?

熒光探針在涂層中的應用及機理研究進展

2023-11-06 07:35杜娟魏士鈞石玉超劉禮平汪鴻宇宋海鵬
表面技術 2023年10期
關鍵詞:熱障防偽機理

杜娟,魏士鈞,石玉超,劉禮平,汪鴻宇,宋海鵬*

熒光探針在涂層中的應用及機理研究進展

杜娟1,魏士鈞1,石玉超2,劉禮平1,汪鴻宇1,宋海鵬1*

(1.中國民航大學,天津 300300;2.北京機械設備研究所,北京 100854)

隨著現代科技的發展,對涂層性能提出了越來越高的要求,其應用環境也越來越苛刻,如腐蝕、高溫和特殊識別等環境。在涂層中引入熒光探針是解決上述問題的重要途徑。概括了熒光探針在涂層中的研究進展,并重點介紹了熒光探針在防腐涂層、熱障涂層和防偽加密涂層中的應用和機理。將熒光探針用于防腐涂層,可賦予涂層特殊功能,可針對腐蝕起到自預警作用,重點介紹了pH響應型熒光探針、腐蝕離子響應型熒光探針、機械觸發響應型熒光探針等在防腐涂層領域的作用機理;將熒光探針用于熱障涂層,主要用于監測和分析高溫環境,在紫外/可見光源激發下,通過測量磷光層發出的與溫度相關的磷光信號來監測熱障涂層的溫度;將熒光探針用于防偽加密涂層,使得防偽加密涂層在特定條件下可以響應并發出熒光,可用于信息的加密存儲、貴重物品的防偽識別等。重點介紹了熱敏變色防偽涂層、光敏變色防偽涂層、濕敏變色防偽涂層、壓敏變色防偽涂層的機理。指出了目前基于熒光探針的涂層仍存在的問題,并對未來的發展方向進行了展望。

熒光探針;涂層;機理;腐蝕;自預警

熒光探針[1-3]一般由3個部分構成:具有識別作用的識別基團;具有信息傳遞作用的熒光基團;具有連接以上兩者作用的連接基團。當被測物與熒光分子接觸后,其光學物理性質會發生改變,通過連接基團把信息傳遞給熒光基團,熒光基團獲得響應,使得熒光信號發生變化[4-5]。將熒光探針負載到涂層中,可賦予涂層特殊的熒光響應性能,它在金屬腐蝕、金屬高溫監測和防偽加密等領域均有廣泛應用。在金屬腐蝕預警領域,美國腐蝕工程協會的研究結果表明:金屬腐蝕在全球范圍內每年造成的直接經濟損失高達2.2萬億美元[6]。雖然金屬腐蝕的發生無法避免,但可以做到早期的金屬腐蝕預警和金屬防護工作?;诮饘俚母g機理,將熒光探針負載到涂層中可用于金屬防腐,達到腐蝕自預警的目的[7]。在金屬高溫監測領域,隨著航空發動機的不斷發展,航空發動機的進氣溫度不斷提高,其渦輪進口溫度達到1 400 K,葉片的表面溫度遠遠高于基底合金材料的極限溫度。航空發動機的高溫檢測方法大多采用熱電偶、示溫片、鉑電阻等方式[8],存在價格高昂、對高轉速運轉葉片測溫困難、受環境影響大、無法多次使用、不能長期在高溫條件下服役等弊端。熱障涂層(The Thermal Barrier Coating,TBC)技術作為先進航空發動機和地面燃氣輪機的關鍵技術,由隔熱性能優良的陶瓷層和起緩沖作用的金屬黏結層構成,避免高溫燃氣與高溫合金基體直接接觸,并以稀土元素為熒光探針,測量合金基體的溫度,降低和監控高溫合金的工作溫度,對基體形成有效保護,達到延長發動機工作壽命、提高熱機效率的目的。在防偽加密領域,利用熒光物質對溫度的多種響應模式進行溫度測量,對遠程測溫技術的發展意義重大。在大數據時代背景下,國家、企業之間的競爭日益多元化,信息的防偽加密顯得愈加重要。特別是最近十幾年來,學者們研究了標記、等離子體標簽[9]、磁性標簽[10]、全息圖[11]、熒光[12]等技術,并用于防偽和加密領域。其中,熒光信息防偽加密技術具有可見性高、顏色種類多、通量高和設計成本低等諸多優勢。將基于碳點、半導體點、金屬有機框架、稀土元素和有機染料的熒光探針用于制備防偽加密涂層,使得涂層在特定條件下做出響應,并發出熒光,從而賦予涂層熒光防偽能力,在貴重物品的防偽識別、加密領域具有重要作用。綜上可知,將熒光探針應用于涂層領域,可實現涂層的自預警、測溫和防偽加密等功能,具有十分重要的研究和應用價值[13-15]。

自然界中具有熒光效應的放射性元素是熒光探針的前身,1916年意大利軍火商沛納海根據軍方要求,制造了一種以鐳為基礎的發光材質,用作儀器和表盤上的夜光涂劑,命名為“RADIOMIR”,成為世界上最早的熒光涂層[16]。經過數十年的發展,各國學者對熒光物質進行了深入研究,設計并制備出更多功能強大、性能優異的熒光物質,使得熒光探針的應用更加多元化[17-19]。除了傳統的熒光物質外,還開發了多響應、多受體的熒光探針,多種受體得以可視化[20-22]。在金屬腐蝕領域,Dujols等[23]在1997年設計并合成了羅丹明衍生物的熒光探針,該熒光探針具有特異性識別并螯合Fe3+發出熒光的特性,對鋼材具有早期腐蝕預警效果。Li等[24]以苯氟酮(PF)為熒光探針,制備了一種用于監測鋁合金腐蝕的丙烯酸熒光傳感涂層,實驗結果表明腐蝕區域在光學顯微鏡和掃描電子顯微鏡下均可被觀測。Fan等[25]合成了基于羅丹明B的鋁離子熒光探針,并以MOF為納米容器,可自動檢測和區分環氧涂層下基材鋁的損傷和腐蝕。2009年,吳松林等[26]將8-羥基喹啉(8-HQ)作為熒光探針,并將其混入環氧涂層,涂敷在LY12鋁合金表面,實驗結果證明,8-HQ與鋁離子(Al3+)發生螯合反應后會發出綠色熒光,表明該熒光監測方法在預測鋁合金早期腐蝕方面具有明顯效果。Wang等[27]將羅丹明衍生物(RHS)作為熒光探針,并以金屬有機骨架(ZIF-8)為納米容器,將其混入環氧樹脂中,在白銅表面制備防腐涂層。實驗結果表明,該熒光探針可在腐蝕微區與銅離子發生反應,發出玫瑰紅色熒光,能起到腐蝕預警作用。熒光探針在金屬高溫監測領域也得到了廣泛應用,在20世紀末,Amano等[28]和Choy等[29]提出,可通過添加少量稀土元素來改變熱障涂層的組成,使得熱障涂層具有磷光性質,這種帶有磷光性質的熱障涂層被稱為“熱障傳感涂層”(Sensor TBC)。Zhao等[30]以銪離子(Eu3+)為熒光探針,并混入釔穩定二氧化鋯(YSZ)熱障涂層,制成了熒光熱障涂層YSZ:Eu。結果表明,Eu3+的熒光特性可用于高溫合金的非接觸測量。熒光探針在防偽加密領域的信息加密存儲、防偽識別等方面也具有巨大作用。郭凌華等[31]將稀土銪配合物Eu(L)3作為熒光探針,并混入改性油墨,制成防偽涂層。結果表明,該防偽涂層在紫外線照射下會發出紅色熒光。張為等[32]以稀土元素鋱(Tb)為熒光探針,并混入甲基丙烯酸正丁酯制成防偽涂層。結果表明,該防偽涂層在日光下無色,在紅外線照射下會發出綠色熒光。雖然已有較多的熒光探針應用研究報道,但系統綜述熒光探針應用于涂層的研究仍較少。這里以國內外相關文獻為參考,歸納總結了熒光探針在涂層中的應用、機理等方面的研究進展(如圖1所示),并提出有待進一步研究的問題,還對未來的發展趨勢進行了展望。

