表明,擬南芥中過表達AtNAC1基因可促進側根的生長,并增強其耐旱性(Tran et al.,2004);水稻中過表達SNAC1基因可增強水稻植株的抗旱性和耐鹽性,并增強對脫落酸的敏感性,其主要是通過關閉氣孔減少水分流失來提高轉基因植株的抗旱性和耐鹽性(Hu et al.,2006),過表達SNAC3基因可顯著增強水稻植株的抗高溫能力,沉默該基因則可顯著增強水稻植株對高溫的敏感性(Fang et al.,2015);普通小麥中TaNAC69基因過表達可提高脅迫誘導基因的轉錄水平,從而增強普通小麥的耐旱性(Xue et al.,2011),TaNAC29基因過表達可減少H2O2積累和膜損傷,以提高耐鹽性(Xu et al.,2015);葡萄VvNAC1是植物信號防御級聯的重要調節成分,將VvNAC1基因轉入擬南芥中過表達可增強擬南芥對滲透、鹽和低溫脅迫的耐受性(Hénanff et al.,2013);在鹽和滲透脅迫下,白樺BpNAC012基因過表達會導致木質素生物合成基因表達水平升高,促進根系中木質素的積累(Hu et al.,2019);沉默辣椒CaNAC035基因后辣椒幼苗在低溫、鹽害和干旱脅迫下受損程度比對照辣椒幼苗(未脅迫處理)嚴重,電解質滲漏相應增加,且丙二醛含量增加,過氧化氫和超氧自由基含量升高,表明CaNAC035基因在非生物脅迫下起正向調節作用(Zhang et al.,2020)?!颈狙芯壳腥朦c】NAC蛋白在響應生物和非生物脅迫的基因表達信號轉導和調節中起著重要作用,但目前尚無鐵皮石斛NAC轉錄因子基因克隆及表達分析的相關研究報道?!緮M解決的關鍵問題】以鐵皮石斛cDNA為模板PCR擴增DcNAC1基因,運用生物信息學軟件分析DcNAC1蛋白的理化性質、保守結構域、信號肽、跨膜結構域及亞細胞定位,通過實時熒光定量PCR檢測DcNAC1基因在不同組織和不同逆境脅迫下的表達模式,同時構建該基因的酵母表達載體,分析轉錄自激活活性,為鐵皮石斛抗逆相關基因鑒定及抗逆分子機制研究提供參考。

1 材料與方法

1. 1 試驗材料

供試材料為鐵皮石斛的云南廣南種。供試引物由生工生物工程(上海)股份有限公司合成。植物總RNA提取試劑盒購自天根生化科技(北京)有限公司,反轉錄試劑盒PrimeScript RT reagent Kit with gDNA Eraser采購自寶生物工程(大連)有限公司;2×Taq Plus Master Mix II(Dye Plus)購自南京諾唯贊生物科技有限公司;質粒DNA提取試劑盒、PCR產物回收和酶切產物純化試劑盒購自生工生物工程(上海)股份有限公司。大腸桿菌DH5α和農桿菌GV3101感受態細胞購自上海唯地生物技術有限公司。ChamQTM Universal SYBR qPCR Master Mix購自諾唯贊生物科技有限公司。DNA Ligation Mix購自寶生物工程(大連)有限公司。Y2HGold酵母菌株由海南省林業科學研究院實驗室保存。主要儀器設備:低溫連接儀(珠海黑馬醫學儀器有限公司)、PCR儀(珠海黑馬醫學儀器有限公司)、超凈工作臺(無錫一凈凈化設備有限公司)和電泳槽(北京六一生物科技有限公司)。

1. 2 脅迫處理及樣品采集

將3月齡長勢一致的鐵皮石斛組培苗分成4組,分別對其進行高溫(42 ℃)、低溫(4 ℃)、鹽(200 mmol/L NaCl)和干旱(20% PEG8000)脅迫處理,處理3、6、9、12、24和48 h后每組隨機取5株組培苗的根、莖和葉進行混合,放入液氮中速凍后置于-80 ℃保存,以未處理的組培苗為對照。培養條件為光照和黑暗時長各12 h,置于25 ℃恒溫培養箱中培養(張婷婷等,2021)。

