?

谷氨酸通過T1R1/T1R3-ERK1/2通路調節香豬睪丸間質細胞自噬相關基因表達

2023-11-02 16:01王涵徐永健蒙利潔龔婷
南方農業學報 2023年6期
關鍵詞:自噬谷氨酸

王涵 徐永健 蒙利潔 龔婷

DOI:10.3969/j.issn.2095-1191.2023.06.024

摘要:【目的】探究L-谷氨酸刺激對香豬睪丸間質細胞自噬的影響,為進一步研究味覺受體T1R1/T1R3通過雷帕霉素靶蛋白(mTOR)調控下自噬對雄性生殖的影響提供理論依據?!痉椒ā窟x取30日齡的健康從江香豬分離培養睪丸間質細胞,采用不同濃度L-谷氨酸刺激睪丸間質細胞T1R1/T1R3,探究激活T1R1/T1R3對睪丸間質細胞自噬相關基因(TAS1R1、TAS1R3、ERK1、ERK2、mTOR、Beclin 1和MAP1LC3B)表達的影響?!窘Y果】從江香豬睪丸間質細胞在培養72~96 h增殖最快,于培養96 h時達對數生長期。10 mmol/L是L-谷氨酸刺激睪丸間質細胞味覺受體T1R1/T1R3的有效濃度。經10 mmol/L的L-谷氨酸刺激后,睪丸間質細胞的mTOR、ERK1和ERK2基因相對表達量極顯著高于對照組(P<0.01,下同),而Beclin 1基因相對表達量極顯著低于對照組,MAP1LC3B基因相對表達量顯著低于對照組(P<0.05,下同);ERK1/2和p-S6K1蛋白相對表達量顯著高于對照組,而Beclin 1蛋白相對表達量顯著低于對照組。單丹磺尸酰胺(MDC)染色結果顯示,經10 mmol/L的L-谷氨酸刺激后,睪丸間質細胞內的酸性自噬泡熒光強度明顯低于對照組,表明胞內自噬受抑制?!窘Y論】10 mmol/L的L-谷氨酸可激活從江香豬睪丸間質細胞T1R1/T1R3,且自噬相關基因TAS1R1、TAS1R3、ERK1、ERK2和mTOR及相關蛋白T1R1、T1R3、ERK1/2、p-S6K1和p-mTOR表達升高,而Beclin 1和MAP1LC3B基因及Beclin 1蛋白表達降低,故推測谷氨酸可通過激活味覺受體T1R1/T1R3參與雄性生殖自噬的負調控。

關鍵詞:從江香豬;睪丸間質細胞;味覺受體T1R1/T1R3;自噬;谷氨酸

中圖分類號:S828.89? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A 文章編號:2095-1191(2023)06-1829-08

Glutamate regulating autophagy-related gene expression in

Leydig cells of Xiang pig through T1R1/T1R3-ERK1/2 pathway

WANG Han, XU Yong-jian, MENG Li-jie, GONG Ting*

(College of Animal Science, Guizhou University/Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education/Guizhou Key Laboratory of Animal Genetics, Breeding and Reproduction,

Guiyang, Guizhou? 550025,China)

Abstract:【Objective】This paper explored the effect of L-glutamate stimulation on autophagy in Xiang pig Leydig cells, providing a theoretical basis for further research on the effects of taste receptor T1R1/T1R3 on male reproduction under the regulation of rapamycin target protein (mTOR) through autophagy. 【Method】Selecting Leydig cells isolated and cultured from healthy 30 days old Congjiang Xiang pigs, different concentrations of L-glutamate were used to stimulate Leydig cells T1R1/T1R3, to investigate the effect of activating T1R1/T1R3 on expression of autophagy-related genes of Leydig cell (TAS1R1, TAS1R3, ERK1, ERK2, mTOR, Beclin 1 and MAP1LC3B). 【Result】The proliferation of Leydig cells from Congjiang Xiang pig was the fastest during 72-96 h of cultivation, and reached a logarithmic growth phase at 96 h of cultivation. 10 mmol/L was the effective concentration of L-glutamate to stimulate the taste receptor T1R1/T1R3 in Leydig cells. After stimulation with 10 mmol/L L-glutamate, the relative expression levels of mTOR, ERK1, and ERK2 genes in Leydig cells were extremely significantly higher than those in the control group (P<0.01, the same below). The relative expression levels of Beclin 1 gene were extremely significantly lower than those in the control group. And the relative expression levels of MAP1LC3B gene were significantly lower than those in the control group (P<0.05, the same below). The relative expression levels of ERK1/2 and p-S6K1 proteins were significantly higher than those in the control group, while the relative expression levels of Beclin 1 protein were significantly lower than those in the control group. The stai-ning results of dansylcadaverine (MDC) showed that after stimulation with 10 mmol/L L-glutamate, the fluorescence intensity of acidic autophagic vesicles in Leydig cells was significantly lower than that of the control group, indicating that intracellular autophagy was inhibited. 【Conclusion】10 mmol/L of L-glutamate can activate the Leydig cells T1R1/T1R3 of Congjiang Xiang pig, and the expression of autophagy related genes TAS1R1, TAS1R3, ERK1, ERK2 and mTOR, as well as related proteins T1R1, T1R3, ERK1/2, p-S6K1, and p-mTOR increase. However, the expression of Beclin 1 and MAP1LC3B genes and Beclin 1 protein decrease. Therefore, it is speculated that glutamate can participate in the negative regulation of male reproductive autophagy by activating taste receptor T1R1/T1R3.