1 熒光探針在涂層中的應用

1.1 防腐涂層

將熒光探針應用于防腐涂層,可賦予涂層特殊功能,針對腐蝕具有預警作用。加入熒光探針的防腐涂層可對pH、金屬離子等作出選擇性響應,響應發生時產生的顏色或熒光變化能夠在金屬基底嚴重損壞前發出警示。

在金屬表面涂層中引入對pH或金屬離子敏感的熒光傳感器,以預測金屬的早期腐蝕。Exbrayat等[33]以羅丹明B衍生物為熒光探針,并嵌入介孔二氧化硅納米膠囊,再將其溶于聚乙烯醇縮丁醛(PVB)中,制成了熒光探針/聚合物復合涂層,并以304不銹鋼為基底進行測試,結果如圖2所示。鐵離子(Fe3+)通過多孔的二氧化硅膠囊外殼擴散進入核心,并與羅丹明B衍生物發生螯合反應,從而發出亮黃色熒光,可以起到腐蝕預警作用,進而快速預測不銹鋼的早期腐蝕。

Su等[34]利用4-(1,2,2-三苯基乙烯基)苯甲醛(TBA)和1H-吲唑-3-胺(DA)進行堿縮合反應,合成了一種聚集誘導發光物質(TPM)的熒光探針,將此熒光探針混入環氧樹脂后,制備出TPM質量分數為0.5%的環氧涂層,并以Q235鋼為基底進行了測試。結果表明,該涂層在酸性環境中存在顯著的熒光“開啟”現象,該涂層在日光和紫外線燈照射下的照片如圖3所示。

Lv等[35]將羅丹明B?;拢≧BA)作為熒光探針,將其負載到層狀雙氫氧化物(LDHs)中,在碳鋼表面制備了RBA/LDHs/環氧涂層。結果表明,與將RBA直接添加到涂層中相比,將其負載到LDHS中所制備的涂層具有更好的熒光預警效果,對比結果如圖4所示。

Augustyniak等[36]以羅丹明基衍生物(FD1)為熒光探針,將其混入環氧涂層中,并以1052鋁合金為基體進行了測試。如圖5所示,當腐蝕發生時,腐蝕區域在紫外線照射下會發出亮黃色熒光,在自然光下呈淡紅色。

1.2 熱障涂層

熱障涂層能在很大程度上拓展了高溫合金的溫度使用范圍。將熒光探針用于熱障涂層,主要用于監測和分析高溫環境。該技術通過測量與溫度相關的熒光信號特征,例如光譜特征、強度和壽命,來測量溫度[37-38]。

圖1 熒光探針在涂層中的應用及機理

圖2 涂有熒光探針/聚合物復合涂層的304不銹鋼基底上的腐蝕部位熒光檢測照片[33]

Feist等[39]將稀土摻雜離子Eu(銪)作為熒光探針,混入釔穩定二氧化鋯(YSZ)熱障涂層,制備了YSZ:Eu熱障傳感涂層,如圖6所示。將YSZ:Eu熒光強度與800 ℃黑體輻射強度進行對比發現,YSZ:Eu的最低熒光強度仍高于800 ℃黑體輻射的強度。說明在高溫狀態下,熒光信號仍可被檢測,證明可利用YSZ:Eu的熱致發光性測量溫度。Yu等[40]將稀土摻雜離子鏑(Dy)作為熒光探針,混入釔鋁石榴石(YAG)熱障涂層,制備了YAG:Dy熱障傳感涂層。結果表明,YAG:Dy熱障傳感涂層可監測的溫度區間為300~1 300 K。如圖7所示,實線和虛線分別為燃燒前后熱障傳感涂層熒光發射率隨溫度的變化曲線,表明在燃燒的低氧環境中,YAG:Dy熱障傳感涂層的溫度發射光譜基本不受氧猝滅的影響。

圖3 Q235不銹鋼表面摻雜質量分數0.5%TPM的環氧涂層在質量分數3.5%的氯化鈉中浸泡不同時間的圖片[34]

圖4 RBA/LDHs/環氧涂層和RBA/環氧涂層的腐蝕檢測性能熒光顯微和普通光學照片[35]

圖5 1052鋁合金暴露于質量分數3.5%的氯化鈉溶液中的圖片[36]

楊麗霞[41]以Eu和Dy為熒光探針,將其分別摻雜到YSZ熱障涂層中,并對其熒光性能進行比較,其熒光光學照片如圖8所示。其中,YSZ:Eu熒光層為紅色發射光,而YSZ:Dy熒光層為橙黃色發射光。結果表明,YSZ:Eu可以測量的溫度范圍為400~800 ℃;YSZ:Dy可以測量的溫度范圍為500~900 ℃,兩者均表現出良好的溫度敏感性,且YSZ:Dy的測溫上限高于YSZ:Eu。

圖6 在591 nm的背景波長觀測下熒光信號的強度與800 ℃溫度下的黑體輻射強度的對比[39]

圖7 燃燒前后YAG:Dy熱障傳感涂層熒光發射率隨溫度的變化[40]

Skinner等[42]將Dy作為稀土摻雜離子,混入YSZ/YAG復合熱障涂層,制備了YSZ/YAG:Dy復合熱障熒光涂層。實驗結果表明,該種新型復合熱障熒光涂層的溫度測量上限為1 423 K,高于使用單一材料的熱障涂層(在同一測試條件下,YSZ:Dy熱障涂層的溫度測量上限為1 273 K)。證明該涂層的高溫測量能力比使用單一材料的效果更好。在性能方面,壽命衰減曲線表明YSZ/YAG:Dy復合熱障熒光涂層的性能優于單一材料的YSZ:Dy熱障涂層。Kissel等[43]以Eu3+為稀土摻雜離子,分別混入YAG和鋁酸釔(YAP)熱障涂層,制備了YAG:Eu和YAP:Eu熱障熒光涂層。結果表明,YAG:Eu和YAP:Eu的溫度敏感范圍分別為1 000~1 470 K、850~1 300 K,用于對比的熱障熒光涂層Y2O3:Eu的溫度敏感范圍為770~ 1 470 K,且YAG:Eu和YAP:Eu對氧濃度的敏感性更低。說明這2種涂層比Y2O3:Eu更適合在發動機燃燒的低氧環境中使用。

圖8 熒光熱障涂層橫截面的熒光光學圖[41]

1.3 防偽加密涂層

將熒光探針與樹脂黏合劑、助劑等結合在一起,得到防偽加密涂層,使得防偽加密涂層在特定條件下會作出響應,發出熒光。由此可見,防偽加密涂層可用于信息的加密存儲、貴重物品的防偽識別等方面,并展現出巨大的應用前景[44]。

魏俊青等[45]以銪離子(Eu3+)為中心,以苯甲酰丙酮(BZA)、鄰菲咯啉(Phen)為配體,在無水乙醇中合成了熒光探針Eu(BZA)3Phen,并將其混入TN243樹脂油,制備了防偽熒光涂層。實驗結果表明,該涂層在可見光下為無色,在紫外燈下呈紅色,可用于防偽包裝印刷。Zhai等[46]以高熒光的摻雜碳量子點(CQDs)為熒光探針,制備了水溶性防偽熒光涂層。結果表明,CQDs在可見光下為無色,在紫外燈下會發出青色熒光,結果如圖9所示。

圖9 以CQDs溶液書寫的漢字“光”在日光(a)和365 nm紫外線下(b)的數碼照片[46]

