?

金屬表面減摩方法研究綜述

2023-11-06 07:48國增磊李敏王淑峰遲靜陳琳琳梁斌薛均賢杜中鵬郭智新
表面技術 2023年10期
關鍵詞:自潤滑織構梯度

國增磊,李敏,王淑峰,遲靜,陳琳琳,梁斌,薛均賢,杜中鵬,郭智新

金屬表面減摩方法研究綜述

國增磊,李敏*,王淑峰,遲靜,陳琳琳,梁斌,薛均賢,杜中鵬,郭智新

(山東科技大學 材料科學與工程學院,山東 青島 266590)

磨損失效是金屬材料主要的失效形式之一,因此減少材料表面磨損一直是金屬改性的研究重點?;谡持碚?、潤滑相結構、潤滑膜行為等不同角度,對如何提升金屬材料的減摩性能進行解讀,并根據理化性質的改變,綜述2類表面減摩方向:化學減摩、物理減摩?;瘜W減摩由自潤滑涂層展開,闡述自潤滑體系的分類,從粘著摩擦力探究潤滑膜的減摩機制。介紹外部直接添加與原位合成的減摩方法。舉例了4種自潤滑涂層的制備工藝:噴涂、氣相沉積、微弧氧化、高能束熔覆。物理減摩中的梯度納米和表面織構是當前的研究熱點。通過探究脆性摩擦層與應力應變的變化,研究梯度納米結構的變形機制,介紹了機械研磨、激光沖擊等制備技術。表面織構在不同摩擦狀態下,擁有儲油、集屑、流體動壓潤滑的功能,常見的制備方法有激光刻蝕、化學刻蝕等。最后對金屬表面減摩的未來發展進行展望:從多尺度追溯起源,完善摩擦理論;利用原位合成、微觀結構活動探究如何延長減摩時間;展開多元體系、工藝的優化,向經濟實用的方向發展。

化學減摩;物理減摩;自潤滑涂層;原位合成;梯度納米;表面織構;制備技術

隨著工業的高質量發展,尖端設備及工業產品的創新研發,金屬材料的研究應用得到不斷擴展。然而,在礦山、軌道、航天等高溫、高壓、重載工況下,各種零件損耗仍然十分嚴重,尤其是磨損失效,大大增加了能源消耗[1]。因此,提升金屬材料的摩擦性能,延長設備使用壽命,提高金屬原材料的利用率,是當前推進材料產業可持續發展的重要途徑。

從水平剪切強度的角度研究,減少摩擦副的接觸、降低水平剪切力是一個更為有效的方法。傳統的減摩方法是添加潤滑油,用油膜隔絕摩擦,但在高溫、高壓下,潤滑油因黏度變化,減摩效果會降低,并且由于運輸儲存、環保衛生等因素,使液體潤滑劑的應用發展受到影響[3]。通過鑄造、冶金燒結等工藝獲得減摩合金,如巴氏合金、鎢銅合金[4-5],以軟金屬的低剪切力可有效降低表面的摩擦系數,但軟金屬強度較低,且整體改性會改變零件原本的使用性能,增加成本。

結合摩擦發生的位置,大部分磨損失效是表面損傷行為,因此只強化表層是最經濟、最有效的改性手段。金屬表面強化包含表面涂敷(涂層制備)、表面改性(如熱處理強化),通過不同工藝,改變工件表面的理化性質,賦予其優良的減摩耐磨性及其他性能強化[6-7]。本文以理化性質為依據,從降低水平剪切強度的角度,將金屬表面強化中的減摩改性劃分為化學減摩、物理減摩,概述減摩方法、潤滑機理、研究進展、制備技術等,并對未來的發展方向進行總結和展望。

1 化學減摩

改變材料表面的化學性質,使表面獲得潤滑功能的減摩改性稱為化學減摩?;瘜W減摩根據是否外加其他元素或表面防護層,分為自身改性和非自身改性,現階段常見的減摩方法是非自身改性的自潤滑涂層,本部分主要闡述自潤滑涂層的直接添加法和原位合成法,并介紹其制備技術。

1.1 直接添加

直接添加法是在基材上直接添加固體潤滑相、金屬基粘結材料等組元來制備涂層的方法。這種方法不用通過新相再生,直接利用外部添加的潤滑相,使涂層獲得自潤滑功能[8]。其中固體潤滑相多為層狀結構,如圖1,MoS2晶體結構(2H型)中S原子層之間為范德華力結合,抗剪強度低,易滑動,類似有石墨、氟化物、聚四氟乙烯聚合物、納米氮化硼等[9],以及兼具石墨與金剛石結構的類金剛石薄膜DLC(Diamond-like carbon),摩擦過程中依靠高強度、石墨化以及元素摻雜來降低磨損量[10-11]。

除固體潤滑相外,與基材有良好潤濕性的合金材料也是體系中必要的組元。如Fe、Ni、Co基合金,加以降低熔點的B、Si等元素,可以有效提升體系的相容性,改善涂層宏觀成型[13]。為獲得綜合性能,金屬基粘結材料還可采用高熵合金和非晶合金等特殊材料。高熵合金是一種由5個或更多元素組成的多主元素合金,它的高熵效應、雞尾酒效應等結構和性能特征,使其在極端工況下仍能穩定潤滑抗磨[14]。以高熵合金為粘結基材的涂層,多與軟金屬Ag等結合,可發揮出寬溫域的減摩耐磨功效[15];或制備高熵合金薄膜,利用多元氧化物,在表面獲得連續潤滑膜[16]。與晶體材料相比,非晶合金是一種長程無序的凝聚態材料,急冷形成的非晶組織沒有晶粒晶界,因此應力缺陷也相對較少,能有效減少顆粒相的剝落,有優異的抗拉強度和耐磨性[17]。Ji等[18]利用放電等離子燒結,將Fe48Cr15Mo14Y2C15B6非晶態粉末與石墨結合,制備石墨增強非晶復合材料,在石墨潤滑膜的作用下,摩擦系數和磨損率都較低。在涂層體系中添加一些強化相,如金屬間化合物、石墨烯、稀土氧化物等[19-21],在微量添加控制成本的情況下,也可提升涂層的綜合性能。具體的金屬基自潤滑涂層體系如表1所示。

結合潤滑相的結構特點,自潤滑涂層的減摩機理為:潤滑相在表面摩擦時因剪切移動和化學反應形成潤滑膜,干摩擦轉為邊界摩擦,如圖1。根據Blau等[22]的平均法和李博雅等[3]對摩擦力計算的改進,忽略遠小于粘著的犁溝阻力,在存在部分潤滑膜時,粘著摩擦力的大小為:

式中:A為磨球與涂層表面的接觸面積;1為磨球與潤滑膜的接觸面積;1和分別為涂層和潤滑膜的剪切強度。假設向下的載荷均勻分布,摩擦系數為:

(2)

表1 金屬基固體潤滑涂層材料體系[3]

Tab.1 Material system of metal-based solid self-lubricating coatings[3]

圖2 自潤滑涂層潤滑機理

近年來,為改善潤滑相和表面潤滑膜的自潤滑能力,已有多種可直接添加的新型固體潤滑劑和涂層體系被開發研究:如對MoS2水解改性,可有效提升二硫化鉬復合涂層的耐蝕性和減摩性[23];Al2O3納米粒子在復合涂層中的高效減摩等皆在不斷被開發研究[24],通過粒徑細化與化學改性等方法,有效提升了傳統潤滑相的減摩特性。

1.2 原位合成

在制備自潤滑涂層時,除要求具有低摩擦系數外,與基體之間還應具備較好的物理相容性和界面結合力,以避免涂層脫落;同時為保證自潤滑的持續穩定,相較直接添加潤滑相,通過原位合成獲得的涂層潤滑性能更優。

