?

鈦催滲低溫離子滲氮對304不銹鋼組織性能的影響

2023-11-06 07:46李潤濤孫斐汪丹丹魏坤霞楊衛民胡靜
表面技術 2023年10期
關鍵詞:滲氮耐蝕性奧氏體

李潤濤,孫斐,汪丹丹,魏坤霞,楊衛民,胡靜,2*

鈦催滲低溫離子滲氮對304不銹鋼組織性能的影響

李潤濤1a,b,孫斐1a,3,汪丹丹1a,b,魏坤霞1a,2,楊衛民1a,c,胡靜1a,b,2*

(1.常州大學 a.江蘇省材料表面科學與技術重點實驗室 b.材料科學與工程國家級實驗教學示范中心,江蘇 常州 213164;2.常州大學 懷德學院,江蘇 靖江 214500;3.常州工業職業技術學院 現代裝備制造學院,江蘇 常州 213164)

在保障304奧氏體不銹鋼良好耐蝕性前提下,研發顯著改善表層硬度及耐磨性的低溫高效離子滲氮技術。低溫離子滲氮時,在試樣周圍均勻放置微量海綿鈦,研發304奧氏體不銹鋼創新鈦催滲低溫離子滲氮技術。采用光學顯微鏡、掃描電子顯微鏡、能譜分析儀、X射線粉末衍射儀、顯微維氏硬度計、摩擦磨損測試儀,以及電化學工作站等設備分別對試樣截面顯微組織、物相及成分、截面顯微硬度、滲層耐磨性能、耐蝕性能等滲層組織性能進行測試與分析。304奧氏體不銹鋼在420 ℃/4 h鈦催滲離子滲氮處理后,不僅保持了良好耐蝕性,且滲層耐蝕性比常規低溫離子滲氮略有提升,同時,表面硬度與耐磨性大幅提高,表面硬度由常規離子滲氮的978HV0.025提升至1350HV0.025。磨損率由20.9 μg/(N·m)降低至7.4 μg/(N·m),下降了約2/3。特別有價值的是,鈦催滲低溫離子滲氮效率比傳統離子滲氮顯著提升,滲氮層厚度由常規離子滲氮的11.37 μm增厚到48.32 μm,即滲氮效率提高到常規離子滲氮的4倍以上。本研究研發的鈦催滲低溫離子滲氮技術在保障304奧氏體不銹鋼優良耐蝕性的同時,能夠大幅度提升不銹鋼表面硬度及耐磨性能,且具有顯著的催滲效果。

鈦催滲;離子滲氮;304奧氏體不銹鋼;耐蝕性;硬度;耐磨性

奧氏體不銹鋼因具有優異的耐蝕性能與良好的塑性及韌性,在深海、化工、醫療、食品等工業領域有廣泛的應用[1-2]。但奧氏體不銹鋼由于表面硬度低、耐磨性差的原因,導致無法滿足同時兼顧耐蝕性與耐磨性的服役要求,使用范圍受到很大限制[3-4]。因此必須對其表面改性才可能同時滿足耐蝕性與耐磨性的綜合要求。

目前,工業上對奧氏體不銹鋼表面改性技術主要有氣體滲氮、鹽浴氮碳復合滲(QPQ)、氮碳共滲等,其中離子滲氮技術具有清潔高效、工件變形量小的優勢,已逐步取得了一定效果。根據已有的研究發現,離子滲氮(PN)在溫度高于450 ℃時會導致奧氏體不銹鋼中析出鉻氮化物,使基體耐蝕性下降[5-6];而低溫離子滲氮(LPN)在450 ℃以下,雖然可形成高耐磨性、高耐蝕性氮膨脹奧氏體相(N相或相),從而避免鉻氮化物析出[7-10],但低溫離子滲氮存在的不足是:滲氮效率極低,獲得需求厚度的N相滲層需要幾十 h甚至更長的滲氮時間?;诖?,探索一種既能保障不銹鋼的高耐蝕性、高耐磨性要求,又具有高效率的表面改性技術具有重要的研究價值。