Key words: Congjiang Xiang pig; Leydig cell; taste receptor T1R1/T1R3; autophagy; glutamate

Foundation items: National Natural Science Foundation of China(31702117); Guizhou Science and Technology Project (QKHJC〔2020〕1Y135, QKHJC〔2018〕1404)

0 引言

【研究意義】在自然界中,哺乳動物可感知酸、甜、鮮、咸、苦等味覺,其中味覺受體第一家族(Taste receptor 1 family,T1Rs)成員T1R1和T1R3形成的異二聚體可感知鮮味(Yarmolinsky et al.,2009)。已有研究表明,味覺受體T1R1/T1R3符合氨基酸跨膜傳遞要求(Nelson et al.,2002),T1R1或T1R3缺失均會引起機體對氨基酸的不敏感性(Wauson et al.,2012)。不同動物味覺受體T1R1/T1R3可感知不同種類的氨基酸,如小鼠可感知18種L-谷氨酸,豬可感知包括L-谷氨酸在內的6種氨基酸(Toda et al.,2013)。當味覺受體T1R1/T1R3被不同氨基酸激活后,對機體產生的影響也存在明顯差異,L-苯丙氨酸和L-亮氨酸可激活小鼠腸道味覺受體T1R1/T1R3而引起膽囊收縮素分泌,L-半胱氨酸可引起腸蠕動和促進降鈣素相關基因肽釋放(Kendig et al.,2014),L-谷氨酸或精氨酸可引起鈣離子釋放和胰島素分泌(Gen?o[g][?]lu et al.,2019)。此外,T1R1/T1R3可感知氨基酸激活雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)對下游自噬起負調控作用,而自噬在雄性生殖過程中參與精子的生成及睪酮的合成(魏冬芹等,2021;劉文嬌等,2022)。因此,探究氨基酸通過T1R1/T1R3激活mTOR調節下游自噬,可為進一步了解自噬在雄性生殖中的作用機理提供理論依據?!厩叭搜芯窟M展】自噬是一種通過形成雙層膜結構對細胞內的蛋白或細胞器進行降解,從而維持細胞穩態的代謝過程,在真核生物體內高度保守(Galluzzi and Green,2019),目前研究較多的有mTOR信號通路、腺苷酸活化蛋白激酶(Adenosine 5'-monophosphate-activated protein kinase,AMPK)信號通路和磷脂酰肌醇-3-磷酸激酶(Phosphoinositide-3-kinase,PI3K)信號通路(Li and Zhang,2019;Wang and Zhang,2019)。mTOR作為一種絲氨酸/蘇氨酸蛋白激酶,包括mTOR復合體1(mTORC1)和mTOR復合體2(mTORC2)。其中,mTORC1參與細胞能量代謝、凋亡和自噬等多種生理功能(Hara et al.,1998)。氨基酸作為重要的刺激物質可被T1R1/T1R3感知并調節mTORC1,而不被轉運至細胞內。當mTORC1被激活,一方面可磷酸化p70核糖體S6激酶1(p70 ribosomal S6 kinase 1,S6K1)和真核起始因子4E結合蛋白1(4E-binding protein 1,4E-BP1),調節蛋白翻譯以促進細胞生長;另一方面,mTORC1可磷酸化unc51樣蛋白激酶(unc-51-like kinase 1,ULK1)復合物,抑制自噬的起始(Petherick et al.,2015;Zhou et al.,2016)。Hara等(1998)對釀酒酵母的研究發現,培養基中氨基酸的消耗極大抑制了S6K1活化和4E-BP1磷酸化;Kim等(2002)在人類(Homo sapiens)胚腎細胞中也發現亮氨酸的缺失會抑mTORC1活化,從而快速抑制S6K1和4E-BP1的磷酸化。睪丸間質細胞作為分泌睪酮的重要生殖細胞,其自噬相對活躍,且自噬程度與睪酮合成密切相關,可能是通過自噬來調控膽固醇攝入,進而影響睪酮的合成(Gao et al.,2018;Gong et al.,2021)?!颈狙芯壳腥朦c】已有研究表明,味覺受體在睪丸間質細胞中高表達(Gong et al.,2021),且T1Rs被證實在雄性生殖過程(精子發生或生精細胞成熟)中具有調節作用(Meyer et al.,2012),但目前有關氨基酸通過T1R1/T1R3激活mTOR調節下游自噬的研究在雄性生殖上鮮見報道?!緮M解決的關鍵問題】以從江香豬為研究對象,培養其原代睪丸間質細胞并通過L-谷氨酸刺激,利用實時熒光定量PCR和Western blotting檢測L-谷氨酸刺激對自噬通路和自噬相關基因的影響,以期為進一步研究T1R1/T1R3通過mTOR調控下自噬對雄性生殖的影響提供理論依據。