原位合成的原理就是利用元素與元素或化合物之間的化學反應,生成新相[25]。應用在金屬涂層中可以使基體與涂層物質互相擴散、反應,界面呈冶金結合,且原位生成的新潤滑相與剩余的原潤滑相,產生協同效應,能夠更好地發揮其潤滑膜的減摩功效。原位合成的主要特征是[26]:一是新形成的潤滑相依附基體初生相形核長大,與基體相容性好,結合強度高;二是通過控制元素比例和工藝,可以調節新相的種類及區域分布,以減少偏析;三是避免直接加入潤滑相所帶來的加工缺陷以及成本問題。

原位合成起源于原位結晶和原位聚合,由原蘇聯Merxhanov等[27]用自蔓延法合成TiB2/Cu復合材料時提出,并作出總結,推進商業化。其中自蔓延高溫合成技術是指利用高放熱反應獲得的能量使反應以燃燒的方式自動蔓延,生成新物質。除自蔓延外,原位合成還分為水熱合成法、放熱彌散法、熔鑄法、反應熱壓法、機械合金化等[28-29]。Jin等[30]采用水熱合成法原位制備Mn3O4/石墨烯納米材料,并添加到鋰基潤滑脂中,油膜的承載能力和有效潤滑溫度都得到了提高。Liu等[31]將Ni、Al、WC、Fe混合粉末壓坯,通過熱爆法原位合成NiAl金屬間化合物,NiAl具有優異的高溫耐磨性和高硬度,Fe的存在減少了裂紋,表層Fe、Ni、Al氧化膜改善了NiAl復合材料的高溫自潤滑特性。

利用原位合成進行減摩改性,廣泛擴展了固體潤滑的應用。多元陶瓷、氧化物等潤滑相,通過原位合成,提高了其在涂層中的利用率;硬質增強相與潤滑相的原位內生,提高了減摩耐磨的協同強化;與涂層技術的結合,改善了膜基結合力和宏觀成型。未來為擴展納米潤滑劑等復合材料在涂層中的應用,還需對涂層體系中的原位反應和非平衡相變等展開更深入的理論實驗研究,并改進合成工藝。

1.3 制備技術

自潤滑涂層的組織性能除受成分和添加方法的影響外,還與制備技術有關。針對上述2種化學減摩方法的技術有:化學溶液沉積(電鍍、化學鍍)、噴涂、轉化膜(微弧氧化、溶膠-凝膠)、粉末冶金、氣相沉積、高能束熔覆等。

1.3.1 噴涂技術

噴涂分為熱噴涂和冷噴涂技術。熱噴涂是利用火焰或等離子體等熱源將材料噴出,升溫熔融,在基材表面形成涂層。Shi等[32]采用大氣等離子噴涂制備Ag-BaF2/CaF2共晶的AlCoCrFeNi高熵合金(HEA)基涂層,Ag和BaF2/CaF2潤滑相的存在,降低了高溫摩擦下的磨損量,比在室溫環境下更抗磨。冷噴涂是指粒子通過強烈的塑性變形,高速撞擊,噴涂到基體表面。與熱噴涂相比,無需高溫工作環境,是一種相對環保安全的技術。Chen等[33]在304不銹鋼表面通過低壓冷噴涂沉積鍍銅石墨-Al2O3涂層,當鍍銅石墨質量分數為20%時,摩擦系數最低為0.29,因Al2O3引起的塑性變形與Cu的潤濕性問題,會有微觀開裂,但相對基體,涂層強度較高,潤滑性能優良。然而,不論是熱噴涂還是冷噴涂,涂層結合強度低一直是一個難題,現已有研究[34]通過擴散-熔化的塊狀噴涂機制,或重熔處理,來減少缺陷,提高噴涂涂層的結合強度。

1.3.2 氣相沉積

氣相沉積技術是指將氣化粒子通過物理或化學的方法沉積在基體表面。物理氣相沉積主要有真空蒸發鍍膜、濺射鍍膜和離子鍍等,由離子鍍衍生的多弧離子鍍是指采用弧光放電將陰極靶材蒸發,高速打在基片表面,沉積鍍膜。陳吉會等[35]采用多弧離子鍍在銅套材料表面制備AlSn20減摩鍍層,多弧離子鍍沉積速率高,離化率高,膜層結合強度在鍍膜50 min時相對較好,為59 N(附著力劃痕試驗),摩擦系數為0.25,鍍膜時間再增加,電弧激發能量過高,氣化粒子會聚成大液滴,薄膜均勻性變差[36]?;瘜W氣相沉積是指氣態物質在界面發生反應沉積成膜,是規模制備二維材料的有效方法[37]。近年來,不斷發展的等離子體增強化學氣相沉積[38],是指反應氣體通過電場激發,形成高活性等離子體,加速反應發生,提高成膜速率。賈倩等[39]通過等離子體化學氣相沉積制備非氫含碳薄膜,采用化學溶液鍍膜法在磨球表面獲得納米金薄膜,在薄膜與磨球的摩擦反應中,金催化非晶碳向石墨烯轉變,摩擦系數低至0.008,為實現宏觀尺度的超滑(COF低于0.001)提供了新的方法。

1.3.3 微弧氧化

微弧氧化技術是指在陽極氧化的電化學極化基礎上,提高電壓使金屬表面發生氧化膜擊穿,產生微弧放電,金屬表面與電解質溶液反應,形成具有冶金結合的氧化物陶瓷膜,多應用于鈦、鎂、鋁及其合金[40]。脈沖電壓在材料表面電火花放電,通過化學反應生成潤滑顆粒,形成減摩層,溶液電鍍后處理進一步提高其致密性,進行復合強化。楊澤慧等[41]將鈦合金陽極置入Na2MoO4/Na2S磷酸鹽電解液中,進行微弧氧化,原位制備了MoS2/TiO2復合膜層,與直接在電解液中添加MoS2相比,原位制備MoS2的體系中,添加Na2S為30 g/L時的摩擦系數降低了19.3%,臨界載荷提高了2倍多,說明原位反應與微弧氧化的結合,有效改善了鈦合金涂層的膜基結合力,且隨功能性納米MoS2等新材料的加入,減少了表面孔隙,提高了其減摩、抗磨功效,延長了航空、海洋等復雜工況下設備的使用壽命[42]。

1.3.4 高能束熔覆

高能束熔覆是指利用等離子弧、電子束或激光等熱源,將粉末與基材表面同時熔化并快速凝固,制備涂層,與傳統堆焊、噴涂相比,涂層組織細小,成型質量好,自動化程度高[1],廣泛應用于礦山襯板、截齒、軸類等工件的修復和防護[43]。激光熔覆是指以激光束掃描粉末、基體,在保護氣中熔覆涂層,涂層組織均勻致密,涂層與基體呈現冶金結合。Yuan等[44]通過激光熔覆在高錳鋼表面制備了NiCr/TiC、NiCr/ TiC-Cu和NiCr/TiC-Cu-WS2涂層,在添加Cu+WS2的涂層中,TiC作為提高硬度的增強相,Cu與WS2、CrS組成復合潤滑膜,減小了磨球對材料表面的磨損,相對于其他涂層,激光熔覆涂層有更優異的減摩抗磨性能。等離子熔覆同樣是在氬氣保護下,同軸送粉,粉末進入熔池,凝固形成涂層,如圖3。與激光熔覆相比,等離子弧的弧柱直徑大,制備產品的尺寸精度略低,但弧柱穩定,對環境、工件要求低,多用于Fe、Co、Ni基的減摩耐磨涂層制備[1]。張夢月[45]采用等離子熔覆工藝在灰鑄鐵表面熔覆Ni60-h-BN/ MoS2復合涂層,在室溫及200 ℃時均表現出良好的減摩耐磨性能,涂層的抗沖蝕能力和強度皆優于灰鑄鐵基體。

圖3 等離子熔覆原理圖

在工業與科技發展的帶動下,金屬基的化學減摩改性方法推陳出新,在固體潤滑的研究及制備技術方面不斷發展成熟,并廣泛應用于交通、航天等領域,未來也更應轉向新型協同潤滑體系的開發及技術改進,在強韌性匹配等概念上繼續研究探索。