Talebnia等[47]以香豆素為熒光探針,將其混入醇酸聚酯樹脂,制備了防偽熒光涂層,結果如圖10所示。在日光下涂層呈黃色,在紫外燈照射下涂層發出亮綠色熒光。Liang等[48]以高水溶性LuVO4:Eu納米顆粒為熒光探針,并以水為溶劑,制備了熒光油墨。結果表明,該熒光油墨在紫外燈下呈紅色,滿足防偽要求。Zhang等[49]以氟碳量子點(F-CDs)為熒光探針,設計并合成了聚氟烷基側鏈(F-WPU)水性聚氨酯,將F-CDs和F-WPU混入明膠中制成防偽熒光涂層,并在滌綸樹脂(PET)上進行印刷實驗,結果如圖11所示。該防偽熒光涂層在紫外燈下會發出藍色熒光,且經多次熒光涂層牢固程度實驗后,其熒光強度基本不變。

圖10 熒光涂層在日光(a)和365 nm紫外光下(b)的顯色圖像[47]

綜上所述,對熒光探針在防腐涂層、熱障涂層和防偽加密涂層這3個領域的實際應用進行了總結和歸納,如表1所示。

圖11 PET薄膜上印刷圖案的牢固度測試圖像[49]

表1 熒光探針在3種類型涂層中的應用總結

Tab.1 Summary for use of fluorescent probes in three types of coatings

2 熒光探針用于涂層的機理

2.1 防腐涂層

在發生腐蝕時伴隨著防腐涂層內部物質結構或環境的變化,從防腐機理的角度出發,將防腐涂層的熒光探針分為3種:pH響應型熒光探針、腐蝕離子響應型熒光探針、機械觸發響應型熒光探針[50-52]。下面分別介紹這3種熒光探針在涂層中的作用機理。

2.1.1 pH響應型熒光探針

pH響應型熒光探針的機理:主要采用對pH變化敏感的物質,如酚酞(phph)、香豆素等物質,與腐蝕微區陰極產生的氫離子或氫氧根離子發生作用,并發出熒光,從而對金屬材料的早期腐蝕作出預警。

Galv?o等[53]以二氧化硅為納米容器負載酚酞作為熒光探針,將該熒光探針混入丙烯酸聚氨酯,制備熒光涂層,并以2024鋁合金為基底,該熒光響應機理如圖12所示。結果表明,金屬腐蝕產生的氫氧根陰離子會進入二氧化硅納米容器中,并與酚酞發生顯色反應,其顏色從無色變為粉紅色,從而具有早期腐蝕預警功能。

Maia等[54]將pH指示劑酚酞封裝在二氧化硅納米容器中作為熒光探針,將該熒光探針混入環氧樹脂,制備出熒光涂層,并以鋁和鎂合金作為金屬基底進行水浸泡實驗,其熒光響應機理如圖13所示。在涂層表面劃痕處,氧氣與水發生了還原反應,并生成了氫氧根陰離子,在缺陷處形成了堿性環境,隨后氫氧根陰離子與固定在二氧化硅納米容器中的酚酞發生反應,其缺陷處從無色變成粉紅色。

圖12 SiNC-PhPh熒光探針在AA2024鋁合金基體上的響應機理[53]

Wang等[55]以酚酞和香豆素為熒光物質,將其分別負載于具有“核–殼”結構的微球中,然后將微球混入丙烯酸樹脂涂層中,并以碳鋼為基底進行實驗,其熒光響應機理如圖14所示。在未發生腐蝕時,微球的羥基基團和羰基基團被氫鍵吸引,使得熒光指示劑不會泄漏。在堿性條件下,羥基基團中的H被OH?剝奪,在靜電排斥作用下,微球中的微孔變大,酚酞或香豆素被釋放。結果表明,香豆素在pH>9時會發出亮綠色熒光,酚酞與香豆素均可作為熒光探針用于丙烯酸涂層的早期腐蝕檢測。Sousa等[56]將顏色指示劑(即溴甲酚綠、甲酚紅和酚酞)分別負載于殼聚糖中作為熒光探針,并以AA2024為基底進行早期腐蝕預警實驗。利用殼聚糖外殼只在低pH下溶解的性質,使熒光探針負載的指示劑在酸性腐蝕條件下得到釋放。結果表明,溴甲酚綠和甲酚紅的顏色在腐蝕微區分別發生了從紅到紫和從藍到綠的變化,而酚酞的顏色在腐蝕微區未發生變化。

圖13 酚酞熒光指示劑響應機理[54]

圖14 pH響應微球指示劑釋放機理[55]

可直觀地從pH響應型熒光探針的顏色變化情況預測腐蝕的發生,但也會受限于pH敏感型物質(如酚酞等)的pH響應區間,因此對于不同種類的pH響應型熒光探針,需要根據pH對應的不同顯色范圍應用于不同環境。

2.1.2 腐蝕離子響應型熒光探針

腐蝕離子響應型熒光探針的機理主要是熒光探針與腐蝕微區陽極產生的金屬離子(如Fe2+、Fe3+、Al3+等)發生作用并產生熒光,從而預測金屬的早期腐蝕。

高立新等[57]以喹啉-2-甲醛為熒光探針,以AA5052鋁合金為基體,制備了自預警涂層。當腐蝕發生時,喹啉-2-甲醛與Al3+在腐蝕微區處會形成螯合物,從而發出綠色熒光。Zhang等[58]以羅丹明基化合物(RB1)為熒光探針,以耐高溫鋼為基底,并在質量分數3%的NaCl溶液中進行腐蝕實驗。當腐蝕發生時,RB1會與Fe3+發生螯合反應,并發出紅色熒光。孟宇等[59]將羅丹明B與水合肼反應,制備了羅丹明酰肼(RHBH)熒光探針,并以酸性介質中的20鋼為基底進行實驗。結果表明,RHBH在酸性介質中不會發出熒光,而當腐蝕發生,產生了Fe3+后,RHBH會與Fe3+發生反應,并出現熒光效應。Mohammadloo等[60]以8-羥基喹啉(8-HQ)為熒光探針,并負載于脲醛基微膠囊,用亞麻籽油進行填充,混入環氧樹脂,制成熒光涂層,以鋼為基底進行實驗。結果表明,將8-羥基喹啉作為熒光指示劑,可與Fe2+反應,發出淡藍色熒光,從而起到熒光預警效果。

Liu等[61]將1,10-菲咯啉(Phen)作為熒光探針嵌入聚合物骨架(PTMG)中,并混入聚氨酯涂層制備了熒光涂層,以不銹鋼為基底進行實驗,其作用機理如圖15所示。在未發生腐蝕時,PTMG骨架在紫外線照射下呈現綠色熒光,通過肉眼未觀察到熒光。當發生腐蝕時,負載于PTMG骨架上的熒光探針Phen會與Fe2+發生螯合反應,并發出肉眼可見的橙紅色熒光。

Lv等[35]以羅丹明B?;拢≧BA)為熒光探針,并負載到層狀雙氫氧化物(LDHs)中,在碳鋼表面制備了RBA/LDHs/環氧涂層,其作用機理如圖16所示。RBA分子是基于螺旋內酰胺的結構,無熒光活性。在RBA分子與鐵離子絡合后,螺旋內酰胺結構轉化為具有熒光活性的開環酰胺結構,并發出亮紅色熒光,從而對碳鋼表面腐蝕進行早期預警。

Exbrayat等[33]將羅丹明B衍生物嵌入介孔二氧化硅納米膠囊中,將此膠囊溶于聚乙烯醇縮丁醛(PVB)中,制成了聚合物/熒光探針復合涂層,并以304不銹鋼為基底進行測試,其作用機理如圖17所示。當腐蝕發生時,Fe3+通過多孔的二氧化硅膠囊外殼擴散進入核心,并與羅丹明B衍生物發生螯合反應,從而起到腐蝕預警作用。

圖15 熒光涂層中腐蝕可視化示意圖[61]

圖16 RBA的鐵離子敏感熒光開關機理[35]

圖17 羅丹明衍生物熒光開啟機理[33]