1. 3 基因克隆

從NCBI數據庫下載鐵皮石斛基因組相關信息,從擬南芥數據庫(https://www.arabidopsis.org/)下載AtNAC1蛋白序列(AT3G12977.1),將其與鐵皮石斛基因組進行BLAST比對,篩選獲得核苷酸序列相似性最高的序列(LOC110104882),并命名為DcNAC1。利用植物總RNA提取試劑盒提取RNA,反轉錄試劑盒合成cDNA第一鏈。利用Primer Premier 5.0 設計DcNAC1基因的開放閱讀框(ORF)克隆引物(表1),同時在基因的上游和下游分別引入EcoR I和BamH I酶切位點。以反轉錄得到的cDNA為模板進行PCR擴增,反應體系和擴增程序參考尚金夢等(2021)的報道。利用1.2%瓊脂糖凝膠電泳檢測PCR擴增產物。

1. 4 重組質粒構建

PCR產物經純化、雙酶切后,利用DNA Ligation Mix連接至pGBKT7上,將連接產物轉化大腸桿菌DH5α感受態細胞,挑取單菌落接種于含卡那霉素的LB液體培養基中,于37 ℃恒溫振蕩培養至飽和狀態,經菌液PCR鑒定后,將陽性克隆菌液送至生工生物工程(上海)股份有限公司進行測序。

1. 5 生物信息學分析

利用ExPASy預測DcNAC1基因編碼蛋白的理化性質;使用NCBI數據庫的CDD預測蛋白的保守結構域;采用Plant-mPLoc預測蛋白的亞細胞定位情況;采用SOPMA預測蛋白的二級和三級結構;利用SignalP 5.0預測蛋白的信號肽;以TMHMM Server v. 2.0預測蛋白的跨膜結構域。從NCBI數據庫下載擬南芥AtNAC1(AEE75627.1)、水稻OsNAC1(XP_015651404.1)和葡萄VvNAC1(XP_002282566)蛋白序列,利用DNAMAN 6.0對蛋白序列進行多重比對分析。利用PlantCARE分析DcNAC1基因起始密碼子(ATG)上游2000 bp啟動子序列的順式作用元件。

1. 6 實時熒光定量PCR檢測

以正常條件下生長的鐵皮石斛組培苗作為對照,利用實時熒光定量PCR對DcNAC1基因在干旱、高溫、低溫和鹽脅迫下的表達模式進行分析。利用Primer Premier 5.0設計定量引物(表1)。采用ChamQTM Universal SYBR qPCR Master Mix進行實時熒光定量PCR檢測,反應體系和擴增程序參考尚金夢等(2021)的報道。以Actin作為內參基因(付亞娟等,2020),采用2-ΔΔCt方法計算基因的相對表達量。試驗設3次生物學重復。

1. 7 pGBKT7-DcNAC1重組質粒毒性及自激活活性檢測

利用PEG/LiAc法將pGBKT7-DcNAC1和pGBKT7空載體轉化Y2HGold酵母菌株中,在SDO培養基上分別涂布轉化產物,在28 ℃培養箱培養3~5 d,觀察記錄酵母菌斑的生長狀況,分析pGBKT7-DcNAC1是否對Y2HGold酵母菌產生毒性。通過菌落PCR篩選陽性克隆,挑取陽性克隆菌落于SDO液體培養基中,于28 ℃恒溫振蕩培養至飽和狀態,將菌液用無菌水稀釋10倍,再分別接種于SDO和SDO/X/A培養基上培養,同時設置陰性對照(pGBKT7空載體)和陽性對照(pGBKT7-Gal4質粒),28 ℃恒溫培養3~5 d,觀察菌落的生長情況,分析pGBKT7-DcNAC1重組質粒是否具有自激活活性。

2. 結果與分析

2. 1 DcNAC1基因克隆及測序結果

以鐵皮石斛cDNA為模板,DcNAC1-F和DcNAC1-R為引物對DcNAC1基因進行擴增,結果發現擴增條帶單一清晰明亮,大小約900 bp,與預期結果相符(圖1)。測序結果顯示,擴增條帶與參考序列(LOC11 0104882)的核苷酸序列相似性為100%,表明成功獲得DcNAC1基因。