2 物理減摩

為適應多種工況需求,減摩體系不斷開發改進,但在強塑性協同,以及理化相容性、應力集中等問題上仍有待改善。因此,要從其他方向提升減摩性能,基于涂層問題的機理研究,在金屬材料表面不外加強化層,不改變化學組分,對基材表層進行改性,如相變強化(表面淬火)、形變強化等,即可避免物質不相容和膜基結合力差的問題。改變金屬材料表層微觀或宏觀的結構形貌,提高其減摩性能,這種表面改性稱之為物理減摩,本節主要介紹形變強化中的梯度納米和表面織構方法。

2.1 梯度納米結構

2.1.1 研究進展與減摩原理

在化學成分相同時,與粗晶材料相比,納米材料擁有更高的耐磨、耐蝕、抗疲勞性能[46]。但金屬材料納米化后,強度提高,結構穩定性反而變差。而有研究表明,對納米結構進行多尺度構建,納米材料的失穩失效可得到有效改進,這種多尺度的結構,在晶粒尺寸或層片厚度上呈現由納米到宏觀的尺度變化(mm、mm),稱為梯度納米結構[47]。從物理梯度分類有梯度納米晶粒結構、梯度納米孿晶結構、梯度納米層片結構、梯度納米柱狀結構;同時也存在化學梯度,包括相變梯度、固溶體梯度、成分梯度、混合梯度[47-48]。

21世紀初,梯度納米結構在表層機械納米化基礎上被引入,通過實驗研究,發現其獨特的抗疲勞特性和機械摩擦學性能[49-50]。在強度塑性協同上,梯度納米結構GNG(Gradient Nanograined)也明顯優于粗晶材料CG(Coarse Grained)和納米材料NG(Nanosized Grains),如圖4[51]。

圖4 3種結構的強度-塑性匹配[51]

2016年,陳翔等[52]首次通過實驗證明,梯度納米結構在高載荷長時間的摩擦下仍能保持穩定的低摩擦系數,在于其獨特的變形機制:從應力角度分析,表面摩擦損傷的實質原因為塑性變形產生的位錯累積與應變局部化,導致脆性摩擦層形成;而梯度納米結構在摩擦時應力向下傳遞,使底層發生晶界遷移,晶粒長大粗化,抑制表層應力集中和裂紋擴展,減緩表層粗糙化和分層[53];同時結構層產生一個梯度變化的彈性極限,適應不同載荷的塑性變形[2];梯度納米結構的制備由噴丸沖擊演化而來,沖擊產生的壓縮殘余應力[54],亦可抑制應變局部化,維持表層穩定性??偠灾?,梯度納米結構特殊的晶粒、位錯、應力應變等的梯度變化,減少了摩擦損傷的積累,提升了表層的穩定性。

2.1.2 梯度納米制備技術

梯度納米結構的加工方法主要分為2類:一是自身納米化,即表層塑性變形(表面機械處理),二是非自身納米化(物理化學沉積等)[47]。表面機械研磨(Surface Mechanical Attrition Treatment,SMAT)是一種沖擊工藝,在真空腔中,鋼球高速撞擊表面,產生強烈塑性變形,表層形成梯度納米,如圖5a。其細化晶粒機制為:沖擊變形以位錯滑移形式展現,產生位錯胞,并演化為亞晶界,切割晶粒[55]。王榮華等[56]以25 Khz的振動頻率對5052鋁合金進行機械研磨0.5~ 5 min,表層晶粒尺寸呈現梯度分布,硬度和拉伸性能較傳統軋制和連鑄連軋鋁合金都有所提升。SMAT技術制備速度快,但表面會產生凹坑,后續磨拋處理會損失一部分納米層。

表面機械碾磨(Surface Mechanical grinding Treat-ment,SMGT,圖5b)與機械研磨相比,表面需處理的凹坑變形小。采用半球向下碾壓,棒材相對旋轉,通過累積應變獲得梯度變形層。高鈺璧等[57]通過機械碾磨在Inconel 625鉻鎳鐵耐熱合金表層制備出800mm的梯度納米層,雖然表層因滑動摩擦發生晶粒粗化,磨損機制為粘著磨損、磨粒磨損和輕微氧化磨損,但顯微硬度從納米表層的6.95 GPa到粗晶層的2.77 GPa,得到梯度增強,使磨損量降低了70%,減摩抗磨性明顯提高。

圖5 SMAT和SMGT示意圖

隨著激光、超聲的發展,以機械塑性變形為基礎,由噴丸技術發展出激光沖擊、超聲滾壓等工藝[46,58]:激光沖擊是指利用激光誘導等離子體,向材料內部傳遞沖擊波,使表層產生塑性變形;電脈沖技術是指利用電流熱量和電塑性沖擊,使表層晶粒尺寸細化;超聲滾壓工藝是指將高頻振動與球刀碾磨相結合,進行表面塑性加工。這幾種技術較傳統機械變形,變形速度更快,得到的梯度納米層厚度更大,表面損傷也相對更小[59]。Ma等[60]通過激光沖擊在300M鋼表層制備梯度納米結構,表層晶粒細化,且出現形變孿晶等亞結構缺陷,隨著沖擊能量的增加,壓縮殘余應力和形變層深增加,出現部分非晶化,強度、塑性提高,但宏觀裂紋增多。Ji等[61]在Inconel 718高溫鎳基合金表面進行電脈沖和超聲耦合處理,制備450 um厚的梯度納米強化層,與原始合金相比,1 000 A電流處理的樣品磨損量和摩擦系數分別降低了32.5%和15.8%。這類技術沖擊能量大小對材料成型質量影響甚大,未來應加強能量輸出的調控,實現表層晶粒的可控性轉變。

累積軋制是指疊合軋制熱處理工藝,適用于大型板件的工業生產[62];扭轉、旋鍛是指在材料徑向進行變形,芯部到表面呈現梯度納米孿晶特征,多用于棒材、管材鍛造[63-64]。物理化學沉積是指通過控制不同深度的沉積參數和材料比例,獲得成分梯度或結構梯度。Li等[65]采用磁控濺射技術,通過Cu、Zr的交替沉積,獲得10~100 nm不同厚度層的梯度納米結構,該結構具有良好的機械協同響應,承受最大屈服力達到1.9 GPa。交替濺射沉積有效解決了復合材料在獲得梯度結構時的變形和不相容問題。

梯度納米結構在強韌性協同、抗疲勞等方面表現出的優良特性,為減摩改性提供了新的策略。在工業應用中,上海寶鋼已在冷軋輥表面成功制備梯度納米表層[47];在基礎理論中,變形機制的研究不斷深入,包括應變梯度和獨特的位錯結構[48]。但現階段仍有許多亟待解決的問題,例如在滑動次數達到上萬次后,結構失穩,摩擦系數急劇升高[53]。因此,如何由穩定組織結構設計梯度納米,并與原位內生的涂層技術相結合,擴展其在梯度減摩領域的研究應用,是未來發展的主要方向。

2.2 表面織構

金屬表面的物理減摩除結構改性外,還包括表面微觀、宏觀形貌的變化,代表方法是表面織構。表面織構是在材料表面加工出一定尺寸和形狀的形貌,改善表面潤滑特性、減少磨損的表面處理方法[66]。

2.2.1 研究進展與應用

從早期發動機缸套的交叉網紋結構[67],到1966年,Hamilton等[68]首次在密封軸表面蝕刻微坑,產生流體動壓潤滑,表面織構一直研究應用至今。應用范圍從自潤滑織構刀具、潤滑密封,到降噪減阻[69];結構設計從圓形凹坑排列,發展到多層復合織構[70]?,F階段下表面織構與自潤滑涂層的協同強化也正在展開:Li等[71]在Al2O3/TiC陶瓷表面制備鯊魚皮紋理與WS2協同潤滑涂層,摩擦系數較原表面降低了84%,鯊魚皮織構通過減少接觸面積和儲存WS2,保持了長時間的溫和磨損。激光熔覆與表面織構相結合,也可發展織構化減摩涂層(如圖6),底部紋理層和頂部封閉層保證了WS2等潤滑相的儲存和持續潤滑,較傳統非織構涂層,織構涂層的磨損體積降低了1/3,多層結構減少了固體潤滑相的損失,提升了自潤滑的穩定性[72]。