基于Ti為強氮化物形成元素,離子滲氮過程中可優先與N結合形成氮化物,抑制鉻氮化物的形成,從而保障不銹鋼的耐蝕性。同時,鈦氮化物TiN/Ti2N具有極高的硬度,能夠顯著改善不銹鋼表面耐磨性[11-15]。同時,Ti作為促進相(鐵素體)的形成元素,有利于促進離子滲氮過程中形成N相,基于N相比N相具有更好的強化效果,從而達到進一步提高滲層硬度的效果[16-17]。為此,本研究首次探索在離子滲氮時添加微量Ti,從而實現奧氏體不銹鋼鈦催滲低溫離子滲氮(LPNTi),旨在保障304奧氏體不銹鋼耐蝕性前提下,研發低溫高效高耐磨性創新表面改性技術。

1 實驗材料與方法

選用固溶態304奧氏體不銹鋼為實驗材料,其化學成分如表1所示。將工件加工成尺寸為10 mm× 10 mm×5 mm的試樣,使用240 目~2 000目的SiC砂紙依次進行打磨,再將試樣放于無水乙醇中,使用超聲波清洗10 min,取出后吹干待用。

表1 304奧氏體不銹鋼化學成分(質量分數,%)

Tab.1 Chemical composition of 304 austenitic stainless steel (mass fraction, %)

將304奧氏體不銹鋼試樣放入離子滲氮爐中,每爐放置5個相同尺寸試樣,并在試樣周圍均勻擺放形狀尺寸及質量基本相同的海綿鈦(純度為99.1%~ 99.7%)顆粒進行鈦催滲離子滲氮,海綿鈦添加量為每個試樣周圍擺放0.8 g~2.0 g。在滲氮之前先通入氫氣進行濺射30 min,之后通入氮氣與氫氣(N2∶H2=1∶3)進行鈦催滲離子滲氮,設定爐壓為420 Pa,溫度為420 ℃,達到指定溫度后保溫4 h。實驗結束后,待爐內溫度冷卻至室溫,取出試樣進行組織與性能分析。

使用光學顯微鏡觀察不同工藝條件下的試樣截面顯微組織并分析滲層厚度變化。使用X射線衍射儀(XRD)測試物相組成。使用掃描電子顯微鏡(SEM)觀察最佳添加量條件下的試樣表面形貌并進行EDS能譜分析。使用維氏顯微硬度計測量表面顯微硬度,載荷與保荷時間分別為:25 g、15 s,每個試樣測量5次確定平均硬度值及誤差帶。使用摩擦磨損試驗機測量耐磨性,對磨材料為直徑約為5 mm的GCr15鋼球,加載載荷為2.5 N,對磨時間為15 min,總滑動距離為40 m,重復3次試驗,以平均摩擦系數值作為最終摩擦系數值。使用精度為0.1 mg的電子分析天平在磨損試驗前后稱量試樣重量,計算質量磨損率,為進一步對比磨損率,使用景深數字顯微鏡觀察最佳添加量條件下的試樣磨痕表面形貌,記錄磨痕最大深度、寬度及面積數據,綜合分析滲層的耐磨性能。使用電化學工作站測試耐蝕性,腐蝕液為濃度為3.5%的NaCl溶液,參比電極為標準飽和甘汞電極,輔助電極為鉑電極,實驗溫度為室溫,動電位掃描速率為2 mV/s。