腐蝕離子響應型熒光探針與pH響應型熒光探針相比,具有更好的特異識別性,可針對某種特定的腐蝕進行預測。根據目前的研究成果,盡管早期金屬腐蝕預警研究取得了一定進展,但是預測腐蝕的發生還不夠,還需兼顧其他功能(如自修復功能等)。

2.1.3 機械損傷響應型熒光探針

機械損傷響應型熒光探針指在機械損傷作用下,熒光探針或顏色指示劑可從破裂的膠囊中釋放出來,并直接與涂層成分發生反應,以指示涂層的損壞[62–66],為金屬腐蝕的早期預警提供了可能。

Li等[67]將含有2′,7′-二氯霉素(酸性形式的DCF)的微膠囊溶解在乙酸苯乙酯(EPA)中,制成了含有熒光探針的納米容器,并將其分散在胺固化的環氧涂層中制成熒光涂層,其熒光響應機理如圖18所示。涂層劃損后導致微膠囊破裂,并釋放熒光探針,DCF溶劑會與環氧涂層中的胺發生反應,DCF分子演化為堿性形式,并因溶解度的急劇下降而從EPA溶液中沉淀出來,使得機械損傷區的顏色從淺黃色變為亮紅色。

Robb等[68]基于聚合誘導發射(AIE)機理,將1,1,2,2-四苯乙烯(TPE)溶解在乙酸乙酯溶劑中,并置于核?殼結構微膠囊中制成含有熒光探針的納米容器,將其混入環氧樹脂中制成熒光涂層,其熒光響應機理如圖19所示。涂層的劃損使得微膠囊發生破裂,并釋放出TPE溶劑(TPE是一種具有振動/旋轉模式的分子,它在溶液中溶解時能夠吸收光子的能量),隨后溶劑蒸發,導致固體熒光探針沉積在損傷區域,固化沉積限制了這種分子內運動,使得損傷區發出藍色熒光。

圖19 TPE熒光探針機械損傷響應機理[68]

此外,結晶紫內酯(CVL)作為另一種顏色指示劑,具有強烈且快速的顯色能力。當遇到含羥基的氧化物(如SiO2、Al2O3、CaO、MgO)時,無色CVL的內酯環會被打開,將其從無色轉化為具有明顯藍色的三苯甲烷形式(CVL+)[69-71]。Hu等[72]以CVL為熒光探針,并負載于甲基丙烯酸甲酯(PMMA)微膠囊,微膠囊外部還黏附著作為顯色劑開關的SiO2顆粒。如圖20所示,當涂層外部受到機械損傷后,CVL會與SiO2發生反應,其內酯環被打開,從無色的CVL轉化為具有明顯藍色的三苯基甲烷形式(CVL+)。

圖20 CVL熒光探針機械損傷響應機理[72]

機械損傷響應性熒光探針通常被儲存在含溶劑的微囊中,當其受到機械損傷后,它會從破裂的微囊中流出,與周圍物質發生反應。3種機械損傷型熒光探針的溶劑,如DCF的溶劑(乙酸乙酯、甲基丙烯酸縮水甘油酯)、AIEgens的溶劑(乙酸己酯、苯乙烯)和CVL的溶劑(乙酸苯酯),是否會影響防腐涂層的阻隔性能仍有待探索。為了延長含微膠囊涂層的保存時間,用于儲存指示劑的理想溶劑應具有低揮發性,且對涂料基質阻隔性能的影響最小。

2.2 熒光探針用于熱障傳感涂層的機理

熱障涂層一般由鑭系稀土離子(如Eu3+、Dy3+和Er3+等)和熱障涂層陶瓷層(如YSZ、Gd2Zr2O7和La2Zr2O7等)組成[73-74],涂層一般由黏結層、磷光層和陶瓷層組成,如圖21所示[75]。在紫外/可見光源的激發下,磷光層會發出與溫度相關的磷光信號,如磷光光譜、強度和壽命,通過測量磷光信號,可獲得磷光層所在位置的溫度信息。利用此特點,使得測量熱障涂層陶瓷層表面、內部和陶瓷基/黏結層界面的溫度成為可能,且不影響熱障涂層的壽命。

Pin等[76]以釤離子(Sm3+)為熒光探針,將其摻雜進YSZ熱障涂層,制備了YSZ:Sm熱障熒光涂層,其熒光機理如圖22所示。在不同波長的刺激下,YSZ:Sm熱障熒光涂層會被激發出不同波長的熒光信號,通過得到的熒光光譜、強度等信息,計算出高溫合金的溫度。結果表明,YSZ:Sm熱障熒光涂層可測量的最高溫度為700 ℃。

圖21 含磷光層的熱障涂層系統示意圖[75]

Rabhiou等[77]以鋱離子(Tb3+)為熒光探針,并將其混入Y2SiO5熱障涂層,制備了Y2SiO5:Tb熱障熒光涂層,其響應機理如圖23所示。Tb3+在不同能級有著不同的激發波長,在不同波長的激發下,Y2SiO5:Tb熱障熒光涂層會發出不同波長的熒光信號,通過熒光光譜、強度等信息,可計算出高溫合金的溫度。結果表明,Y2SiO5:Tb熱障熒光涂層可用于測量的溫度范圍為700~1 200 ℃。

2.3 熒光探針用于防偽涂層的機理

具有防偽功能的涂層被稱為防偽加密涂層,即通過在涂層中加入防偽材料,并經過一些特定工藝制成的涂層,它主要由色料、連接料和油墨助劑等部分組成。將熒光探針或顯色劑作用于該涂層,可使其具有熒光效果或顯色效果,從而具有防偽功能。油墨中的色料、連接料賦予了防偽涂層的防偽功能,根據其防偽功能,該涂層主要包含4種類型:熱敏變色防偽涂層、光敏變色防偽涂層、濕敏變色防偽涂層和壓敏變色防偽涂層。涂層對應的作用機理也有所不同,下面逐一介紹。

圖22 YSZ:Sm熱障熒光涂層響應機理[76]

圖23 Y2SiO5:Tb熱障熒光涂層響應機理[77]

2.3.1 熱敏變色防偽涂層

熱敏變色防偽涂層的原理是在涂層中加入顏色隨溫度變化的熒光探針。俞胡斐等[78]將N-羥基鄰苯二甲酰亞胺(N-Hydroxyphthalimide,NHPI)與隱性結晶紫(Leucocrystal Violet,LCV)相結合作為熒光探針,并混入水性聚氨酯等制備了防偽熒光涂層,其防偽機理如圖24所示。LCV是一種典型的三芳甲烷苯酞型隱色染料[79],此類染料可作為電子供體,與電子受體結合時會發生顯色反應。當與質子或金屬陽離子接觸時,LCV的內脂環被打開,SP3雜化的碳原子形成了具有平面結構的SP2碳離子,LCV會發生由無色變為紫色的變化。

圖24 LCV顯色機理[78]

2.3.2 光敏變色防偽涂層

光敏變色防偽涂層的原理是在涂層中加入光致變色物質或光激活化合物。由于光敏材料的內部結構不穩定,在紫外線照射下其化學結構會發生變化,如圖25所示[80]。在紫外燈照射下,光敏涂層的C—O結構斷開,同時該變化具有可逆性,將該涂層置于日光下或365 nm紫外燈下,可迅速顯色,撤掉日光或紫外光線后顯色消失。

圖25 紫外燈下光敏油墨結構變化[80]

2.3.3 濕敏變色防偽涂層

濕敏變色防偽涂層的原理是在涂層中加入顏色隨濕度變化的物質。任健旭[81]以碘化鎳(NiI2)、NiI2/(CH3)4NI材料為研究對象,分析了NiI2材料的變色機理,如圖26所示。NiI2在吸收水分后會轉變為NiI2·6H2O,且隨著濕度的變化,它會發生可逆的黑色?透明的變色行為。

圖26 NiI2結構隨濕度變化的示意圖[81]