1 材料與方法

1. 1 試驗材料

選擇3頭30日齡的健康從江香公豬,由貴州省綠生源畜牧技術開發有限公司提供。通過手術法采集公豬兩側睪丸,置于含3%雙抗的PBS中帶回實驗室,4 h內分離培養睪丸間質細胞。動物試驗由貴州大學動物倫理委員會批準,批準號EAE-GZU-2020-P001。Gibco北美胎牛血清、DMEM/F12細胞培養基、I型膠原酶、TRIzol、RIPA蛋白裂解液及PMSF溶液購自西寶生物科技(上海)股份有限公司;DAPI染液、逆轉錄試劑盒、EBSS細胞緩沖液、0.25%胰酶、細胞自噬MDC染色試劑盒(G0170)及SYBR Green qPCR Master Mix購自貴州卓一生物生物科技有限公司??贵wp-mTOR(1∶1000稀釋)、T1R3(1∶1000稀釋)、T1R1(1∶1000稀釋)和β-actin(1∶5000稀釋)購自Affinity Bioscience公司;山羊抗兔IgG(1∶16000稀釋)購自Immunoway公司;3β-HSD(1∶100稀釋)購自Santa Cruz公司。3β-HSD染色液配制:A液為1.0 mg氯化硝基四氮唑藍(NBT)和0.5 mg脫氫表雄酮(DHEA)溶于0.5 mL二甲基亞砜;B液為10.0 mg輔酶I(NAD)溶于9.5 mL的PBS;A液和B液混合后為工作液,4 ℃保存備用。主要儀器設備有PCR擴增儀(C1000 TouchTM)、熒光定量PCR儀(CFX96 Real-time System)及熒光顯微鏡(Nikon ECLIPSE-Ni+DS-Ri2)。

1. 2 試驗方法

1. 2. 1 睪丸間質細胞培養與鑒定 睪丸間質細胞培養與鑒定參照王維勇(2020)、劉文嬌等(2022)的方法,用75%酒精清洗睪丸1次,再以含雙抗的PBS清洗2~3次,在培養皿中用鑷子小心剝離睪丸外層的白膜,然后置于4 ℃預冷的75%酒精中消毒2~3 min,PBS清洗2~3次后用剪刀剪成肉泥狀,經0.1% I型膠原酶稀釋后裝入50 mL無菌離心管中,加入2~3倍體積的0.1% I型膠原酶,37 ℃水浴1 h,期間每隔8~10 min晃動1次離心管;然后以含10%胎牛血清的培養基終止膠原酶消化,以200目和400目細胞篩過濾,收集濾液,1000 r/min離心10 min,棄上清液;用不含胎牛血清的DMEM/F12培養液吹散細胞沉淀,800 r/min離心8 min,棄上清液;再用含10%胎牛血清的DMEM/F12完全培養液重懸細胞沉淀,600 r/min離心5 min,棄上清液;離心結束后以含10%胎牛血清的DMEM/F12完全培養液重懸細胞沉淀,制備細胞懸液并接種于細胞瓶進行擴大培養,4 h后更換培養基。

采用間接免疫熒光法鑒定分離培養的睪丸間質細胞純度,當6孔細胞板中的細胞匯合度達70%~80%時,棄培養液,PBS清洗3次,每次3~5 min;4%多聚甲醛室溫固定15~20 min,PBS清洗3次;0.35% TritonX-100通透細胞15 min,PBS清洗3次;37 ℃下5%山羊血清溶液封閉40 min,PBS清洗3次;3β-HSD-mTOR(一抗,1∶100稀釋)4 ℃搖床過夜孵育,PBS清洗3次;熒光標記山羊抗兔IgG(二抗,1∶400稀釋)37 ℃避光孵育1 h,PBS清洗3次;再用1 μg/mL DAPI溶液染核10 min,PBS清洗3次,置于熒光顯微鏡下觀察拍照。

1. 2. 2 CCK8細胞增殖檢測 將細胞培養瓶中匯合度為80%~100%的間質細胞以0.25%胰酶消化后調整細胞濃度。將100.0 mL細胞懸浮液接種至96孔細胞板中,分別在接種后0、24、48、72、96和120 h時加入CCK8檢測試劑(每個時間點設4個重復),37 ℃孵育2 h后置于酶標儀中,在450 nm波長處讀取OD,并繪制細胞生長曲線。