2. 2 DcNAC1蛋白的生物信息學分析結果

DcNAC1基因編碼的蛋白由314個氨基酸殘基組成,化學式為C1555H2407N437O469S21,理論分子量35.40 kD,理論等電點(pI)為8.16,不穩定系數為45.80,親水性指數平均值(GRAVY)為-0.579,推測該蛋白為不穩定的親水性蛋白。從圖2可知,DcNAC1蛋白的N末端含有NAM保守結構域,說明該蛋白屬于NAC基因家族。由圖3可知,DcNAC1蛋白的二級結構由無規則卷曲(占63.69%)、α-螺旋(占15.61%)、延伸鏈(占16.24%)和β-轉角(占4.46%)組成,與DcNAC1蛋白的三級結構預測結果(圖4)基本一致。亞細胞定位結果顯示,DcNAC1蛋白定位于細胞核。由圖5和圖6可知,DcNAC1蛋白不含信號肽和跨膜結構域,屬于非分泌型蛋白或膜蛋白。

2. 3 DcNAC1蛋白的多序列比對結果

采用DNAMAN 10.0將獲得的DcNAC1蛋白序列與擬南芥AtNAC1、水稻OsNAC1和葡萄VvNAC1進行序列比對分析,結果發現DcNAC1蛋白與AtNAC1的相似性最高,達51.50%,與VvNAC1和OsNAC1的相似性分別為45.02%和39.78%。進一步通過SMART數據庫對DcNAC1、AtNAC1、OsNAC1和VvNAC1蛋白保守結構域進行比對分析,結果發現4個物種的NAC蛋白序列中均含有特征性的NAC保守結構域,其中DcNAC1蛋白的第13~162個氨基酸為NAC保守結構域,約由150個氨基酸殘基組成,根據其序列差異性,進一步劃分為5個亞結構(A~E)(圖7)。

2. 4 DcNAC1基因上游啟動子順式作用元件預測結果

利用PlantCARE對DcNAC1基因起始密碼子上游2000 bp的啟動子序列進行順式作用元件分析,結果發現,該基因啟動子除包含植物啟動子的基本元件CAAT-box和TATA-box外,還包含茉莉酸甲酯響應元件(CGTCA-motif和TGACG-motif)、脅迫響應元件(TC-rich repeats)、光響應元件(G-box)、干旱誘導MYB結合位點(MBS)和低溫響應元件(LTR)(表2),推測DcNAC1基因的表達受茉莉酸、低溫、干旱、光信號和逆境脅迫等多種信號的調控。

2. 5 DcNAC1基因在非生物脅迫下表達分析結果

采用實時熒光定量PCR對DcNAC1基因在高溫、低溫、鹽和干旱脅迫處理下的表達模式進行分析,結果如圖8所示。在高溫脅迫下,根中DcNAC1基因除處理6 h的相對表達量與處理0 h的差異達顯著水平(P<0.05,下同)外,其余處理天數均與處理0 h無顯著差異;莖和葉中DcNAC1基因在處理3~48 h的相對表達量與處理0 h無顯著變化(P>0.05,下同)(圖8-A)。在低溫脅迫下,根中DcNAC1基因在處理3~48 h的相對表達量均較處理0 h明顯升高,尤其是在處理6、12和24 h的相對表達量顯著高于0 h;莖和葉中DcNAC1基因在處理3~48 h的相對表達量與處理0 h相比無顯著變化(圖8-B)。在鹽脅迫下,莖中DcNAC1基因在處理48 h達最大值,顯著高于處理0 h;根和葉中DcNAC1基因在處理3~48 h的相對表達量均與處理0 h無顯著差異(圖8-C)。在干旱脅迫下,根、莖和葉中DcNAC1基因在處理3~48 h的相對表達量較處理0 h降低,但未達顯著水平(圖8-D)。綜上所述,根中DcNAC1基因受高溫和低溫脅迫的誘導,莖中DcNAC1基因受鹽脅迫的誘導,葉中DcNAC1基因在4種脅迫下的相對表達量變化不明顯,說明不同逆境脅迫下不同組織中DcNAC1基因的表達模式不同。