2.3.4 壓敏變色防偽涂層

壓敏變色防偽涂層的原理是在涂層中加入壓力致變色的化合物或微膠囊。Sagara等[82]以1,3,6,8-四苯基芘衍生物1為熒光探針,如圖27所示。由于氫鍵和π-π堆積的競爭效應,1,3,6,8-四苯基芘衍生物1形成了2種不同的堆積形式。新制備的白色粉末為藍光發射(B型),在外力研磨下氫鍵被破壞,發射中心形成了更緊密的堆積結構,材料為藍綠光發射(G型)。在外力刺激誘導下形成的G型處于亞穩態,且分子以較緊密的形式堆積。

圖27 1,3,6,8-四苯基芘衍生物1在研磨前后的光致發光顏色及分子組裝變化[82]

3 結語

綜述了涂層因應用環境(如腐蝕、高溫和特殊識別等)而導致的性能下降問題,以及為解決此問題將熒光探針加入涂層中的相關研究。金屬材料的早期腐蝕監測,過熱工況下運行的部件或材料的監測,信息加密和存儲,貴重物品的防偽識別等,都可通過將熒光探針應用于涂層來實現??梢妼τ跓晒馓结樤谕繉又械难芯扛悠惹?,重點介紹了熒光探針在防腐涂層、熱障涂層和防偽涂層中的應用和機理。

1)將熒光探針用于防腐涂層,可賦予涂層特殊功能,在腐蝕發生時起到自預警作用;將熒光探針用于熱障涂層,主要用于監測和分析高溫環境;將熒光探針用于防偽涂層,主要用于防偽加密存儲、貴重物品防偽識別等。

2)用于防腐涂層的熒光探針主要分為3種類型:pH響應型熒光探針、腐蝕離子響應型熒光探針和機械損傷響應型熒光探針。pH響應型熒光探針的機理主要是使用對pH值變化敏感的物質,與腐蝕微區陰極處的氫離子或氫氧根離子發生反應后產生熒光,從而對金屬材料的早期腐蝕作出預警。腐蝕離子響應型熒光探針的機理主要是熒光探針與腐蝕微區陽極產生的金屬離子發生作用后產生熒光,從而預測金屬早期腐蝕。機械損傷響應型熒光探針的機理主要是熒光探針在機械損傷作用下,微膠囊發生破損后釋放的熒光探針會發生化學變化而改變顏色,從而指示早期腐蝕的發生。

3)將熒光探針用于熱障涂層的機理主要是在紫外/可見光源的激發下,磷光層會發出特征與溫度相關的磷光信號,通過測量磷光信號獲得磷光層所在位置的溫度信息,從而測量熱障涂層陶瓷層表面、內部和陶瓷基/黏結層界面的溫度。

4)防偽涂層分為4種類型。熱敏變色防偽涂層的機理是在涂層中加入顏色隨溫度變化的物質。光敏變色防偽涂層的機理是在涂層中加入光致變色或光激活化合物。濕敏變色防偽涂層的機理是在涂層中加入顏色隨濕度變化的物質。壓敏變色防偽涂層的機理是在涂層中加入壓力致變色的化合物或微膠囊。

根據目前的研究成果,將熒光探針應用于涂層領域仍面臨以下問題。在防腐涂層領域,單一功能的預警或自修復涂層已不能滿足現階段的使用需求。在預警的同時對涂層進行修復,可以大大提高涂層的使用效率。未來的研究重點應側重于自預警和自修復功能一體化,制備出具有“自預警/自修復”雙功能的復合涂層。在熱障涂層領域,對于熒光測溫的上限仍需拓寬;測溫穩定性仍需進一步提高;確保涂層結構在服役環境下的力學性能穩定。在防偽加密涂層領域,需進一步探索“過早熒光現象”,同時應對多變的刺激條件,以提高防偽加密涂層的實際應用性。

[1] 賈婷. 羅丹明修飾的高分子材料及其金屬離子響應性能研究[D]. 福州: 福建師范大學, 2020: 1-13. JIA Ting. Study on Rhodamine Modified Polymer Materials and Their Metal Ion Response Properties[D]. Fuzhou: Fujian Normal University, 2020: 1-13.

[2] CHEN Yin, LONG Zhi-qing, WANG Cheng-cheng, et al. A Lysosome-Targeted Near-Infrared Fluorescent Probe for Cell Imaging of Cu2+[J]. Dyes and Pigments, 2022, 204: 110472.

[3] FENG Zhong-jiao, WU Jia-sheng, JIANG Mei-yu, et al. A Rhodamine Derivative-Based Fluorescent Probe for Visual Monitoring of pH Changes in the Golgi Apparatus[J]. Sensors and Actuators B: Chemical, 2022, 366: 131963.

[4] 劉蔚, 劉斌, 徐大偉, 等. 熒光探針技術在金屬初期腐蝕檢測中的研究進展[J]. 腐蝕與防護, 2021, 42(5): 47-53. LIU Wei, LIU Bin, XU Da-wei, et al. Research Progress of Fluorescent Probes in Initial Corrosion Detection of Metals[J]. Corrosion & Protection, 2021, 42(5): 47-53.

[5] HOU Ji-ting, KWON N, WANG Shan, et al. Sulfur-Based Fluorescent Probes for HOCl: Mechanisms, Design, and Applications[J]. Coordination Chemistry Reviews, 2022, 450: 214232.

[6] 顧林, 丁紀恒, 余海斌. 石墨烯用于金屬腐蝕防護的研究[J]. 化學進展, 2016, 28(5): 737-743. GU Lin, DING Ji-heng, YU Hai-bin. Research in Graphene-Based Anticorrosion Coatings[J]. Progress in Chemistry, 2016, 28(5): 737-743.

[7] 王軍鵬. 智能自預警與自修復涂層材料的制備及性能研究[D]. 北京: 中國科學院大學(中國科學院過程工程研究所), 2018: 19-30. WANG Jun-peng. Synthesis and Characterization of Smart Self-Reporting and Self-Healing Coatings [D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2018: 19-30.

[8] 郭小波. 飛機發動機測溫方法的探究與實踐[J]. 航空科學技術, 2011, 22(1): 39-42. GUO Xiao-bo. Exploration and Practice of Aero-Engine Temperature Measuring Method[J]. Aeronautical Science & Technology, 2011, 22(1): 39-42.

[9] LIN Fang, JIA Mo-chen, SUN Zhen, et al. Highly Sensitive Self-Referencing Thermometry Probe and Advanced Anti-Counterfeiting Based on the CDs/YVO4: Eu3+Composite Materials[J]. Scripta Materialia, 2020, 186: 298-303.

[10] WANG Chuan-long, JIN Ya-hong, YUAN Li-fang, et al. A Spatial/Temporal Dual-Mode Optical Thermometry Platform Based on Synergetic Luminescence of Ti4+-Eu3+Embedded Flexible 3D Micro-Rod Arrays: High- Sensitive Temperature Sensing and Multi-Dimensional High-Level Secure Anti-Counterfeiting[J]. Chemical Engineering Journal, 2019, 374: 992-1004.

[11] ZHANG Yu-chong, LE Xiao-xia, JIAN Yu-kun, et al. 3D Fluorescent Hydrogel Origami for Multistage Data Security Protection[J]. Advanced Functional Materials, 2019, 29(46): 1905514.

[12] ANDRES J, HERSCH R D, MOSER J E, et al. Invisible Inks: A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks[J]. Advanced Functional Mater-ials, 2014, 24(32): 5028.

[13] LIU Xin-jie, SPIKES H, WONG J S S.pH Responsive Fluorescent Probing of Localized Iron Corrosion[J]. Corrosion Science, 2014, 87: 118-126.

[14] TIAN Hao-liang, WANG Chang-liang, GUO Meng-qiu, et al. Microstructure and Luminescence Properties of YSZ-Based Thermal Barrier Coatings Modified by Eu2O3[J]. Ceramics International, 2020, 46(4): 4444- 4453.