1. 2. 3 實時熒光定量PCR檢測 根據NCBI已公布的ERK1、ERK2、mTOR、Beclin 1和MAP1LC3B基因mRNA序列,利用Primer 5.0設計擴增引物(表1)。TAS1R3和TAS1R1基因的擴增引物設計參照王維勇(2020)的方法。當6孔細胞板中的細胞匯合度達80%~90%時,用EBSS緩沖液處理細胞3 h,排除氨基酸干擾后分別用0(對照)、2.5、5.0和10.0 mmol/L的L-谷氨酸刺激細胞8 h。采用TRIzol法提取細胞總RNA,反轉錄合成cDNA后利用實時熒光定量PCR檢測各組內的TAS1R3、TAS1R1和β-actin基因表達情況。篩選出最佳刺激濃度,再以實時熒光定量PCR檢測目的基因在氨基酸處理組和對照組中的表達水平。反應體系10.0 μL:2×SYBR Premix Ex TaqTMⅡ 5.0 μL,cDNA模板1.0 μL,上、下游引物各0.4 μL,ddH2O 3.2 μL。擴增程序:50 ℃酶失活2 min;95 ℃預變性2 min;95 ℃ 15 s,60 ℃ 15 s,72 ℃ 1 min,進行40個循環。每個樣品進行4次平行試驗,通過2-△△Ct法計算目的基因相對表達量。

1. 2. 4 Western blotting檢測分析 使用蛋白裂解液對處理的細胞進行裂解,提取總蛋白,以BCA試劑盒測定蛋白濃度,調整蛋白濃度并加入5×SDS上樣緩沖液,100 ℃變性10 min后進行SDS-PAGE電泳,濃縮膠中80 V電泳30 min,分離膠中110 V電泳70 min。電泳結束后采用濕轉法110 V轉膜70 min,轉印后的PVDF膜在5%脫脂奶粉中37 ℃孵育2 h。用TBST將PVDF膜清洗干凈,加入一抗(T1R1、T1R3、mTOR、p-mTOR、ERK1/2、p-S6K1、Beclin 1、β-actin)4 ℃搖床孵育過夜。孵育好的雜交膜以TBST清洗3次,每次5 min,加入山羊抗兔IgG(二抗),室溫孵育1.5 h后以TBST清洗3次,每次5 min,采用ECL超敏發光液顯示蛋白條帶,并以ImageJ 1.8.0對蛋白條帶進行灰度分析。

1. 2. 5 單丹磺尸酰胺(MDC)染色 當6孔細胞板中的細胞匯合度達70%~80%時,棄培養基,用PBS清洗3次,按1×Wash Buffer∶MDC染液為9∶1的比例稀釋染色工作液,將配好的染液加入6孔細胞板,每孔100.0~200.0 μL,室溫下避光孵育20~45 min,棄染液,PBS清洗3次,再加入100.0 μL的Collection Buffer覆蓋細胞,在200倍顯微鏡下選取3~5個視野觀察拍照。

1. 3 統計分析

試驗數據采用GraphPad Prism 9.0進行單因素方差分析(One-way ANOVA),并以Multiple Comparisons進行多重比較。

2 結果與分析

2. 1 從江香豬睪丸間質細胞培養與鑒定結果

分離獲得的從江香豬睪丸間質細胞于培養4 h后開始貼壁(圖1-A),培養16 h的細胞增殖分化明顯(圖1-B)。經3β-HSD染色(圖1-C)及3β-HSD間接免疫熒光鑒定(圖1-D~圖1-F)結果均顯示,原代從江香豬睪丸間質細胞純度超過90%。mTOR間接免疫熒光檢測結果顯示,90%以上的從江香豬睪丸間質細胞能表達mTOR(圖1-G~圖1-I)。

2. 2 CCK8檢測從江香豬睪丸間質細胞增殖情況

如圖2所示,從江香豬睪丸間質細胞在培養0~72 h階段生長緩慢,在培養72~96 h階段的細胞增殖最快,并于培養96 h時達對數生長期,其增殖速度顯著高于其他時間點(P<0.05,下同),表明從江香豬睪丸間質細胞增殖效率較高,可用于后續試驗。

2. 3 L-谷氨酸對睪丸間質細胞味覺受體TAR1/TAR3 的影響

相對于對照組,以2.5、5.0和10.0 mmol/L的L-谷氨酸刺激睪丸間質細胞后,其TAS1R3基因相對表達量極顯著升高(P<0.01,下同)(圖3-A);經10 mmol/L的L-谷氨酸刺激后,睪丸間質細胞TAS1R1基因相對表達量也極顯著高于對照組,但以2.5和5.0 mmol/L的L-谷氨酸刺激睪丸間質細胞,TAS1R1基因相對表達量與對照組差異不顯著(P>0.05,下同)(圖3-B)。此外,以10 mmol/L的L-谷氨酸刺激睪丸間質細胞后,T1R3和T1R1蛋白表達量均極顯著高于對照組(圖3-C和圖3-D)。因此,確定10 mmol/L是L-谷氨酸刺激從江香豬睪丸間質細胞味覺受體T1R1/T1R3的有效濃度。