2. 6 重組酵母菌株鑒定及毒性檢測結果

為了檢測重組質粒pGBKT7-DcNAC1是否會對酵母生長產生毒性,將重組質粒pGBKT7-DcNAC1、pGBKT7-Gal4質粒(陽性對照)和pGBKT7空載體(陰性對照)分別轉化酵母菌株Y2HGold,待生長2~3 d后挑取單菌落進行PCR擴增,結果如圖9-A所示。菌落PCR擴增條帶大小與目標基因大小一致,說明重組質粒pGBKT7-DcNAC1成功轉化酵母菌株Y2HGold。由圖9-B和圖9-C可知,轉化重組質粒pGBKT7-DcNAC1的酵母菌斑與轉化pGBKT7空載體的酵母菌斑大小基本一致,說明重組質粒pGBKT7-DcNAC1不會抑制酵母菌株Y2HGold的生長。

2. 7 DcNAC1蛋白自激活活性檢測結果

為了解DcNAC1蛋白是否具有自激活活性,將pGBKT7-DcNAC1、pGBKT7(陰性對照)和pGBKT7-Gal4(陽性對照)轉化酵母菌株Y2HGold,分別涂布于SDO平板上,取單菌落進行PCR擴增,結果顯示重組載體pGBKT7-DcNAC1成功轉化酵母菌株Y2HGold。由圖10可知,轉化pGBKT7-DcNAC1、pGBKT7和pGBKT7-Gal4的酵母菌株均能在SDO平板上正常生長,且菌落為白色;轉化pGBKT7-Gal4和pGBKT7-DcNAC1的酵母菌均能正常生長在SDO/X/A平板上,菌落呈藍色,但轉化pGBKT7載體的酵母菌在SDO/X/A平板上不能生長,說明DcNAC1蛋白具有自激活活性。

3 討論

NAC是一種能調節植物纖維發育、次生壁合成、細胞擴增、葉片衰老及果實成熟等發育過程的轉錄因子(Pei et al.,2013;Hao et al.,2014;Huang et al.,2015;Gao et al.,2021)。但目前針對鐵皮石斛NAC家族基因的研究報道較少。鐵皮石斛是中國傳統名貴珍稀藥材,市場需求和市場價值高(楊豪男等,2020)。不利的生長環境條件,如高溫、寒冷、干旱和高鹽,會對鐵皮石斛的生長造成不可逆轉的損害。本研究克隆獲得DcNAC1基因,其編碼區(CDS)序列長度為945 bp,編碼314個氨基酸殘基,含有NAC蛋白家族的保守結構域,亞細胞定位于細胞核中,與柳樹SlNAC1定位結果(田雪瑤等,2020)一致,推測二者在功能上具有一定的相似性。轉錄因子通過結合特定的順式作用元件來調節基因的表達,從而影響目標基因的轉錄水平,進而提高植物對非生物脅迫的適應能力(吉璐,2013),如水稻Os08PTS基因在莖和種子胚中的表達受該基因啟動子調控(顏靜宛等,2021);谷子NAC家族基因(SiNAC)啟動子參與茉莉酸甲酯、生長素和氧化脅迫應答(Puranik et al.,2011)。本研究發現,DcNAC1基因啟動子區域內的順式作用元件中以茉莉酸甲酯響應元件(CGTCA-motif和TGACG-motif)數目最多,還含有誘發干旱的MYB結合位點(MBS)和低溫響應元件(LTR)等逆境脅迫響應元件。前人相關研究也表明,AtNAC019和AtNAC055通過茉莉酸甲酯信號途徑參與擬南芥逆境脅迫的調控機制(Tran et al.,2004);ATAF1可誘導茉莉酸甲酯信號途徑中相關防御信號標記基因的表達(Jensen et al.,2008);SiNAC1通過茉莉酸甲酯途徑來抵御非生物脅迫(Puranik et al.,2011)。因此,推測DcNAC1基因通過茉莉酸甲酯信號通路參與植物生長發育和逆境脅迫的響應。