2.2.2 表面織構減摩機制

減摩機理:在載荷不變,理論干摩擦條件下,粗糙度越大,摩擦阻力越大。但實際多為混合摩擦機制。有研究[73]表明,當粘彈性材料表面存在一定取向的粗糙紋理時,會降低粘滯傾向。雖因接觸面積減少,接觸剛度降低,但粘滯趨向滑移會降低靜摩擦阻力,減少靜摩擦損傷。同時從空間儲存的角度,紋理織構的減摩機制在不同摩擦狀態下主要體現在以下幾個方面[74]:一是干摩擦下,減少實際接觸面積,收集磨屑,減少磨屑的二次磨損;二是邊界摩擦情況,潤滑劑、潤滑油的儲存,促進潤滑膜生成,進行二次潤滑;三是流體摩擦時,一些楔形織構會產生空化效應,呈現流體動壓潤滑狀態,承載力提高。

表面織構參數對摩擦性能也有一定影響:一是織構形貌,為改善聯軸器的減摩性能,耿春暉等[75]設計了矩形、梯形、圓弧形、三角形微溝槽,經測試分析,梯形與矩形微溝槽的油膜承載力和潤滑持續性相對較好。二是織構尺寸分布以及面密度等也會影響材料表面潤滑性能。何濤等[76]通過三維仿真建立不同形狀及排布的織構潤滑模型,相比不同形狀錯開排布,規則排布下的承載能力更強,隨面積率增加,摩擦系數減小,并趨于穩定。劉思思等[77]在鋁合金表面加工出正方形凹坑陣列,并噴涂石墨涂層,在油潤滑下,微凹坑邊長為80 μm、面密度為8.2%時,參數最優,摩擦系數較原表面降低了67.4%。但為避免承載力下降、加劇磨損,還應針對具體材料表面情況與應用,對上述織構的幾何參數進行合理優化。

2.2.3 制備技術

根據材料表層是否去除,表面織構的加工技術分為減材、增材制造[78]。減材制造有激光、離子束刻蝕、化學、電化學刻蝕等,增材制造有物理化學沉積、3D打印等。

激光刻蝕是指利用激光束熔化或升華表層部分材料,形成特定圖案的紋理結構[79]。激光刻蝕加工效率高、可控性好,污染小,廣泛應用于金屬、陶瓷,甚至薄膜材料的表面加工[80]。Huang等[81]利用飛秒激光器在鉛黃銅表面刻蝕十字凹槽,隨織構間距增大(如圖7),摩擦系數先增大后減小,在不同潤滑狀態(干摩擦、水、貧油、油潤滑)下,摩擦系數和磨損量皆有較大降幅,為含鉛黃銅零件的多種工況應用提供了紋理選擇的策略。但激光刻蝕也有一定局限性,加工有熱影響區,織構形狀受限于激光類型、能量大小,現階段已發展出等離子束,提高能量密度,或納秒代替飛秒激光,縮小熱影響區[78-79]。

圖6 激光織構與激光熔覆兩步法多層結構示意圖[72]

圖7 不同掃描間距樣品的三維形貌[81]

化學刻蝕是指通過掩膜覆蓋表面,用酸堿溶液腐蝕裸露部分,去除材料來獲得表面紋理織構,也可通過陽極氧化的方式制備,即熱浸漬或電化學。曹磊等[82]將45鋼浸入FeCl3與HCl混合刻蝕液,并涂覆MoS2薄膜,氧化還原反應下形成點蝕孔洞,MoS2儲存其中,經刻蝕的樣品有效潤滑時間延長,滑動3 h摩擦系數仍穩定在0.1,提高了45鋼的耐磨減摩性,且刻蝕與薄膜的結合更易于工業化應用?;瘜W刻蝕操作簡便、可重復性高,適用于大部分材料,但是形貌可控性不好,且溶液有污染和腐蝕危險,側蝕和尖銳棱角會降低疲勞強度[83-84]。為減少刻蝕產生的缺陷,可通過調整刻蝕液比例,延長鈍化保護,或刻蝕后拋光,去除側蝕部分[84]。通過淬火提高表面強度[85],或利用超聲或金屬催化劑輔助,提高刻蝕效率和方向可控性[86-87]。

為滿足使用要求,制備復合織構,各種技術不斷改進發展,參與織構制備,例如激光沖擊、納米壓印和光刻等高精度織構制備方法[83,88]。

隨著制備技術的不斷創新,表面織構在刀具、軸承等工件上的應用已逐漸成熟[89- 90],并且仿生織構與生物醫學的交叉結合[91]也在深入研究中,但在結構設計和大規模應用方面仍存在一些局限性:織構凹坑在重載下仍會被磨平失效,因此需與其他表面強化相結合,開發多元協同機制,延長織構使用壽命;在貧油狀態下,織構會加劇磨損,需加深結構設計,保證油膜的持續潤滑;利用仿生學,擴展織構在醫療、運動安全等領域的規?;?、智能化應用。

3 總結與展望

金屬表面磨損作為材料的常見失效形式,備受研究者關注,本文針對摩擦改性的2類減摩方法進行了總結。除上述2種減摩改性和技術外,國內外對減摩抗磨的研究應用不斷深入,從海洋環境到人造骨骼的應用,從化學改性到物理改性的交叉結合,以及納米級新型潤滑材料的合成等,但就目前的研究現狀來看,金屬表面的減摩強化仍存在許多問題,需要改進發展:

1)從摩擦起源到磨損機理,理論不斷修正,但依舊沒有揭示摩擦全貌,且在不同工況下的摩擦現象與理論摩擦有很大的差別。未來研究者們需建立不同工況下,從原子角度到宏觀性能的多尺度模型。例如從仿生摩擦、摩擦發電、超滑等新發現、新角度中探究摩擦現象的起源,并結合各種工作環境下的數據參數,找到最符合實際應用的減摩抗磨方法。

2)無論是自潤滑涂層還是梯度納米、織構等結構性減摩,在經歷長時間摩擦下,仍會產生損耗和失穩。研究者應通過維持組織結構的穩定和潤滑自生來探究如何減少自耗,協同減摩耐磨性能。例如在涂層內通過原位合成生成新潤滑相,或通過對晶界活動與應力應變的模擬計算,探究和突破持續潤滑與結構穩定的極限值。

3)現階段有關減摩方法的技術層出不窮,但大部分還無法實現規?;瘧?,且無法避免會產生一些表層成型缺陷。未來有關技術的發展方向應是多元化協同發展,開發多元潤滑體系和新制備工藝。例如熔覆與激光沖擊結合,自潤滑相協同機械變形,提高金屬表層的強韌性、承載力和成型質量,使材料的減摩改性,實現更經濟、有效的工業化應用。

[1] 李響, 來佑彬, 于錦, 等. 高能束熔覆制備耐磨涂層技術研究現狀與展望[J]. 表面技術, 2021, 50(2): 134-147, 159. LI Xiang, LAI You-bin, YU Jin, et al. Research Status and Prospect of Wear-Resistant Coating Prepared by High Power Density Beam Cladding[J]. Surface Technology, 2021, 50(2): 134-147, 159.

[2] CHEN Xiang, HAN Zhong, LU Ke. Friction and Wear Reduction in Copper with a Gradient Nano-Grained Sur-face Layer[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13829-13838.

[3] 李博雅, 曹志強. 金屬基固體自潤滑復合涂層及其制備技術研究進展[J]. 表面技術, 2017, 46(9): 32-38. LI Bo-ya, CAO Zhi-qiang. Metal-Based Solid Self-Lubri-cating Composite Coating and Its Preparation Techno-logy[J]. Surface Technology, 2017, 46(9): 32-38.

[4] XU Lei, SRINIVASAKANNAN C, ZHANG Li-bo, et al. Fabrication of Tungsten-Copper Alloys by Microwave Hot Pressing Sintering[J]. Journal of Alloys and Compounds, 2016, 658: 23-28.