[15] R S B, SUNIL D, SHETTY P, et al. Water-Based Flexo-graphic Ink Using Chalcones Exhibiting Aggregation- Induced Enhanced Emission for Anti-Counterfeit Applications[J]. Journal of Molecular Liquids, 2021, 344: 117974.

[16] GILLMORE G K, CROCKETT R, DENMAN T, et al. Radium Dial Watches, a Potentially Hazardous Legacy[J]. Environment International, 2012, 45: 91-98.

[17] CHAN J, DODANI S C, CHANG C J. Reaction-Based Small-Molecule Fluorescent Probes for Chemoselective Bioimaging[J]. Nature Chemistry, 2012, 4(12): 973-984.

[18] CHEN Yun-cong, BAI Yang, HAN Zhong, et al. Photoluminescence Imaging of Zn2+in Living Systems[J]. Chemical Society Reviews, 2015, 44(14): 4517-4546.

[19] VENDRELL M, ZHAI Duan-ting, ER Jun cheng, et al. Combinatorial Strategies in Fluorescent Probe Develo-pment[J]. Chemical Reviews, 2012, 112(8): 4391-4420.

[20] ZHANG Hong-yi, LUO Jia-jie, QIAO Zhen, et al. An Activatable Fluorescence Probe for Visualization of DAGL Activity in Hippocampal Tissue of Brain-Injured Mice[J]. Sensors and Actuators B: Chemical, 2022, 367: 132047.

[21] ZHANG Ling, YAN Jin-long, WANG Yuan, et al. A Novel Indene-Chalcone-Based Fluorescence Probe with Lysosome-Targeting for Detection of Endogenous Carb-oxylesterases and Bioimaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 278: 121329.

[22] DU Lei, XIE Yi-qiu, QIAN Hui, et al. A New Coumarin- Based "Turn-on" Fluorescence Probe with High Sensitivity and Specificity for Detecting Hypochlorite Ion[J]. Dyes and Pigments, 2022, 200: 110137.

[23] DUJOLS V, FORD F, CZARNIK A W. A Long- Wavelength Fluorescent Chemodosimeter Selective for Cu(Ⅱ) Ion in Water[J]. Journal of the American Chemical Society, 1997, 119(31): 7386-7387.

[24] LI Song-mei, ZHANG Hong-rui, LIU Jian-hua. Preparation and Performance of Fluorescent Sensing Coating for Monitoring Corrosion of Al Alloy 2024[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s159-s164.

[25] FAN De-hong, LIU Xiao-bang, QI Kai, et al. A Smart- Sensing Coating Based on Dual-Emission Fluorescent Zr-MOF Composite for Autonomous Warning of Coating Damage and Aluminum Corrosion[J]. Progress in Organic Coatings, 2022, 172: 107150.

[26] 吳松林, 于美, 李松梅, 等. 基于8-羥基喹啉熒光敏感化合物的鋁合金腐蝕監測技術[J]. 北京科技大學學報, 2009, 31(8): 1013-1018. WU Song-lin, YU Mei, LI Song-mei, et al. Fluorescent Technology for Corrosion Prediction of Aluminum Alloys Based on 8-Hydroxy-Quinoline[J]. Journal of University of Science and Technology Beijing, 2009, 31(8): 1013- 1018.

[27] WANG Huai, FAN Yong, TIAN Li-mei, et al. Colorimetric/Fluorescent Dual Channel Sensitive Coating for Early Detection of Copper Alloy Corrosion[J]. Materials Letters, 2020, 265: 127419.

[28] AMANO K, TAKEDA H, SUZUKI T, et al. Thermal Barriercoating Patent: US, 4774150[P]. 1988-09-27.

[29] CHOY K L, FEIST J P, HEYES A L. Thermal Barrier Coating with Thermoluminescent Indicator Material Embedded Thereins: US, 6974641[P]. 2005-12-13.

[30] ZHAO Su-mei, ZHAO Yu, ZOU Bing-lin, et al. Effect of High Temperature Aging on Luminescence Properties of5D0→7F2Transition of 8YSZ: Eu Powder and Coating[J]. Journal of Alloys and Compounds, 2014, 601: 57-62.

[31] 郭凌華, 龍浩, 姜慧娥, 等. 一種膠版防偽油墨稀土發光材料制備的研究及應用[J]. 包裝工程, 2019, 40(13): 137-142. GUO Ling-hua, LONG Hao, JIANG Hui-e, et al. Preparation and Application of Rare Earth Luminescent Material for Printing Anti-Counterfeiting[J]. Packaging Engineering, 2019, 40(13): 137-142.

[32] 張為, 凌曉, 趙冰清, 等. 鋱熒光油墨樹脂的合成及發光性能研究[J]. 湖南師范大學學報(醫學版), 2007, 4(4): 30-33. ZHANG Wei, LING Xiao, ZHAO Bing-qing, et al. Synthesis and Prooerties of Ternary Complexes of Fluorescent Ink Resin[J]. Journal of Hunan Normal University (Medical Sciences), 2007, 4(4): 30-33.

[33] EXBRAYAT L, SALALUK S, UEBEL M, et al. Nano-sensors for Monitoring Early Stages of Metallic Corrosion[J]. ACS Applied Nano Materials, 2019, 2(2): 812-818.

[34] SU Fei-fei, DU Xian-chao, SHEN Ting, et al. Aggre-gation-Induced Emission Luminogens Sensors: Sensitive Fluorescence 'Turn-on' Response for pH and Visually Chemosensoring on Early Detection of Metal Corro-sion[J]. Progress in Organic Coatings, 2021, 153: 106122.

[35] LV Jing, YUE Qing-xian, DING Rui, et al. Intelligent Anti-Corrosion and Corrosion Detection Coatings Based on Layered Supramolecules Intercalated by Fluorescent Off-on Probes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118: 309-324.

[36] AUGUSTYNIAK A, MING Wei-hua. Early Detection of Aluminum Corrosion via "Turn-on" Fluorescence in Smart Coatings[J]. Progress in Organic Coatings, 2011, 71(4): 406-412.

[37] ZHAO Peng-sen, ZHENG Hai-zhong, LI Gui-fa, et al. Mechanical Properties, Thermophysical Properties and Electronic Structure of Yb3+or Ce4+-Doped La2Zr2O7- Based TBCS[J]. Journal of Rare Earths, 2023, 41(4): 588-598.

[38] PILGRIM C, FEIST J, BISWAS S, et al. Temperature Memory Coatings for Short and Long Term Applications in Gas Turbines[C]// The Future of Gas Turbine Technology 7th International Gas Turbine Conference. Brussels: Belgium, 2014:14-15.

[39] FEIST J P, HEYES A L. Europium-Doped Yttria- Stabilized Zirconia for High-Temperature Phosphor Thermometry[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2000, 214(1): 7-12.

[40] YU M, S?RNER G, LUIJTEN C M, et al. Survivability of Thermographic Phosphors (YAG:Dy) in a Combustion Environment[J]. Measurement Science and Technology, 2010, 21(3): 037002.

[41] 楊麗霞. 采用YSZ:Eu熒光物質進行等離子噴涂熱障涂層的非接觸溫度測量[D]. 上海: 上海交通大學, 2018: 70-83. YANG Li-xia. Non-Contact Temperature Monitoring in Air Plasma Sprayed Thermal Barrier Coatings Using YSZ: Eu Phosphors[D]. Shanghai: Shanghai Jiao Tong University, 2018: 70-83.

[42] SKINNER S J, FEIST J P, BROOKS I J E, et al. YAG: YSZ Composites as Potential Thermographic Phosphors for High Temperature Sensor Applications[J]. Sensors and Actuators B: Chemical, 2009, 136(1): 52-59.