挖掘植物的耐鹽基因,改良其耐鹽能力,對植物生長發育和生產活動具有重大意義。研究表明,水稻OsNAC5和OsNAC6基因表達受干旱、鹽和低溫等非生物脅迫的誘導(Ohnishi et al.,2005;Takasaki et al.,2010);擬南芥AtNAC019、AtNAC055和AtNAC072基因表達均受鹽脅迫和干旱脅迫誘導(Jiang et al.,2009);小麥TaNAC69基因表達受多種非生物脅迫誘導(Xue et al.,2011);轉基因擬南芥中過表達桉樹EgrNAC1基因可顯著提高擬南芥的抗低溫能力(從青等,2021)。本研究對不同逆境脅迫下DcNAC1基因的表達模式進行分析,結果發現該基因受高溫、低溫和鹽脅迫誘導,與水稻OsNAC6基因在高溫、低溫和鹽脅迫下的表達模式相似(Singh et al.,2021),推測DcNAC1基因響應逆境脅迫,從而提高植株的抗逆能力。此外,本研究通過酵母自激活活性檢測發現,DcNAC1蛋白具有自激活活性,說明其作為轉錄因子可通過激活下游基因的表達,參與到相應的轉錄調控過程中。

4 結論

DcNAC1基因表達受到茉莉酸、光信號、高溫、低溫和鹽脅迫等多種信號的調控。DcNAC1蛋白具有自激活活性,通過激活下游基因的表達,參與到植物生長發育和逆境脅迫響應的轉錄調控過程中。

參考文獻:

從青,倪曉祥,程龍軍. 2021. 異源表達EgrNAC1提高擬南芥抗寒性和對干旱、高鹽的敏感性[J]. 核農學報,35(3):567-575. [Cong Q,Ni X X,Cheng L J. 2021. Ectopic express of EgrNAC1 enhances cold tolerance and sensitivity to drought and salt in Arabidopsis thaliana[J]. Journal of Nuclear Agricultural Aciences,35(3):567-575.] doi:10.11869/j.issn.100-8551.2021.03.0567.

付亞娟,陳霞婷,喬潔,王晶,李文靜,侯曉強. 2020. 鐵皮石斛親環蛋白基因DoCyP的克隆及表達分析[J]. 園藝學報,47(3):581-589. [Fu Y J,Chen X T,Qiao J,Wang J,Li W J,Hou X Q. 2020. Molecular cloning and expression characterization of Cyclophilin gene (DoCyP) in Dendrobium officinale[J]. Acta Horticulturae Sinica,47(3):581-589.] doi:10.16420/j.issn.0513-353x.2019-0357.

吉璐. 2013. 南荻抗逆相關NAC轉錄因子的克隆及功能鑒定[D]. 長沙:湖南農業大學. [Ji L. 2013. Cloning and function identification of stress resistance-related NAC transcription factors from Miscanthus lutarioriparius(Poaceae)[D]. Changsha:Hunan Agricultural University. ]

李以格,楊杭,姜琪夢,陳研碩,王曉鋒,陳勇. 2019. 珍稀藥用植物鐵皮石斛的組學及功能基因研究進展[J]. 生命科學, 31(9):959-967. [Li Y G,Yang H,Jiang M Q,Chen Y S,Wang X F,Chen Y. 2019. Investigation on omics and functional genes of Dendrobium officinale (Orchidaceae),a precious medicinal herb[J]. Bulletin of Life Scien-ces,31(9):959-967.] doi:10.13376/j.cbls/2019118.

榮歡,任師杰,汪梓坪,王飛,周勇. 2020. 植物NAC轉錄因子的結構及功能研究進展[J]. 江蘇農業科學,48(18):44-53. [Rong H,Ren S J,Wang Z P,Wang F,Zhou Y. 2020. Research progress on structure and function of plant NAC transcription factors[J]. Jiangsu Agricultural Sciences,48(18):44-53.] doi:10.15889/j.issn.1002-1302. 2020.18.008.