[5] GAJMAL S S, RAUT D N. An Investigation on Wear Behaviour of ASTM B23 Tin-Based Babbitt Alloy Deve-loped through Microwave-Assisted Casting[J]. Internatio-nal Journal of Metalcasting, 2022, 16(4): 1995-2013.

[6] 江佩澤. 金屬材料表面強化技術應用現狀與展望[J]. 世界有色金屬, 2020(15): 130-131. JIANG Pei-ze. Application Status and Prospect of Metal Material Surface Strengthening Technology[J]. World Nonferrous Metals, 2020(15): 130-131.

[7] 王濱鹽. 表面改性技術的應用及發展動向[J]. 國外機車車輛工藝, 2021(1): 1-5, 10. WANG Bin-yan. Application and Development Trend of Surface Modification Technology[J]. Foreign Locomotive & Rolling Stock Technology, 2021(1): 1-5, 10.

[8] 朱正興, 候早, 劉秀波, 等. 激光制備自潤滑復合涂層及摩擦學性能研究進展[J]. 中國表面工程, 2021, 34(5): 117-130. ZHU Zheng-xing, HOU Zao, LIU Xiu-bo, et al. Research Progress of Self-Lubricating Composite Coatings Pre-pared by Laser and Their Tribological Properties[J]. China Surface Engineering, 2021, 34(5): 117-130.

[9] BAI C, WANG F, ZHAO Z, et al. Mussel-Inspired Facile Fabrication of Dense Hexagonal Boron Nitride Nanos-heet-Based Coatings for Anticorrosion and Antifriction Applications[J]. Materials Today Nano, 2021, 15: 100129.

[10] 石佳東, 韓翠紅, 劉倩, 等. 常用碳基固體潤滑薄膜的研究現狀與展望[J]. 表面技術, 2020, 49(8): 81-96, 137. SHI Jia-dong, HAN Cui-hong, LIU Qian, et al. Research Status and Prospect of Common Carbon-Based Solid Lubricating Films[J]. Surface Technology, 2020, 49(8): 81-96, 137.

[11] 張志龍, 劉竹波, 王永勝, 等. 高氮摻雜對類金剛石薄膜的結構和摩擦磨損性能的影響[J]. 熱加工工藝, 2021, 50(20): 91-95. ZHANG Zhi-long, LIU Zhu-bo, WANG Yong-sheng, et al. Effects of High Nitrogen Doping on Structure and Friction and Wear Properties of DLC Films[J]. Hot Wor-king Technology, 2021, 50(20): 91-95.

[12] YE Ming-xiao, WINSLOW D, ZHANG Dong-yan, et al. Recent Advancement on the Optical Properties of Two- Dimensional Molybdenum Disulfide (MoS2) Thin Films[J]. Photonics, 2015, 2(1): 288-307.

[13] 魏仕勇, 彭文屹, 陳斌, 等. 等離子弧粉末堆焊熔覆材料的研究現狀與進展[J]. 材料導報, 2020, 34(9): 9143- 9151. WEI Shi-yong, PENG Wen-yi, CHEN Bin, et al. Current Status and Progress of Cladding Materials for Plasma Arc Powder Surfacing[J]. Materials Reports, 2020, 34(9): 9143- 9151.

[14] 于源, 喬竹輝, 任海波, 等. 高熵合金摩擦磨損性能的研究進展[J]. 材料工程, 2022, 50(3): 1-17. YU Yuan, QIAO Zhu-hui, REN Hai-bo, et al. Research Progress in Tribological Properties of High Entropy Alloys[J]. Journal of Materials Engineering, 2022, 50(3): 1-17.

[15] VO T D, TIEU A K, WEXLER D, et al. Fabrication and Characterization of a Low-Cost Co-Free Al0.8CrFeNi2.2Eutectic High Entropy Alloy Based Solid Self-Lubricating Composite: Microstructure, Mechanical and Wear Pro-perties[J]. Journal of Alloys and Compounds, 2022, 928: 167087.

[16] FAN Jun, LIU Xue-song, PU Ji-bin, et al. Anti-Friction Mechanism of VAlTiCrMo High-Entropy Alloy Coatings through Tribo-Oxidation Inducing Layered Oxidic Sur-face[J]. Tribology International, 2022, 171: 107523.

[17] 梁工英, 黃俊達, 蘇俊義. 激光熔覆層中非晶組織對摩擦學的影響[J]. 中國激光, 2000, 27(10): 953-957. LIANG Gong-ying, HUANG Jun-da, SU Jun-yi. Effect of Amorphous Structure in the Laser Clad Zone on Tribo-logical Characteristics[J]. Chinese Journal of Lasers, 2000, 27(10): 953-957.

[18] JI Xiu-lin, ALAVI S, HARIMKAR S. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Me-tallic Glass/Graphite Composites[J]. Technologies, 2016, 4(3): 27.

[19] WANG Long, YANG Dong-sheng, CHEN Jiao, et al. High- Temperature Tribological Behaviors of in Situ-Formed TiAl-TiB2Composites in Low-Pressure Oxygen[J]. Tribo-logy Transactions, 2021, 64(5): 864-872.

[20] GORALKA C, BRIDGES J, JAHAN M, et al. Friction and Wear Reduction of Tungsten Carbide and Titanium Alloy Contacts via Graphene Nanolubricant[J]. Lubricants, 2022, 10(10): 272.

[21] 張雪輝, 周亮亮, 李曉閑, 等. Y2O3對W-4.9Ni-2.1Fe合金摩擦磨損行為的影響[J]. 材料工程, 2017, 45(11): 115-121. ZHANG Xue-hui, ZHOU Liang-liang, LI Xiao-xian, et al. Effect of Y2O3on Friction and Wear Behavior of W- 4.9Ni-2.1Fe Alloy[J]. Journal of Materials Engineering, 2017, 45(11): 115-121.

[22] BLAU P J, YUST C S. Microfriction Studies of Model Self-Lubricating Surfaces[J]. Surface and Coatings Tech-nology, 1993, 62(1-3): 380-387.

[23] LIU Yang, ZHANG Shi-hong, HE Yi, et al. APTES Modi-fication of Molybdenum Disulfide to Improve the Corro-sion Resistance of Waterborne Epoxy Coating [J]. Coa-tings, 2021, 11(2): 178.

[24] BHUTTA M, KHAN Z, GARLAND N. Wear PerformanceAnalysis of Ni–Al2O3Nanocomposite Coatings under Non-conventional Lubrication[J]. Materials, 2018, 12(1): 36.

[25] 成磊, 樊自拴, 劉丹丹. 鐵基耐磨減摩涂層的制備與發展趨勢[J]. 熱加工工藝, 2021, 50(14): 17-21. CHENG Lei, FAN Zi-shuan, LIU Dan-dan. Preparation and Development Trend of Iron-Based Wear-Resistant and Anti-Friction Coating[J]. Hot Working Technology, 2021, 50(14): 17-21.

[26] KUMAR H, RAMAKRISHNAN V, ALBERT S K, et al. Friction and Wear Behaviour of Ni-Cr-B Hardface Coating on 316LN Stainless Steel in Liquid Sodium at Elevated Temperature[J]. Journal of Nuclear Materials, 2017, 495: 431-437.

[27] MERZHANOV A G. History and Recent Developments in SHS[J]. Ceramics International, 1995, 21(5): 371-379.

[28] MOREIRA A B, RIBEIRO L M M, VIEIRA M F. Production of TiC-MMCS Reinforcements in Cast Ferrous Alloys Using in Situ Methods[J]. Materials, 2021, 14(17): 5072.

[29] 譚啟明, 隋楠. 顆粒增強鈦基復合材料的研究與進展[J]. 新材料產業, 2019(1): 59-64. TAN Qi-ming, SUI Nan. Research and Progress of Particle Reinforced Titanium Matrix Composites[J]. Advanced Materials Industry, 2019(1): 59-64.