以上數據均使用Origin軟件作圖,通過對比,分析鈦催滲離子滲氮對304奧氏體不銹鋼組織及性能的影響。

2 實驗結果與討論

2.1 截面金相組織及滲氮層厚度分析

依據離子滲氮國家標準GB/T 11354-2005[18],離子滲氮工藝設計的原則是在不改變基體組織的前提下,在零部件表層形成高性能滲氮層。觀察離子滲氮試樣截面金相組織最主要目的是為了測試滲氮層厚度,滲氮層厚度即為沿截面金相組織垂直方向測量從試樣表面至與基體組織有明顯分界處的距離。同時,通過對比相同滲氮時間條件下形成的滲氮層厚度可以判斷滲氮效率,即相同滲氮時間形成的滲氮層越厚,滲氮效率越高。圖1為低溫常規離子滲氮和鈦催滲離子滲氮試樣的截面金相組織。由圖1可知,在420 ℃/4 h工藝條件下所有試樣表層都形成了滲氮層。同時,對比常規離子滲氮和鈦催滲離子滲氮試樣截面金相組織可看出,鈦催滲離子滲氮處理的滲氮層厚度明顯厚于常規離子滲氮,且隨鈦含量增加而不斷增加。當鈦添加量達到1.6 g時,滲氮層厚度達到極大值48.32 μm,是常規離子滲氮的4倍以上。再進一步增加鈦添加量到2.0 g時,滲層厚度不再提升,反而略有減薄。由此可得出結論:鈦催滲離子滲氮工藝效率明顯高于常規離子滲氮,且工藝效率與鈦添加量密切相關,在鈦添加量為1.6 g時,工藝效率最高,達到常規離子滲氮工藝效率的4倍以上。

圖1 低溫常規離子滲氮和鈦催滲離子滲氮(420 ℃/4 h)試樣截面金相組織

2.2 滲層物相分析

圖2為低溫常規離子滲氮和鈦催滲離子滲氮試樣X射線衍射譜。由圖2可知,304奧氏體不銹鋼基體主要由相與微量相組成。經低溫離子滲氮處理后,相衍射峰強度減小,并形成了N衍射峰,同時相衍射峰消失,說明表層形成了一定量過飽和含氮奧氏體,即N或相。經鈦催滲低溫離子滲氮處理后,相衍射峰強度隨鈦含量增加而逐漸減小,在鈦添加量為1.6 g以上時完全消失,同時,N衍射峰強度增加,并形成一定量N,由此說明微量鈦不僅加速N相形成,還有助于促進相向相轉變,從而形成過飽和含氮鐵素體型固溶體,即N相。N相類似于馬氏體,具有比N更高的硬度[19-20]。同時,鈦催滲離子滲氮處理后,還新增了Ti2N相,Ti2N是一種硬度高、摩擦系數低的化合物。Ti2N與N的共同強化作用,將顯著提升鈦催滲離子滲氮滲層硬度,該推測與圖4顯示的表面硬度結果吻合。

圖2 低溫常規離子滲氮和鈦催滲離子滲氮(420 ℃/4 h)試樣XRD圖譜

2.3 表面形貌及微區成分分析

圖3為低溫常規離子滲氮和鈦催滲離子滲氮試樣表面形貌及微區能譜分析。通過表面形貌對比可知,鈦催滲離子滲氮處理后,表面新增了大量彌散分布的顆粒,同時通過對比所選微區的EDS分析可發現,鈦催滲離子滲氮處理試樣表面含有2.2 % Ti元素,且N含量顯著提升到16%,由此說明表面新增的鈦能大幅促進活性N在表面吸附,提升試樣表面N濃度,從而顯著提升滲氮效率,該分析與圖1顯示的滲氮層厚度顯著提升結果吻合。

圖3 低溫鈦催滲離子滲氮(420 ℃/4 h)試樣表面SEM形貌(500x)及掃描區域能譜分析圖

2.4 表面硬度分析

圖4為低溫常規離子滲氮和鈦催滲離子滲氮試樣表面硬度。由圖4可知,鈦催滲離子滲氮處理的表面硬度隨鈦含量增加而不斷提高,當鈦添加量達到1.6 g時,表面硬度由978HV0.025提高到極大值的1 350HV0.025,比常規離子滲氮提升了372HV0.025。再進一步增加鈦添加量到2.0 g時,表面硬度不再提高,反而略有下降。結合圖1可得出結論:鈦催滲離子滲氮不僅工藝效率顯著提高、且表面硬度顯著提升?;赬RD(如圖2所示)及能譜(如圖3所示)分析結果,可以推斷鈦催滲離子滲氮處理表面硬度顯著提升的主要原因是滲氮層形成了大量彌散分布的高硬Ti2N相及少量高硬度N相。