2. 4 L-谷氨酸刺激對自噬相關基因表達的影響

提取經L-谷氨酸刺激的從江香豬睪丸間質細胞總RNA和總蛋白,分別進行實時熒光定量PCR及Western blotting檢測分析。實時熒光定量PCR檢測結果顯示,經10 mmol/L的L-谷氨酸刺激后,從江香豬睪丸間質細胞的mTOR、ERK1和ERK2基因相對表達量極顯著高于對照組,而Beclin 1基因相對表達量極顯著低于對照組,MAP1LC3B基因相對表達量顯著低于對照組(圖4-A)。Western blotting檢測分析結果如圖4-B所示,經10 mmol/L的L-谷氨酸刺激后,從江香豬睪丸間質細胞的mTOR蛋白相對表達量低于對照組,p-mTOR蛋白相對表達量高于對照組,ERK1/2和p-S6K1蛋白相對表達量顯著高于對照組,而Beclin 1蛋白相對表達量顯著低于對照組(圖4-B和圖4-C)。MDC染色結果顯示,經10 mmol/L的L-谷氨酸刺激后,從江香豬睪丸間質細胞內的酸性自噬泡熒光強度明顯低于對照組(圖4-D),表明胞內自噬受抑制。

3 討論

味覺受體T1R1/T1R3在除口腔外的脂肪(Simon et al.,2014)、睪丸(龔婷,2016;Gong et al.,2021)、胰腺(Murovets et al.,2019)、胃腸道(Xie et al.,2020)和腦(Wu et al.,2021)等非味覺組織及器官中均有表達,且參與調控相關生理活動(Wauson et al.,2012;Lee and Owyang,2017)。在雄性生殖中,T1R1/T1R3通過調控小鼠體內的cAMP濃度而控制精子頂體反應,且TAS1R1基因敲除試驗發現精子頂體反應頻率及細胞壞死/凋亡增加(Luddi et al.,2019)。與此相似,TAS1R3基因敲除試驗也發現小鼠生精小管部分生精上皮脫落,精子畸形率增加(Mosinger et al.,2013)。性成熟雄性哺乳動物95%的睪酮由睪丸間質細胞分泌,向小鼠睪丸注射糖精鈉后T1R3和下游味導素Gα表達增加,且血清睪酮、雌二醇及cAMP含量上升(龔婷,2016)。大多數細胞需通過氨基酸感測來協調細胞營養需求,而T1R1/T1R3作為鮮味受體可被丙氨酸、谷氨酸及蛋氨酸等多種氨基酸激活(Nelson et al.,2002),將氨基酸可用性信號傳遞至mTORC1,進而調節mTOR活性。本研究結果表明,10 mmol/L的L-谷氨酸可通過T1R1/T1R3受體激活mTOR而抑制從江香豬睪丸間質細胞自噬,與Zhou等(2016)在小鼠成肌細胞中觀察到蛋氨酸可通過T1R1/T1R3激活mTOR,當TAS1R1基因表達受干擾時mTOR受抑制的結論一致。

自噬在維持生精細胞穩態、清除多余生精細胞及調控精子發生的過程中發揮重要作用。睪丸間質細胞作為分泌睪酮的生殖細胞,不僅高表達味覺受體,其自噬程度也相對較活躍。自噬參與小鼠睪酮合成,以尼古丁和氟處理小鼠均發現其血清睪酮水平降低,睪丸間質細胞自噬能力增加(朱宇辰,2016;趙祥龍,2018)。自噬因子LC3包括LC3-I和LC3-II,其中,LC3-I通過與磷脂酰乙醇胺偶聯生成脂質化的LC3-II,而LC3-II附著在自噬體膜上,參與自噬體膜的延伸與形成(Sheng and Qin,2019);Beclin 1則主要參與自噬體的起始與成熟(Xu and Qin,2019)。本研究發現,T1R1/T1R3被L-谷氨酸激活后自噬相關基因TAS1R1、TAS1R3、ERK1、ERK2和mTOR及相關蛋白T1R1、T1R3、ERK1/2、p-S6K1和p-mTOR的表達量均呈上升趨勢,而Beclin 1和MAP1LC3B基因的相對表達量顯著下降,Beclin 1蛋白表達也顯著下降,與Wauson等(2012)的研究結果一致。味覺受體T1R1/T1R3可通過促進細胞內鈣離子濃度及激活細胞外信號調節蛋白1和2(ERK1/2)而正向調節mTORC1(Wauson et al.,2013)。此外,ERK1/2可直接磷酸化mTORC1的亞基Raptor以促進mTORC1激活(Carriere et al.,2011)。MDC作為酸性染料可對自噬泡進行染色(Sun et al.,2021)。本研究的MDC染色結果顯示,經10 mmol/L的L-谷氨酸刺激后,從江香豬睪丸間質細胞內的酸性自噬泡熒光強度明顯低于對照組,表明L-谷氨酸刺激可抑制胞內自噬。除谷氨酸外,其他氨基酸也參與自噬調控。Sato等(2013)研究發現,缺乏賴氨酸時會引起骨骼肌蛋白分解加快且合成速率減慢,推測是賴氨酸不足引起骨骼肌細胞發生自噬而導致蛋白被降解;此外,以10 mmol/L的L-賴氨酸處理小鼠成肌細胞時發現mTORC1下游S6K1和4EBP1磷酸化水平上升,而LC3表達下降(Sato et al.,2014)。