[30] JIN Bao, ZHAO Jun, CHEN Guang-yan, et al. In Situ Synthesis of Mn3O4/Graphene Nanocomposite and Its Application as a Lubrication Additive at High Tempera-tures[J]. Applied Surface Science, 2021, 546: 149019.

[31] LIU Xin-ying, YUAN Jian-jun, LOU Shu-mei, et al. Effect of Fe on the High-Temperature Tribological Behavior of NiAl/WC-FexSelf-Lubricating Composites Produced by Thermal Explosion[J]. Materials Research Express, 2020, 7(7): 076516.

[32] SHI Pei-ying, YU Yuan, XIONG Ni-na, et al. Microstruc-ture and Tribological Behavior of a Novel Atmospheric Plasma Sprayed AlCoCrFeNi High Entropy Alloy Matrix Self-Lubricating Composite Coatings[J]. Tribology Inter-national, 2020, 151: 106470.

[33] CHEN Wen-yuan, YU Yuan, CHENG Jun, et al. Micros-tructure, Mechanical Properties and Dry Sliding Wear Behavior of Cu-Al2O3-Graphite Solid-Lubricating Coa-tings Deposited by Low-Pressure Cold Spraying[J]. Journal of Thermal Spray Technology, 2018, 27: 1652-1663.

[34] LI Chang-jiu, LUO Xiao-tao, DONG Xin-yuan, et al. Recent Research Advances in Plasma Spraying of Bulk-Like Dense Metal Coatings with Metallurgically Bonded Lamellae[J]. Journal of Thermal Spray Techno-logy, 2022, 31(1): 5-27.

[35] 陳吉會, 郭巧琴, 郭永春, 等. 多弧離子鍍AlSn20減摩鍍層組織與摩擦性能研究[J]. 西安工業大學學報, 2020, 40(4): 434-441. CHEN Ji-hui, GUO Qiao-qin, GUO Yong-chun, et al. Study on the Microstructure and Friction Properties of AlSn20 Anti-Friction Coating via Multi-Arc Ion Pla-ting[J]. Journal of Xi’an Technological University, 2020, 40(4): 434-441.

[36] 曲帥杰, 郭朝乾, 代明江, 等. 物理氣相沉積中等離子體參數表征的研究進展[J]. 表面技術, 2021, 50(10): 140-146, 185. QU Shuai-jie, GUO Chao-qian, DAI Ming-jiang, et al. Research Progress of Plasma Parameter Characterization in Physical Vapor Deposition[J]. Surface Technology, 2021, 50(10): 140-146, 185.

[37] HAN Wei, LIU Kai-lang, YANG San-jun, et al. Salt- Assisted Chemical Vapor Deposition of Two-Dimensional Materials[J]. Science China Chemistry, 2019, 62(10): 1300- 1311.

[38] ZHANG Chi, WU M, WANG Peng-chang, et al. Stability of SiNx Prepared by Plasma-Enhanced Chemical Vapor Deposition at Low Temperature[J]. Nanomaterials, 2021, 11(12): 3363.

[39] 賈倩, 張斌, 王凱, 等. 催化超滑: 金催化作用下非晶含氫碳薄膜的工程超滑[J]. 中國科學: 化學, 2021, 51(4): 468-475. JIA Qian, ZHANG Bin, WANG Kai, et al. Catalytic Superlubricity: Engineering Superlubricity Caused by the Catalytic Effect of Gold on Hydrogenated Amorphous Carbon Structure[J]. Scientia Sinica Chimica, 2021, 51(4): 468-475.

[40] 任麗梅, 高珊, 陳兆祥, 等. 自潤滑微弧氧化復合膜層研究進展[J]. 燕山大學學報, 2022, 46(2): 104-115. REN Li-mei, GAO Shan, CHEN Zhao-xiang, et al. Research Progress of Self-Lubricating Micro-Arc Oxida-tion Composite Films[J]. Journal of Yanshan University, 2022, 46(2): 104-115.

[41] 楊澤慧, 王楠, 陳永楠, 等. TC4合金表面微弧氧化原位生長自潤滑MoS2/TiO2膜層研究[J]. 稀有金屬材料與工程, 2020, 49(9): 3195-3202. YANG Ze-hui, WANG Nan, CHEN Yong-nan, et al. Study on Self-Lubricating MoS2/TiO2Coating Synthesi-zed on TC4 Surface by Micro-Arc Oxidation[J]. Rare Metal Materials and Engineering, 2020, 49(9): 3195- 3202.

[42] 馬圣林, 張蓬予, 朱新河, 等. 基于微弧氧化技術耐磨減摩涂層的研究進展[J]. 表面技術, 2020, 49(6): 104- 113. MA Sheng-lin, ZHANG Peng-yu, ZHU Xin-he, et al. Research Progress of Wear-Resistant Antifriction Coating Based on Micro-Arc Oxidation Technology[J]. Surface Technology, 2020, 49(6): 104-113.

[43] 王興濤, 孫金峰, 孟永強, 等. 等離子熔覆技術制備高熵合金涂層的研究進展[J]. 熱加工工藝, 2021, 50(24): 1-6. WANG Xing-tao, SUN Jin-feng, MENG Yong-qiang, et al. Research Progress of High Entropy Alloy Coating Prepared by Plasma Cladding Technology[J]. Hot Wor-king Technology, 2021, 50(24): 1-6.

[44] YUAN Jian-hui, YAO Yang-guang, ZHUANG Ming-xiang, et al. Effects of Cu and WS2Addition on Microstructural Evolution and Tribological Properties of Self-Lubricating Anti-Wear Coatings Prepared by Laser Cladding[J]. Tri-bo-logy International, 2021, 157: 106872.

[45] 張夢月. 等離子熔覆自潤滑耐磨復合涂層組織及摩擦學性能研究[D]. 哈爾濱: 哈爾濱工程大學, 2018. ZHANG Meng-yue. Study on Microstructure and Tribo-logical Properties of Plasma Cladding Self-lubricating Wear Resistant Composite Coatings[D]. Harbin: Harbin Engineering University, 2018.

[46] 肖旭東, 李勇, 喬丹, 等. 金屬材料表面自納米化技術研究進展[J]. 塑性工程學報, 2021, 28(10): 9-18. XIAO Xu-dong, LI Yong, QIAO Dan, et al. Research on Surface Self-Nanocrystallization of Metal Material[J]. Journal of Plasticity Engineering, 2021, 28(10): 9-18.

[47] 盧柯. 梯度納米結構材料[J]. 金屬學報, 2015, 51(1): 1-10. LU Ke. Gradient Nanostructured Materials[J]. Acta Me-tal-lur-gica Sinica, 2015, 51(1): 1-10.

[48] LI Xiao-yan, LU Lei, LI Jian-guo, et al. Mechanical Pro-perties and Deformation Mechanisms of Gradient Nanos-tructured Metals and Alloys[J]. Nature Reviews Materials, 2020, 5(9): 706-723.

[49] ROLAND T, RETRAINT D, LU K, et al. Fatigue Life Improvement through Surface Nanostructuring of Stain-less Steel by Means of Surface Mechanical Attrition Treat-ment[J]. Scripta Materialia, 2006, 54(11): 1949-1954.

[50] WANG P F, HAN Z, LU K. Enhanced Tribological Performance of a Gradient Nanostructured Interstitial- Free Steel[J]. Wear, 2018, 402-403: 100-108.

[51] LU K. Making Strong Nanomaterials Ductile with Gradients[J]. Science, 2014, 345(6203): 1455-1456.

[52] CHEN Xiang, HAN Zhong, LI Xiu-yan, et al. Lowering Coefficient of Friction in Cu Alloys with Stable Gradient Nanostructures[J]. Science Advances, 2016, 2(12): e1601942.

[53] CHEN X, HAN Z, LI X Y, et al. Friction of Stable Gradient Nano-Grained Metals[J]. Scripta Materialia, 2020, 185: 82-87.