[43] KISSEL T, BRüBACH J, EULER M, et al. Phosphor Thermometry: On the Synthesis and Characterisation of Y3Al5O12:Eu (YAG:Eu) and YAlO3:Eu (YAP:Eu)[J]. Materials Chemistry and Physics, 2013, 140(2-3): 435- 440.

[44] 舒鑫. 多色光致發光硅納米晶防偽油墨的制備及應用[D]. 武漢: 武漢紡織大學, 2020: 11-16. SHU Xin. Preparation and Application of Multicolor Photoluminescence Silicon Nanocrystalline Anti-Count-erfeiting Ink[D]. Wuhan: Wuhan Textile University, 2020: 11-16.

[45] 魏俊青, 孫誠, 黃利強. 稀土銪配合物在熒光防偽油墨中的應用[J]. 天津科技大學學報, 2012, 27(4): 36-39. WEI Jun-qing, SUN Cheng, HUANG Li-qiang. Applic-ation of Rare Earth Europium Complexes in Fluorescent Falsification-Resistant Ink[J]. Journal of Tianjin University of Science & Technology, 2012, 27(4): 36-39.

[46] ZHAI Zhi-rou, XU Jia-li, GONG Tian-yu, et al. Sustainable Fabrication of N-Doped Carbon Quantum Dots and Their Applications in Fluorescent Inks, Fe(Ⅲ) Detection and Fluorescent Films[J]. Inorganic Chemistry Communications, 2022, 140: 109387.

[47] TALEBNIA F, NOURMOHAMMADIAN F, BASTANI S. Development of Novel Fluorescent Offset Ink Based on Coumarin Dyes: Synthesis and Properties[J]. Progress in Organic Coatings, 2014, 77(9): 1351-1359.

[48] LIANG Long-qi, CHEN Cai-ling, LV Zi-peng, et al. Microwave-Assisted Synthesis of Highly Water-Soluble LuVO4: Eu Nanoparticles as Anti-Counterfeit Fluorescent Ink[J]. Journal of Luminescence, 2019, 206: 560-564.

[49] ZHANG Wen-shuo, ZHANG Tao, DENG Ya-jun, et al. Environmentally Friendly Gelatin-Based Ink with Durability on Low Surface Energy Substrates for Anti-Counterfeiting Printing[J]. Journal of Cleaner Production, 2022, 362: 132518.

[50] LIU Peng, LI Xue-lian, ZHANG Hong-xia, et al. pH-Responsive Spiropyran-Based Copolymers and Their Application in Monitoring and Antibacterial Coatings[J]. Progress in Organic Coatings, 2021, 156: 106259.

[51] DHOLE G S, GUNASEKARAN G, SINGH S K, et al. Smart Corrosion Sensing Phenanthroline Modified Alkyd Coatings[J]. Progress in Organic Coatings, 2015, 89: 8-16.

[52] GUO Ya-kun, ZHAO Peng-xiang, WANG Xiao-fang, et al. Damage Indication of 2',7'-Dichlorofluorescein for Epoxy Polymer and the Effect of Water on Its Damage Indicating Ability[J]. E-Polymers, 2017, 17(1): 57-64.

[53] GALV?O T L P, SOUSA I, WILHELM M, et al. Improving the Functionality and Performance of AA2024 Corrosion Sensing Coatings with Nanocontainers[J]. Chemical Engineering Journal, 2018, 341: 526-538.

[54] MAIA F, TEDIM J, BASTOS A C, et al. Nanoco-ntainer-Based Corrosion Sensing Coating[J]. Nanotech-nology, 2013, 24(41): 415502.

[55] WANG Jun-peng, SONG Xiao-ke, WANG Jun-kuo, et al. Smart-Sensing Polymer Coatings with Autonomously Reporting Corrosion Dynamics of Self-Healing Systems [J]. Advanced Materials Interfaces, 2019, 6(10): 1900055.

[56] SOUSA I, QUEVEDO M C, SUSHKOVA A, et al. Chitosan Microspheres as Carriers for PH-Indicating Species in Corrosion Sensing[J]. Macromolecular Materials and Engineering, 2020, 305(2): 1900662.

[57] 高立新, 朱沖, 李康, 等. 喹啉-2-甲醛對AA5052鋁合金早期腐蝕的檢測[J]. 材料保護, 2017, 50(4): 80-84. GAO Li-xin, ZHU Chong, LI Kang, et al. Quinoline- 2-Formaldehyde for Early Detection of Corrosion of 5052 Aluminum Alloy[J]. Materials Protection, 2017, 50(4): 80-84.

[58] ZHANG Li, ZHANG da quan, MENG Yu, et al. Detection and Inhibition of Refractory Steel Corrosion by Rhoda-mine-Based Compound[J]. Advanced Materials Research, 2013, 864: 672-676.

[59] 孟宇, 張俐, 吳崇田, 等. 羅丹明酰肼在鹽酸溶液中對20鋼的緩蝕及腐蝕熒光監測作用[J]. 材料保護, 2014, 47(9): 26-28. MENG Yu, ZHANG Li, WU Chong-tian, et al. Synthesis of Rhodamine B Hydrazide and Investigation of Its Inhibition Effect for Mild Steel in Hydrochloric Acid as Well as Its Application in Fluorescence Spectrometric Monitoring of Corrosion[J]. Materials Protection, 2014, 47(9): 26-28.

[60] MOHAMMADLOO H, MIRABEDINI S M, PEZESHK- FALLAH H. Microencapsulation of Quinoline and Cerium Based Inhibitors for Smart Coating Application: Anti-Corrosion, Morphology and Adhesion Study[J]. Progress in Organic Coatings, 2019, 137: 105339.

[61] LIU Cheng-bao, WU Hao, QIANG Yu-jie, et al. Design of Smart Protective Coatings with Autonomous Self-Healing and Early Corrosion Reporting Properties[J]. Corrosion Science, 2021, 184: 109355.

[62] GOSSWEILER G R, HEWAGE G B, SORIANO G, et al. Mechanochemical Activation of Covalent Bonds in Polymers with Full and Repeatable Macroscopic Shape Recovery[J]. ACS Macro Letters, 2014, 3(3): 216-219.

[63] BRYANT D E, GREENFIELD D. The Use of Fluorescent Probes for the Detection of Under-Film Corrosion[J]. Progress in Organic Coatings, 2006, 57(4): 416-420.

[64] ZHENG Xu, WANG Qing, LI Yao, et al. Fabrication of Self-Reactive Microcapsules as Color Visual Sensing for Damage Reporting[J]. Journal of Materials Science, 2020, 55(21): 8861-8867.

[65] VIDINEJEVS S, ANISKEVICH A N, GREGOR A, et al. Smart Polymeric Coatings for Damage Visualization in Substrate Materials[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(12): 1371-1377.

[66] GUO Y K, CHEN L, XU D G, et al. A Dual Functional Epoxy Material with Autonomous Damage Indication and Self-Healing[J]. RSC Advances, 2016, 6(69): 65067-65071.

[67] LI Wen-le, MATTHEWS C C, YANG Ke, et al. Autono-mous Indication of Mechanical Damage in Polymeric Coatings[J]. Advanced Materials, 2016, 28(11): 2189- 2194.

[68] ROBB M J, LI Wen-le, GERGELY R C R, et al. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission[J]. ACS Central Science, 2016, 2(9): 598-603.

[69] LUO J, XIE Z, LAM J W, et al. Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole[J]. Chemical Communications, 2001(18): 1740-1741.

[70] ZHANG Yu-jie, DONG Jie, SUN Han-xue, et al. Solvat-ochromic Coatings with Self-Cleaning Property from Palygorskite@Polysiloxane/Crystal Violet Lactone[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 27346-27352.

[71] MCCAFFERTY E, WIGHTMAN J P. Determination of the Concentration of Surface Hydroxyl Groups on Metal Oxide Films by a Quantitative XPS Method[J]. Surface and Interface Analysis, 1998, 26(8): 549-564.