目前,有關自噬在雄性生殖上的研究多集中在藥物刺激引起的自噬(Chen et al.,2019;Sadeghi et al.,2020),鮮見將自噬與味覺受體聯合研究。味覺受體可感知哺乳動物攝取的外界物質,并參與多種組織器官調控。鑒于睪丸間質細胞既表達味覺受體且自噬活躍,本研究以香豬睪丸間質細胞為對象,將味覺受體T1R1/T1R3與自噬相關聯,并推測T1R1/T1R3是通過mTOR調控自噬過程,為進一步研究味覺受體T1R1/T1R3在雄性生殖過程中的作用機理提供了借鑒。

4 結論

10 mmol/L的L-谷氨酸可激活從江香豬睪丸間質細胞T1R1/T1R3,且自噬相關基因TAS1R1、TAS1R3、ERK1、ERK2和mTOR及相關蛋白T1R1、T1R3、ERK1/2、p-S6K1和p-mTOR表達升高,而Beclin 1和MAP1LC3B基因及Beclin 1蛋白表達降低,故推測谷氨酸可通過激活味覺受體T1R1/T1R3參與雄性生殖自噬的負調控。

參考文獻:

龔婷. 2016. 甜味受體T1R3與Gα-味導素在小鼠睪丸類固醇激素合成中的功能及作用機制研究[D]. 南京:南京農業大學. [Gong T. 2016. Roles of sweet taste receptor T1R3 and alpha-gustducin testicular steroidogenesis of mice[D]. Nanjing:Nanjing Agricultural University.] doi:10.7666/d.Y3290115.

劉文嬌,王涵,龔婷. 2022. 從江香豬SP1基因組織表達特征及其超表達對間質細胞自噬和凋亡的影響[J]. 南方農業學報,53(12):3498-3509. [Liu W J,Wang H,Gong T. 2022. Tissue expression characteristics of SP1 gene and effects of its overexpression on autophagy and apoptosis in leydig cells from Congjiang Xiang pigs[J]. Journal of Southern Agriculture,53(12):3498-3509.] doi:10. 3969/j.issn.2095-1191.2022.12.021.

王維勇. 2020. 睪丸T1R3參與從江香豬初情期睪酮合成的機制研究[D]. 貴陽:貴州大學. [Wang W Y. 2020. Study on testicular T1R3 involved in testosterone synthesis of Congjiang Xiang pigs at puberty[D]. Guiyang:Guizhou University.] doi:10.27047/d.cnki.ggudu.2020.001878.

魏冬芹,吳德,林燕. 2021. 細胞自噬在雄性繁殖生理中的研究進展[J]. 中國畜牧雜志,57(11):39-45. [Wei D Q,Wu D,Lin Y. 2021. Advances in autophagy in male reproductive physiology[J]. Chinese Journal of Animal Science,57(11):39-45.] doi:10.19556/j.0258-7033.2020 0917-04.

趙祥龍. 2018. 尼古丁通過睪丸間質細胞自噬降低血清睪酮分泌[D]. 上海:上海交通大學. [Zhao X L. 2018. Nicotine decreases serum testosterone via autophagy in TM3 cells[D]. Shanghai:Shanghai Jiaotong University.] doi:10.27307/d.cnki.gsjtu.2018.000313.

朱宇辰. 2016. 氟對小鼠睪丸組織及間質細胞自噬的體內外觀察[D]. 太谷:山西農業大學. [Zhu Y C. 2016. A research of fluoride on autophagy in mice testis and leydig cells:In vivo and vitro[D]. Taigu:Shanxi Agricultural University.]

Carriere A,Romeo Y,Acosta-Jaquez H A,Moreau J,Bonneil E,Thibault P,Fingar D C,Roux P P. 2011. ERK1/2 phosphorylate raptor to promote ras-dependent activation of mTOR complex 1 (mTORC1)[J]. Journal of Biological Chemistry,286(1):567-577. doi:10.1074/jbc.M110.159046.

Chen X W,Li C,Chen Y,Ni C B,Chen X X,Zhang L L,Xu X N,Chen M,Ma X Y,Zhan H L,Xu A Y,Ge R S,Guo X L. 2019. Aflatoxin B1 impairs leydig cells through inhibiting AMPK/mTOR-mediated autophagy flux pathway[J]. Chemosphere,233:261-272. doi:10.1016/j.chemosphere.2019.05.273.