[54] YANG Mu-xin, LI Run-guang, JIANG Ping, et al. Residual Stress Provides Significant Strengthening and Ductility in Gradient Structured Materials[J]. Materials Research Letters, 2019, 7(11): 433-438.

[55] 俞燕明, 饒錫新, 劉勇, 等. 有色金屬及合金表面機械研磨處理的研究進展[J]. 熱加工工藝, 2016, 45(6): 36-41. YU Yan-ming, RAO Xi-xin, LIU Yong, et al. Research Progress on Surface Mechanical Attrition Treatment of Non-Ferrous Metals and Alloys[J]. Hot Working Techno-logy, 2016, 45(6): 36-41.

[56] 王榮華, 劉振奇. 表面機械研磨對5052鋁合金表面納米化與性能的影響[J]. 鍛壓技術, 2022, 47(1): 209-215. WANG Rong-hua, LIU Zhen-qi. Influence of Surface Mechanical Attrition on Surface Nanocrystallization and Properties for 5052 Aluminum Alloy[J]. Forging & Stamping Technology, 2022, 47(1): 209-215.

[57] GAO Yu-bi, LI Xiu-yan, MA Yuan-jun, et al. 梯度納米結構Inconel 625合金的形成機理及磨損行為[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(6): 1910-1925.

[58] JOHN M, KALVALA P R, MISRA M, et al. Peening Techniques for Surface Modification: Processes, Proper-ties, and Applications[J]. Materials, 2021, 14(14): 3841.

[59] 徐圣航, 沈凱杰, 張惠斌, 等. 鈦及鈦合金表面自納米化行為研究進展[J]. 中國有色金屬學報, 2021, 31(11): 3141-3160. XU Sheng-hang, SHEN Kai-jie, ZHANG Hui-bin, et al. Research Progress in Self-Surface Nanocrystallization of Titanium and Titanium Alloys[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(11): 3141-3160.

[60] MA Yun-fei, XIONG Yi, CHEN Zheng-ge, et al. Micros-tructure Evolution and Properties of Gradient Nanostruc-tures Subjected to Laser Shock Processing in 300M Ultrahigh-Strength Steel[J]. Steel Research International, 2022, 93(2): 2100434.

[61] JI R, YANG Ze-lin, JIN Hui, et al. Surface Nanocrystalli-zation and Enhanced Surface Mechanical Properties of Nickel-Based Superalloy by Coupled Electric Pulse and Ultrasonic Treatment[J]. Surface & Coatings Technology, 2019, 375: 292-302.

[62] 李林艷, 歐玲, 范才河, 等. 累積疊軋技術研究進展[J]. 包裝學報, 2021, 13(4): 70-77. LI Lin-yan, OU Ling, FAN Cai-he, et al. Research Progress of Accumulative Roll Bonding[J]. Packaging Journal, 2021, 13(4): 70-77.

[63] WEI Yu-jie, LI Yong-qiang, ZHU Lian-chun, et al. Eva-ding the Strength–Ductility Trade-off Dilemma in Steel through Gradient Hierarchical Nanotwins[J]. Nature Communications, 2014, 5: 3580.

[64] MAO Qing-zhong, CHEN Xiang, LI Jian-sheng, et al. Nano-Gradient Materials Prepared by Rotary Swaging[J]. Nanomaterials, 2021, 11(9): 2223.

[65] LI Jian-jun, LU Wen-jun, GIBSON J, et al. Eliminating Deformation Incompatibility in Composites by Gradient Nanolayer Architectures[J]. Scientific Reports, 2018, 8: 16216.

[66] 黃云磊, 鐘林, 王國榮, 等. 表面織構潤滑減摩的國內外研究現狀及進展[J]. 表面技術, 2021, 50(12): 217-232. HUANG Yun-lei, ZHONG Lin, WANG Guo-rong, et al. Research Status and Progress of Surface Texture Lubri-cation and Friction Reduction[J]. Surface Technology, 2021, 50(12): 217-232.

[67] WILLIS E. Surface Finish in Relation to Cylinder Li-ners[J]. Wear, 1986, 109(1-4): 351-366.

[68] HAMILTON D B, WALOWIT J A, ALLEN C M. A Theory of Lubrication by Microirregularities[J]. Journal of Basic Engineering, 1966, 88(1): 177-185.

[69] HOU Zhen-hua, WANG Qi-gan, ZHANG Shi-qiang, et al. Structural Design and Parameter Optimization of Bionic Exhaust Tailpipe of Tractors[J]. Applied Sciences, 2022, 12(5): 2741.

[70] MENG F M, ZHANG W. Effects of Compound Groove Texture on Noise of Journal Bearing[J]. Journal of Tri-bology, 2018, 140(3): 031703.

[71] LI Xue-mu, DENG Jian-xin, YUE Hong-zhi, et al. Wear Performance of Electrohydrodynamically Atomized WS2Coatings Deposited on Biomimetic Shark-Skin Textured Surfaces[J]. Tribology International, 2019, 134: 240-251.

[72] YAN Hua, CHEN Zheng-fei, ZHAO Jian, et al. Enhan-cing Tribological Properties of WS2/NbC/Co-Based Self- Lubricating Coating via Laser Texturing and Laser Clad-ding Two-Step Process[J]. Journal of Materials Research and Technology, 2020, 9(5): 9907-9919.

[73] FUADI Z, ZAHOUANI H, TAKAGI T, et al. Effect of Roughness on Stiction[J]. IOP Conference Series: Mate-rials Science and Engineering, 2018, 352: 012009.

[74] ROSENKRANZ A, COSTA H L, BAYKARA M Z, et al. Synergetic Effects of Surface Texturing and Solid Lubricants to Tailor Friction and Wear-A Review[J]. Tribology International, 2021, 155: 106792.

[75] 耿春暉, 韓曉杰, 肖乾浩, 等. 微溝槽織構化三叉式萬向聯軸器的脂潤滑特性研究[J]. 煤礦機械, 2022, 43(4): 32-36. GENG Chun-hui, HAN Xiao-jie, XIAO Qian-hao, et al. Research on Grease Lubrication Characteristics of Micro- Groove Textured Tripod Universal Coupling[J]. Coal Mine Machinery, 2022, 43(4): 32-36.

[76] 何濤, 李金苗, 王傳禮, 等. 表面織構特征對其摩擦潤滑特性的影響[J]. 液壓與氣動, 2022, 46(1): 41-50. HE Tao, LI Jin-miao, WANG Chuan-li, et al. Effect of Surface Texture Characteristics on Friction and Lubrica-tion Properties[J]. Chinese Hydraulics & Pneumatics, 2022, 46(1): 41-50.

[77] 劉思思, 劉強, 劉金剛, 等. 表面微織構化石墨涂層對鋁合金表面的協同減摩機理研究[J]. 表面技術, 2019, 48(8): 29-38. LIU Si-si, LIU Qiang, LIU Jin-gang, et al. Synergistic Antifriction Mechanism of Surface Micro-Textured Gra-phite Coating on Aluminum Alloy Surface[J]. Surface Technology, 2019, 48(8): 29-38.

[78] CHEN Ke-yang, YANG Xue-feng, ZHANG Yi-feng, et al. Research Progress of Improving Surface Friction Pro-perties by Surface Texture Technology[J]. The Interna-tional Journal of Advanced Manufacturing Technology, 2021, 116(9): 2797-2821.

[79] MAO Bo, SIDDAIAH A, LIAO Yi-liang, et al. Laser Surface Texturing and Related Techniques for Enhancing Tribological Performance of Engineering Materials: A Review[J]. Journal of Manufacturing Processes, 2020, 53: 153-173.

[80] 鄭曉輝, 宋皓, 張慶, 等. 激光表面織構化對材料摩擦學性能影響的研究進展[J]. 材料導報, 2017, 31(17): 68-74. ZHENG Xiao-hui, SONG Hao, ZHANG Qing, et al. Effect of Laser Surface Texturing on Tribological Proper-ties of Materials: A Review[J]. Materials Review, 2017, 31(17): 68-74.