[72] HU Ming-han, PEIL S, XING Yao-wen, et al. Monitoring Crack Appearance and Healing in Coatings with Damage Self-Reporting Nanocapsules[J]. Materials Horizons, 2018, 5(1): 51-58.

[73] STEENBAKKER R. Phosphor Thermometry in an EB–PVD TBC[D]. Cranfifield: University of Cranfifield, 2008: 83-96.

[74] GENTLEMAN M M. High Temperature Sensing of Thermal Barrier Materials by Luminescence[D]. Santa Barbara: University of California, 2006.

[75] 楊麗霞, 付雅婷, 趙曉峰, 等. 熱障涂層在線/離線磷光溫度測量技術研究進展[J]. 航空制造技術, 2022, 65(3): 71-81. YANG Li-xia, FU Ya-ting, ZHAO Xiao-feng, et al. Research Progress of On-Line/Off-Line Phosphor Therm-ometry Technology for Thermal Barrier Coatings[J]. Aero-nautical Manufacturing Technology, 2022, 65(3): 71-81.

[76] PIN Li-sa, PILGRIM C, FEIST J, et al. Characterisation of Thermal Barrier Sensor Coatings Synthesised by Sol-Gel Route[J]. Sensors and Actuators A: Physical, 2013, 199: 289-296.

[77] RABHIOU A, FEIST J, KEMPF A, et al. Phosphorescent Thermal History Sensors[J]. Sensors and Actuators A: Physical, 2011, 169(1): 18-26.

[78] 俞胡斐, 錢靜. 不可逆溫敏變色油墨的顯色動力學探究[J]. 包裝工程, 2022, 43(11): 46-53. YU Hu-fei, QIAN Jing. Color Kinetics of an Irreversible Thermochromic Ink[J]. Packaging Engineering, 2022, 43(11): 46-53.

[79] 張曉婷. 隱色體染料甲乙結晶紫內酯的顯色研究及應用[D]. 太原: 山西大學, 2012: 6-10. ZHANG Xiao-ting. Study and Application of Color Development of Leuco Dye A, B and Crystal Violet Lactone[D]. Taiyuan: Shanxi University, 2012: 6-10.

[80] 胡志鵬. 防偽油墨的成分及原理[J]. 中國品牌與防偽, 2009(6): 70-74. HU Zhi-peng. Composition and Principle of Anti- Counterfeiting Ink[J]. China Brand and Anti-Count-erfeiting, 2009(6): 70-74.

[81] 任健旭. NiI2基濕致變色材料的應用研究[D]. 湘潭: 湘潭大學, 2020: 11-15. REN Jian-xu. Study on Application of NiI2Based Wet Electrochromic Materials[D]. Xiangtan: Xiangtan Unive-rsity, 2020: 11-15.

[82] SAGARA Y, MUTAI T, YOSHIKAWA I, et al. Material Design for Piezochromic Luminescence: Hydrogen- Bond-Directed Assemblies of a Pyrene Derivative[J]. Journal of the American Chemical Society, 2007, 129(6): 1520-1521.

Progress of Application and Mechanism of Fluorescent Probes in Coating

1,1,2,1,1,1*

(1. Civil Aviation University of China, Tianjin 300300, China; 2. Beijing Machine and Equipment Institute, Beijing 100854, China)

Loading fluorescent probes into the coating can give the coating special fluorescence response performance, which is widely used in metal corrosion, metal high temperature monitoring and anti-counterfeiting encryption. The preparation technology and related applications of fluorescent probes in coatings at home and abroad were introduced, and the research progress of the mechanism of fluorescent probes used in coatings was discussed.

The types of coatings applied to fluorescent probes included anti-corrosion coatings, thermal barrier coatings, and anti-counterfeiting coatings. The role of fluorescent probes in three coatings was described. Based on these three coating types, the preparation technology and function of fluorescent probes for coating were described. The mechanism of action of fluorescent probes in three types of coatings was clarified, and the future development direction was pointed out.

The fluorescent probe was used for anti-corrosion coatings, which could give the coating a special function and play a self-warning role in corrosion; Fluorescent probes were used for thermal barrier coatings, which were mainly used to monitor and analyze high-temperature environments; The fluorescent probe was used for anti-counterfeiting coatings, mainly used for anti-counterfeiting encryption and storage, anti-counterfeiting identification of valuables, etc. The mechanism of pH-responsive fluorescent probe was mainly to use substances that were sensitive to pH value changes to produce fluorescence after interacting with hydrogen ions or hydroxide ions at the cathode of the corroded microregion, which provided early warning for the early corrosion of metal materials. The mechanism of corrosion ion-responsive fluorescent probes was mainly to fluoresce after the fluorescence probe interacted with the metal ions generated by the corrosion micro-anode, so as to predict the early corrosion of metals. The mechanism of mechanical damage-responsive fluorescent probes mainly referred to the chemical changes and color of fluorescent probes released after the microcapsule was damaged under the action of mechanical damage, to indicate the occurrence of early corrosion. The mechanism of fluorescent probe for thermal barrier coating was mainly under the excitation of ultraviolet/visible light source, the phosphorescent layer generated a phosphorescence signal with characteristic temperature correlation, and the temperature information of the position of the phosphorescent layer was obtained by measuring the phosphorescence signal, so as to measure the temperature of the surface, interior and interface of the ceramic base/adhesive layer of the thermal barrier coating. The mechanism of thermal color-changing anti-counterfeiting coating was to add substances whose color changes with temperature to the coating; The mechanism of photochromic anti-counterfeiting coating was to add photochromic or photoactivated compounds to the coating; The mechanism of moisture-sensitive color-changing anti- counterfeiting coating was to add substances whose color changed with humidity to the coating; The mechanism of pressure- sensitive color-changing anti-counterfeiting coating was to add pressure-induced chromic compounds or microcapsules to the coating.

According to the current research results, the application of fluorescent probes in the field of coatings still faces the following problems. In the field of anti-corrosion coatings, future research should focus on the integration of self-warning and self-healing functions, and the preparation of composite coatings with "self-warning/self-repair" dual functions. In the field of thermal barrier coatings, the upper limit of fluorescence temperature measurement still needs to be widened; The stability of temperature measurement still needs to be further improved; It is required to ensure the stability of the mechanical properties of the coating structure in the service environment. In the field of anti-counterfeiting encryption coatings, it is necessary to further explore and solve the "premature fluorescence phenomenon", and at the same time be able to cope with changing stimuli and improve the practical application of anti-counterfeiting encryption coatings.

fluorescent probe; coating; mechanism; corrosion; self-warning

2022-07-25;

2022-11-12

TG172

A

1001-3660(2023)10-0099-16

10.16490/j.cnki.issn.1001-3660.2023.10.007

2022-07-25;

2022-11-12

中央高?;究蒲袠I務費項目中國民航大學專項(3122023047)

Fundamental Research Funds for the Central Universities Special Project of Civil Aviation University of China (3122023047)

杜娟, 魏士鈞, 石玉超, 等.熒光探針在涂層中的應用及機理研究進展[J]. 表面技術, 2023, 52(10): 99-114.

DU Juan, WEI Shi-jun, SHI Yu-chao, et al. Progress of Application and Mechanism of Fluorescent Probes in Coating[J]. Surface Technology, 2023, 52(10): 99-114.

通信作者(Corresponding author)

責任編輯:彭颋

猜你喜歡
熱障防偽機理
INTEGRITYTM ECO100再生縫紉線引入防偽技術
隔熱纖維材料的隔熱機理及其應用
你知道古代圣旨和紙鈔是怎樣防偽的嗎
熱載荷下熱障涂層表面裂紋-界面裂紋的相互作用
煤層氣吸附-解吸機理再認識
民國時期紙鈔上的防偽暗記
霧霾機理之問
熱障涂層閃光燈激勵紅外熱像檢測
一種具有防偽功能的卷煙紙
DNTF-CMDB推進劑的燃燒機理
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合