尚金夢,王汝穎,軒淑欣,江丹,費得清,王彥華,馮大領,申書興. 2021. 大白菜—結球甘藍易位系外源NAC086基因的鑒定與表達分析[J]. 農業生物技術學報,29(9):1678-1687. [Shang J M,Wang R Y,Xuan S X,Jiang D,Fei D Q,Wang Y H,Feng D L,Shen S X. 2021. Identification and expression analysis of foreign NAC086 gene in Chinese cabbage(Brassica campestris ssp. Pekinensis)-cabbage(B. oleracea var. Capitata) translocation line[J]. Journal of Agricultural Biotechnology,29(9):1678-1687.] doi:10.3969/j.issn.1674-7968.2021.09.003.

田雪瑤,周潔,王保松,何開躍,何旭東. 2020. 柳樹NAC基因的克隆與表達模式分析[J]. 南京林業大學學報(自然科學版),44(1):119-124. [Tian X Y,Zhou J,Wang B S,He K Y,He X D. 2020. Cloning and expression pattern analysis of NAC gene in Salix[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),44(1):119-124.] doi:10.3969/j.issn.1000-2006.201905031.

王計平,史華平,毛雪,李潤植. 2006. 轉錄因子網絡與植物對環境脅迫的響應[J]. 應用生態學報,17(9):1740-1746. [Wang J P,Shi H P,Mao X,Li R Z. 2006. Transcription factors networks and their roles in plant responses to environmental stress[J]. Chinese Journal of Applied Ecology,17(9):1740-1746.]

顏靜宛,林智敏,周淑芬,陳子強. 2021. 水稻胚特異表達基因Os08PTS啟動子的克隆及分析[J]. 福建農業科技,52(3):6-10. [Yan J W,Lin Z M,Zhou S F,Chen Z Q. 2021. Cloning and analysis of the promoter of rice Embryo-specific expression gene Os08PTS[J]. Fujian Agricultural Science and Technology,52(3):6-10.] doi:10.13651/j.cnki.fjnykj.2021.03.002.

楊豪男,張幫磊,張寧,沈曉靜,盛軍,王宣軍,字成庭. 2020. 鐵皮石斛的化學組成及其活性研究概述[J]. 廣東化工,47(11):87-88. [Yang H N,Zhang B L,Zhang N,Shen X J,Sheng J,Wang X J,Zi C T. 2020. Study on chemical structure and biological activity of Dendrobium candidum[J]. Guangdong Chemical Industry,47(11):87-88.] doi: 10.3969/j.issn.1007-1865.2020.11.035.

張婷婷,羅琴,傅思毅,王健,宋希強,周揚. 2021. 鐵皮石斛CIPK24與CBL1的互作及鹽脅迫下的表達分析[J]. 分子植物育種,19(16):5326-5334. [Zhang T T,Luo Q,Fu S Y,Wang J,Song X Q,Zhou Y. 2021. Protein interaction and gene expression analysis under salt stress of CIPK24 and CBL1 from Dendrobium catenatum[J]. Molecular Plant Breeding,19(16):5326-5334.] doi:10.13271/j.mpb.019. 005326.

Aida M,Ishida T,Fukaki H,Fujisawa H,Tasaka M. 1997. Genes involved in organ separation in Arabidopsis:An analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell,9(6):841-857. doi:10.1105/tpc.9.6.841.

Baillo E H,Kimotho R N,Zhang Z,Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes(Basel),10(10):771. doi:10.3390/genes10100771.

Bechtold U,Field B. 2018. Molecular mechaniss controlling plant growth during abiotic stress[J]. Journal of Experimental Botany,69(11):2753-2758. doi:10.1093/jxb/ery157.

Chen W J,Tong Z. 2004. Networks of transcription factors with roles in environmental stress response[J]. Trends in Plant Science,9(12):591-596. doi:10.1016/j.tplants.2004. 10.007.

Fang Y J,Liao K F,Du H,Xu Y,Song H Z,Li X H,Xiong L Z. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany,66(21):6803-6817. doi:10.1093/jxb/erv386.

Gao Y J,An K X,Guo W W,Chen Y M,Zhang R J,Zhang X,Chang S Y,Rossi V,Jin F M,Cao X Y,Xin M M,Peng H R,Hu Z R,Guo W L,Du J K,Ni Z F,Sun Q X,Yao Y Y. 2021. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality[J]. The Plant Cell,33(3):603-622. doi:10.1093/plcell/koaa040.