[81] HUANG Jun-yuan, GUAN Ying-chun, RAMAKRISHNA S. Tribological Behavior of Femtosecond Laser-Textured Leaded Brass[J]. Tribology International, 2021, 162: 107115.

[82] 曹磊, 萬勇, 高建國. 化學織構化45#鋼表面涂覆MoS2薄膜的摩擦學性能[J]. 表面技術, 2016, 45(10): 83-88. CAO Lei, WAN Yong, GAO Jian-guo. Tribological Per-formance of MoS2Film on Chemically Textured Surface of 45#Steel[J]. Surface Technology, 2016, 45(10): 83-88.

[83] VISHNOI M, KUMAR P, MURTAZA Q. Surface Texturing Techniques to Enhance Tribological Perfor-mance: A Review[J]. Surfaces and Interfaces, 2021, 27: 101463.

[84] 張希. 回轉體表面金屬微溝槽陣列的化學刻蝕加工[D]. 大連: 大連理工大學, 2021. ZHANG Xi. Research on Chemical Etching of Metal Microgroove Array on the Surface of Rotating Body[D]. Dalian: Dalian University of Technology, 2021.

[85] 諶理飛, 羅云蓉, 付磊, 等. 缺口件疲勞行為研究進展[J]. 鋼鐵釩鈦, 2021, 42(5): 197-204. CHEN Li-fei, LUO Yun-rong, FU Lei, et al. Research Progress of Notched Specimen Fatigue[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 197-204.

[86] 趙佳偉. 基于HF刻蝕法制備不銹鋼超疏水表面方法及超聲強化技術研究[D]. 東營: 中國石油大學(華東), 2020. ZHAO Jia-wei. Research on Preparation of Ultra-Hydro-phobic Surface of Stainless Steel Based on HF Etching and Ultrasonic Strengthening Technology[D]. Dongying: China University of Petroleum (Huadong), 2020.

[87] KIM T, BAE J H, KIM J, et al. Curved Structure of Si by Improving Etching Direction Controllability in Magne-tically Guided Metal-Assisted Chemical Etching[J]. Mi-cro-machines, 2020, 11(8): 744.

[88] 鐘兵, 邢志國, 王海斗, 等. 織構化表面摩擦學性能的研究進展[J]. 材料導報, 2020, 34(23): 23171-23178. ZHONG Bing, XING Zhi-guo, WANG Hai-dou, et al. Research Progress on the Tribological Properties of Tex-tured Surfaces[J]. Materials Reports, 2020, 34(23): 23171- 23178.

[89] 王琦, 龍偉民, 苗晉琦, 等. 盾構刀具硬質合金激光表面處理研究現狀[J]. 材料保護, 2021, 54(5): 131-137. WANG Qi, LONG Wei-min, MIAO Jin-qi, et al. Research Status of Laser Surface Treatment of Cemented Carbide for Shield Cutter[J]. Materials Protection, 2021, 54(5): 131-137.

[90] 董艇艦, 李建強, 楊帆, 等. 不對中徑向滑動軸承微凹槽織構數值分析[J]. 潤滑與密封, 2022, 47(7): 1-9. DONG Ting-jian, LI Jian-qiang, YANG Fan, et al. Nume-rical Analysis of Groove Texture for Misaligned Journal Bearing[J]. Lubrication Engineering, 2022, 47(7): 1-9.

[91] SU Ying-chao, LUO Cheng, ZHANG Zhi-hui, et al. Bioi-nspired Surface Functionalization of Metallic Bioma-terials[J]. Journal of the Mechanical Behavior of Biome-dical Materials, 2018, 77: 90-105.

Research Review on Surface Antifriction Methods of Metals

,*,,,,,,,

(School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590, China)

In rail transit, aerospace, mining and other industries, metals are the raw materials with serious loss, and wear failure is one of the main failure forms of metal materials. Therefore, reducing the surface wear of materials has always been the research focus in the field of metal modification. Based on various friction theories, the work aims to explain how to improve the antifriction of metal surface from different angles, such as adhesion theory, design characteristics of lubricating phase, behavior of lubricating films, changes of stress and roughness, etc. According to the change of physical and chemical properties, two common forms of surface antifriction were summarized: chemical antifriction and physical antifriction.

Chemical antifriction was expounded from self-lubricating coating. The classification of self-lubricating systems was detailed, such as compounds with layered structures like MoS2and Fe, Co, Ni metal-based composite systems. The antifriction mechanism of coating during the formation of lubricating film was studied from the angle of view of adhesive friction. Antifriction methods of direct addition and in-situ synthesis were introduced. The origin and development of in-situ reactions were explored, and synthesis technologies such as self-propagating high temperature synthesis were introduced. Four methods of preparing self-lubricating coatings were shown, and their research progress, advantages and disadvantages were also introduced: research results of cold spraying and thermal spraying, and improvement of bonding strength. Scholars prepared near- hypersynovial membrane by vapor deposition. In-situ reaction and nano-modification in micro-arc oxidation were introduced. The coating of high energy beam cladding had good molding quality and was widely used in engineering applications. Future development should be reflected in new lubricating systems and technical cooperation.

Gradient nanostructure and surface texture in physical antifriction are the current research hotspots. Compared with nanomaterials and coarse-grained materials, the gradient nanostructures have excellent mechanical properties and a combination of strength and toughness. The deformation mechanism of the gradient structure is studied by exploring the changes of brittle friction layer and stress-strain in the friction process. The main techniques for the preparation of gradient nanomaterials are self nanocrystallization and non-self nanocrystallization. The techniques of surface mechanical attrition treatment and laser shocking in self-nanocrystallization are introduced, and it is pointed out that the in-situ endogenous and gradient nanostructure should be combined to stabilize the organization structure in the future. Surface texture reduces friction by different texture structures. In different frictional states, it has the functions of oil storage, abrasive dust collection and hydrodynamic lubrication. Different texture shape parameters also have certain effect on the antifriction. The commonly used preparation methods are laser etching, chemical milling, etc. The intelligent texture system of surface texture should be developed by bionics, so as to expand its applications in sports training and other fields.

The theoretical research, stability and application of technology are reviewed. The future development direction of metal surface antifriction is pointed out: tracing the origin of friction from multiple scales and perfecting the theories, exploring how to prolong the antifriction time by in-situ synthesis and microstructure activities, expanding the optimization of multicomponent systems and processes, and making the metal antifriction develop in the direction of economy and practicality.

chemical antifriction; physical antifriction; self-lubricating coating; in-situ synthesis; gradient nanostructure; surface texture; preparation techniques

2022-08-20;

2023-01-09

TG174.4

A

1001-3660(2023)10-0020-12

10.16490/j.cnki.issn.1001-3660.2023.10.002

2022-08-20;

2023-01-09

山東省自然科學基金資助項目(ZR2014EMM009);山東科技大學橫向技術開發項目(20210638)

Supported by Natural Science Foundation of Shandong Province (ZR2014EMM009); Horizontal Technology Development Project of Shandong University of Science and Technology (20210638)

國增磊, 李敏, 王淑峰, 等. 金屬表面減摩方法研究綜述[J]. 表面技術, 2023, 52(10): 20-31.

GUO Zeng-lei, LI Min, WANG Shu-feng, et al. Research Review on Surface Antifriction Methods of Metals[J]. Surface Technology, 2023, 52(10): 20-31.

通信作者(Corresponding author)

責任編輯:馬夢遙

猜你喜歡
自潤滑織構梯度
冷軋壓下率對3104鋁合金織構演變的影響
一個改進的WYL型三項共軛梯度法
石墨/Ti(C,N)基金屬陶瓷梯度自潤滑復合材料殘余應力的有限元模擬
高頻輕載自潤滑關節軸承加速壽命試驗方法
Al2O3-Ag@Ni-Mo自潤滑材料寬溫域多循環摩擦學性能研究
一種自適應Dai-Liao共軛梯度法
一類扭積形式的梯度近Ricci孤立子
研磨拋光表面微孔織構的形成
織構布置位置對滑動軸承承載力的影響分析
金屬自潤滑技術節能環保延壽命
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合