Galluzzi L,Green D R. 2019. Autophagy-independent functions of the autophagy machinery[J]. Cell,177(7):1682-1699. doi:10.1016/j.cell.2019.05.026.

Gao F Y,Li G P,Liu C,Gao H,Wang H,Liu W X,Chen M,Shang Y L,Wang L N,Shi J,Xia W L,Jiao J W,Gao F,Li J,Chen L,Li W. 2018. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells[J]. Journal of Cell Biology,217(6):2103-2119. doi:10.1083/jcb.201710078.

Gen?o[g][?]lu H,?ahin K,Jones P M. 2019. Determining the insulin secretion potential for certain specific G-protein coupled receptors in MIN6 pancreatic beta cells[J]. Turkish Journal of Medical Sciences,49(1):403-411. doi:10.3906/sag-1712-147.

Gong T,Wang W Y,Xu H Q,Yang Y,Chen X,Meng L J,Xu Y J,Li Z Q,Wan S F,Mu Q. 2021. TAS1R3 longitudinal expression of testicular from prepuberty to sexual maturity in Congjiang Xiang pigs[J]. Animals,11(2):437. doi:10.3390/ani11020437.

Hara K,Yonezawa K,Weng Q P,Kozlowski M,Belham C,Avruch J. 1998. Amino acid sufficiency and mTOR regulate p70S6 kinase and eIF-4E BP1 through a common effector mechanism[J]. Journal of Biological Chemistry,273(23):14484-14494. doi:10.1074/jbc.273.23.14484.

Kendig D M,Hurst N R,Bradley Z L,Mahavadi S,Kuemmerle J F,Lyall V,DeSimone J,Murthy K S,Grider J R. 2014. Activation of the umami taste receptor (T1R1/T1R3) initia-tes the peristaltic reflex and pellet propulsion in the distal colon[J]. American Journal of Physiology. Gastrointestinal and Liver Physiology,307(11):G1100-G1107. doi:10.1152/ajpgi.00251.2014.

Kim D H,Sarbassov D D,Ali S M,King J E,Latek R R,Erdjument-Bromage H,Tempst P,Sabatini D. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery[J]. Cell,110(2):163-175. doi:10.1016/s0092-8674(02)00808-5.

Lee A L,Owyang C. 2017. Sugars,sweet taste receptors,and brain responses[J]. Nutrients,9(7):653. doi:10.3390/nu9070653.

Li W,Zhang L N. 2019. Regulation of ATG and autophagy initiation[J]. Advances in Experimental Medicine and Bio-logy,1206:41-65. doi:10.1007/978-981-15-0602-4_2.

Luddi A,Governini L,Wilmsk?tter D,Gudermann T,Boekhoff I,Piomboni P. 2019. Taste receptors:New players in sperm biology[J]. International Journal of Molecular Scien-ces,20(4):967. doi:10.3390/ijms20040967.

Meyer D,Voigt A,Widmayer P,Borth H,Huebner S,Breit A,Marschall S,de Angelis M H,Boehm U,Meyerhof W,Gudermann T,Boekhoff I. 2012. Expression of tas1 taste receptors in mammalian spermatozoa:Functional role of TAS1R1 in regulating basal Ca2+ and cAMP concentrations in spermatozoa[J]. PLoS One,7(2):e32354. doi:10.1371/journal.pone.0032354.

Mosinger B,Redding K M,Rockwell Parker M,Yevshayeva V,Yee K K,Dyomina K,Li Y,Margolskee R F. 2013. Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility[J]. Proceedings of the National Academy of Sciences of the United States of America,110(30):12319-12324. doi:10.1073/pnas.1302827110.

Murovets V O,Sozontov E A,ZachepilO T G. 2019. The effect of the taste receptor protein T1R3 on the development of islet tissue of the murine pancreas[J]. Doklady Biological Sciences,484(1):1-4. doi:10.1134/S00124 96619010010.

Nelson G,Chandrashekar J,Hoon M A,Feng L X,Zhao G,Ryba N J P,Zuker C S. 2002. An amino-acid taste receptor[J]. Nature,416(6877):199-202. doi:10.1038/nature726.

Petherick K J,Conway O J L,Mpamhanga C,Osborne S A,Kamal A,Saxty B,Ganley I G. 2015. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy[J]. Journal of Biological Chemistry,290(48):28726. doi:10.1074/jbc.A114. 627778.

Sadeghi N,Erfani-Majd N,Tavalaee M,Tabandeh M R,Drevet J R,Nasr-Esfahani M H. 2020. Signs of ROS-associa-ted autophagy in testis and sperm in a rat model of varicocele[J]. Oxidative Medicine and Cellular Longevity,2020:5140383. doi:10.1155/2020/5140383.

Sato T,Ito Y,Nagasawa T. 2013. Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats[J]. Journal of Nutritional Science and Vitaminology,59(5):412-419. doi:10.3177/jnsv.59. 412.