Hao Y J,Sun J Y,Xu P,Zhang R,Li L G. 2014. Intron-media-ted alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thic-kening during fiber development in Populus species[J]. Plant Physiology,164(2):765-776. doi:10.1104/pp.113. 231134.

Hu H H,Dai M Q,Yao J L,Xiao B,Li X,Zhang Q,Xiong L. 2006. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,103(35):12987-12992. doi:10.1073/pnas.0604882103.

Hu P,Zhang K M,Yang C P. 2019. BpNAC012 positively regu-lates abiotic stress responses and secondary wall biosynthesis[J]. Plant Physiology,179(2):700-717. doi:10. 1104/pp.18.01167.

Huang D B,Wang S G,Zhang B C,Shang-Guan K,Shi Y Y,Zhang D M,Liu X L,Wu K,Xu Z P,Fu X D,Zhou Y H. 2015. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice[J]. The Plant Cell,27(6):1681-1696. doi:10.1105/tpc.15.00015.

Huang G T,Ma S L,Bai L P,Zhang L,Ma H,Jia P,Liu J,Zhong M,Guo Z F. 2012. Signal transduction during cold,salt,and drought stresses in plants[J]. Molecular Bio-logy Reports,39(2):969-978. doi:10.1007/s11033-011-0823-1.

Hénanff G L,Profizi C,Courteaux B,Rabenoelina F,Gérard C,Clément C,Baillieul F,Cordelier S,Dhondt-Cordelier S. 2013. Grapevine NAC1 transcription factor as a convergent node in developmental processes,abiotic stresses,and necrotrophic/biotrophic pathogen tolerance[J]. Journal of Experimental Botany,64(16):4877-4893. doi:10.1093/jxb/ert277.

Jensen M K,Hagedorn P H,de Torres-Zabala M,Grant M R,Rung J H,Collinge D B,Lyngkjaer M F. 2008. Transcriptional regulation by an NAC(NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal,56(6):867-880. doi:10.1111/j.1365-313X.2008.03646.x.

Jiang H L,Li H M,Bu Q Y,Li C Y. 2009. The RHA2a-intera-cting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response[J]. Plant Signaling Behavior,4(5):464-466. doi:10. 1104/pp.109.135269.

Jin J P,Zhang H,Kong L,Gao G,Luo J C. 2014. PlantTFDB 3.0:A portal for the functional and evolutionary study of plant transcription factors[J]. Nucleic Acids Research,42:D1182-D1189. doi:10.1093/nar/gkt1016.

Mun B G,Lee S U,Park E J,Kim H H,Hussain A,Imran Q M,Lee I J,Yun B W. 2017. Analysis of transcription factors among differentially expressed genes induced by drought stress in Populus davidiana[J]. 3 Biotech,7(3):209. doi:10.1007/s13205-017-0858-7.

Ng T B,Liu J,Wong J H,Ye X,Wing S S C,Tong Y,Zhang K Y. 2012. Review of research on Dendrobium,a prized folk medicine[J]. Applied Microbiology and Biotechnology,93(5):1795-1803. doi:10.1007/s00253-011-3829-7.

Ohnishi T,Sugahara S,Yamada T,Kikuchi K,Yoshiba Y,Hirano H Y,Tsutsumi N. 2005. OsNAC6,a member of the NAC gene family,is induced by various stresses in rice[J]. Genes and Genetic Systems,80(2):135-139. doi:10.1266/ggs.80.135.

Olsen A N,Ernst H A,Leggio L L,Skriver K. 2005. NAC transcription factors:Structurally distinct,functionally diverse[J]. Trends in Plant Science,10(2):79-87. doi:10. 1016/j.tplants.2004.

Pei H X,Ma N,Tian J,Luo J,Chen J,Li J W,Zheng Y,Chen X,Fei Z J,Gao J P. 2013. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals[J]. Plant Physiology,163(2):775-791. doi:10.1104/pp. 113.223388.