Sato T,Ito Y,Nedachi T,Nagasawa T. 2014. Lysine suppres-ses protein degradation through autophagic-lysosomal system in C2C12 myotubes[J]. Molecular and Cellular Biochemistry,391(1-2):37-46. doi:10.1007/s11010-014-1984-8.

Sheng R,Qin Z H. 2019. History and current status of auto-phagy research[J]. Advances in Experimental Medicine and Biology,1206:3-37. doi:10.1007/978-981-15-0602-4_1.

Simon B R,Learman B S,Parlee S D,Scheller E,Mori H,Cawthorn W P,Ning X M,Krishnan V,Ma Y F,Tyrberg B,MacDougald O A. 2014. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass[J]. PLoS One,9(1):e86454. doi:10.1371/journal.pone. 0086454.

Sun M,Wang C Y,Lv M C,Fan Z,Du J Z. 2021. Mitochondrial-targeting nanoprodrugs to mutually reinforce metabolic inhibition and autophagy for combating resistant cancer[J]. Biological Engineering Society,278:121168. doi:10.1016/j.biomaterials.2021.121168.

Toda Y,Nakagita T,Hayakawa T,Okada S,Narukawa M,Imai H,Ishimaru Y,Misaka T. 2013. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor)[J]. Journal of Biological Chemistry,288(52):36863-36877. doi:10.1074/jbc.M113.494443.

Wang Y,Zhang H B. 2019. Regulation of autophagy by mTOR signaling pathway[J]. Advances in Experimental Medicine and Biology,1206:67-83. doi:10.1007/978-981-15-0602-4_3.

Wauson E M,Lorente-Rodríguez A,Cobb M H. 2013. Minireview:Nutrient sensing by G protein-coupled receptors[J]. Molecular Endocrinology,27(8):1188-1197. doi:10. 1210/me.2013-1100.

Wauson E M,Zaganjor E,Lee A Y,Guerra M L,Ghosh A B,Bookout A L,Chambers C P,Jivan A,McGlynn K,Hutchison M R,Deberardinis R J,Cobb M H. 2012. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy[J]. Molecular Cell,47(6):851-862. doi:10.1016/j.molcel.2012.08.001.

Wu B,Eldeghaidy S,Ayed C,Fisk I D,Hewson L,Liu Y. 2021. Mechanisms of umami taste perception:From molecular level to brain imaging[J]. Critical Reviews in Food Science and Nutrition,62(25):7015-7024. doi:10.1080/10408398.2021.1909532.

Xie S Z,Yang G,Jiang X M,Qin D Y,Li Q M,Zha X Q,Pan L H,Jin C S,Luo J P. 2020. Polygonatum cyrtonema hua polysaccharide promotes GLP-1 secretion from enteroendocrine L-cells through sweet taste receptor-mediated cAMP signaling[J]. Journal of Agricultural and Food Chemistry,68(25):6864-6872. doi:10.1021/acs.jafc.0c02058.

Xu H D,Qin Z H. 2019. Beclin 1,bcl-2 and autophagy[J]. Advances in Experimental Medicine and Biology,1206:109-126. doi:10.1007/978-981-15-0602-4_5.

Yarmolinsky D A,Zuker C S,Ryba N J P. 2009. Common sense about taste:From mammals to insects[J]. Cell,139(2):234-244. doi:10.1016/j.cell.2009.10.001.

Zhou Y F,Ren J,Song T X,Peng J,Wei H K. 2016. Methionine regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction process in C2C12 cells[J]. International Journal of Molecular Sciences,7(10):1684. doi:10.3390/ijms17101684.

(責任編輯 蘭宗寶)

收稿日期:2022-09-05

基金項目:國家自然科學基金項目(31702117);貴州省科學技術項目(黔科合基礎〔2020〕1Y135號,黔科合基礎〔2018〕1404號)

通訊作者:龔婷(1990-),https://orcid.org/0000-0003-3624-7972,博士,副教授,主要從事動物遺傳育種與繁殖研究工作,E-mail:tgong@gzu.edu.cn

第一作者:王涵(1998-),https://orcid.org/0000-0002-6848-8124,研究方向為動物遺傳育種與繁殖,E-mail:3021585823@qq.com

猜你喜歡
自噬谷氨酸
淫羊藿總黃酮對谷氨酸和咖啡因損傷PC12細胞的保護作用
基于正交設計的谷氨酸發酵條件優化
N-月桂?;劝彼猁}性能的pH依賴性
菌體蛋白水解液應用于谷氨酸發酵的研究
自噬調控腎臟衰老的分子機制及中藥的干預作用
自噬調控腎臟衰老的分子機制及中藥的干預作用
問:如何鑒定谷氨酸能神經元
自噬在糖尿病腎病發病機制中的作用
亞精胺誘導自噬在衰老相關疾病中的作用
氧自由基和谷氨酸在致熱原性發熱機制中的作用與退熱展望
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合