Puranik S,Bahadur R P,Srivastava P S,Prasad M. 2011. Molecular cloning and characterization of a membrane associated NAC family gene,SiNAC from foxtail millet[Setaria italica (L.) P. Beauv][J]. Molecular Biotechnology,49(2):138-150. doi:10.1007/s12033-011-9385-7.

Singh K,Foley R C,O?ate-Sánchez L. 2002. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology,5(5):430-436. doi:10.1016/s1369-5266(02)00289-3.

Singh S,Koyama H,Bhati K K,Alok A. 2021. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement[J]. Journal of Plant Research,134(3):475-495. doi:10.1007/s10265-021-01270-y.

Souer E,van Houwelingen A,Kloos D,Mol J,Koes R. 1996. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,85(2):159-170. doi:10.1016/s0092-8674(00)81093-4.

Sun J,Guo Y D,Fu X Q,Wang Y S,Liu Y,Huo B,Sheng J,Hu X. 2015. Dendrobium candidum inhibits MCF-7 cells proliferation by inducing cell cycle arrest at G2/M phase and regulating key biomarkers[J]. Onco Targets and Thera-py,9:21-30. doi:10.2147/OTT.S93305.

Takasaki H,Maruyama K,Kidokoro S,Ito Y,Fujita Y,Shinozaki K,Yamaguchi-Shinozaki K,Nakashima K. 2010. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J]. Molecular Genetics and Genomics,284(3):173-183. doi:10.1007/s00438-010-0557-0.

Tang H X,Zhao T W,Sheng Y J,Zheng T,Fu L,Zhang Y. 2017. Dendrobium officinale Kimura et Migo:A review on its ethnopharmacology,phytochemistry,pharmacology,and industrialization[J]. Evidence-based Complementary and Alternative Medicine,2017:7436259. doi:10.1155/2017/7436259.

Tran L S,Nakashima K,Sakuma Y,Simpson S D,Fujita Y,Maruyama K,Fujita M,Seki M,Shinozaki K,Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell,16(9):2481-2498. doi:10.1105/tpc.104.022699.

Xu Z Y,Gongbu Z X, Wang C Y,Xue F,Zhang H,Ji W G. 2015. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress[J]. Plant Physiology and Biochemistry,96:356-363. doi:10.1016/j.plaphy.2015. 08.013.

Xue G P,Way H M,Richardson T,Drenth J,Joyce P A,McIntyre C L. 2011. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat[J]. Molecular Plant,4(4):697-712. doi:10.1093/mp/ssr013.

You J,Zong W,Li X K,Ning J,Hu H H,Li X H,Xiao J H,Xiong L Z. 2013. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany,64(2):569-583. doi:10.1093/jxb/ers349.

Zhang H F,Ma F,Wang X K,Liu S Y,Saeed U H,Hou X M,Zhang Y M,Luo D,Meng Y C,Zhang W,Abid K,Chen R G. 2020. Molecular and functional characterization of CaNAC035,an NAC transcription factor from pepper (Capsicum annuum L.)[J]. Frontiers in Plant Scien-ce,11:14. doi:10.3389/fpls.2020.00014.

(責任編輯 陳 燕)

收稿日期:2022-08-07

基金項目:海南省自然科學基金項目(320QN368,319MS009);海南省耐鹽作物生物技術重點實驗室項目(HD-SYSZX-202107)

通訊作者:周揚(1988-),https://orcid.org/0000-0002-7501-4154,副教授,主要從事植物抗逆分子生物學研究工作,E-mail:zhouyang@ hainanu.edu.cn

第一作者:陳彧(1984-),https://orcid.org/0000-0002-5593-4623,林業高級工程師,主要從事珍貴樹種培育及藥用植物育種研究工作,E-mail:cfstuchen@126.com

猜你喜歡
鐵皮石斛基因克隆
仿野生環境人工種植鐵皮石斛主要有害生物及防治對策
三個小麥防御素基因的克隆及序列分析
昆明地區鐵皮石斛人工栽培模式的發展和思考
鐵皮石斛人工栽培模式
玉米紋枯病病菌y—谷氨酰轉肽酶基因克隆與表達分析
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合