圖4 低溫常規離子滲氮和鈦催滲離子滲氮(420 ℃/4 h)試樣表面硬度

2.5 耐磨性分析

圖5為低溫常規離子滲氮和鈦催滲離子滲氮試樣摩擦系數曲線。由圖5可知,常規低溫離子滲氮摩擦因數約為0.96,摩擦因數隨著Ti添加量的增加而逐漸減小,在添加量達到1.6 g時,試樣摩擦因數最低,約為0.42。圖6為低溫常規離子滲氮和鈦催滲離子滲氮試樣磨痕形貌及磨損截面掃描圖。對比可知,鈦催滲離子滲氮試樣的最大深度、磨痕寬度和磨損面積都顯著小于常規離子滲氮試樣,鈦催滲離子滲氮磨痕的最大深度、寬度和磨損面積分別為3.12 μm、250 μm、498 μm2;常規離子滲氮則分別為9.61 μm、320 μm、1 388 μm2。

圖5 低溫常規離子滲氮和鈦催滲離子滲氮(420 ℃/4 h)試樣摩擦系數對比

圖6 低溫離子滲氮和鈦催滲離子滲氮(420 ℃/4 h)試樣磨痕形貌、截面磨痕及磨痕尺度對比

同時,磨損試驗前后采用天平測量了試樣質量,磨損率的計算,見式(1)。

δ = (0)/×(1)

式中:為磨損率;0為試樣磨損前質量;為磨損后質量;為摩擦副重量;為摩擦副移動距離。

通過上述計算,得出常規低溫離子滲氮磨損率為20.9 μg/(N·m),鈦催滲低溫離子滲氮試樣磨損率顯著降低到7.4 μg/(N·m)。結合圖5與圖6的結果,可以獲得結論:與常規離子滲氮相比,鈦催滲離子滲氮處理可以顯著提高304不銹鋼的耐磨性。

2.6 耐蝕性分析

圖7為低溫常規離子滲氮和鈦催滲離子滲氮試樣極化曲線,表2為不同工藝條件下的極化曲線擬合的電化學參數。結合表2和圖7可知,常規低溫離子滲氮試樣腐蝕電位比基體略有提升,即耐蝕性略有改善。而鈦催滲離子滲氮試樣與常規低溫離子滲氮相比,耐蝕性進一步改善,當添加量達到1.6 g時,耐蝕性最佳,腐蝕電位由–320.77 mV增加至–316.68 mV,腐蝕電流密度由0.404 μA/cm2降低至0.133 μA/cm2,腐蝕速率由6.73 μm/a降低至3.68 μm/a。

以上結果表明,低溫高效鈦催滲離子滲氮不僅沒有降低304奧氏體不銹鋼耐蝕性,反而使其耐蝕性略有改善,其可能原因是:鈦催滲離子滲氮后,氮化層更厚,且耐蝕性極佳的N相含量增加。

圖7 低溫常規離子滲氮和鈦催滲離子滲氮(420 ℃/4 h)試樣極化曲線

表2 圖7極化曲線擬合的電化學參數

3 機理分析討論

鈦催滲低溫離子滲氮與常規離子滲氮綜合效果對比見表3。由表3可知,在420 ℃/4 h工藝條件下,當Ti添加量為1.6 g時,滲氮層厚度較常規低溫離子滲氮提升了4倍以上,即工藝效率提高4倍以上。同時,在保障耐蝕性的前提下,顯著提升了試樣表面硬度和耐磨性。

基于轟擊濺射理論,在鈦催滲離子滲氮過程中,海綿鈦被轟擊出Ti+,從而增強了高能離子對試樣表面的轟擊濺射作用,使表層產生更多缺陷(空位、位錯及亞晶界等)[21],為氮原子的擴散提供更有利的條件;另一方面,Ti作為一種強氮化物元素,與N的親和力很強[22],活性Ti原子周圍吸附聚集大量活性N原子,使表面N濃度大幅提高,濃度梯度的提升有利于加速其向內部擴散。因此,Ti對離子滲氮具有顯著催滲作用,達到顯著提升滲氮層厚度的效果。

同時,相較于常規離子滲氮,鈦催滲離子滲氮試樣表面硬度與耐磨性大幅提升,原因是由于活性Ti原子與活性N原子易結合形成高硬度氮鈦化合物,從而大幅提升表面硬度及耐磨性[23-25];此外,Ti為促進相(鐵素體)形成元素,從而促進過飽和固溶體N形成,基于過飽和固溶體N比N強化效果更好,有利于進一步提高表層硬度[26]。因此,低溫鈦催滲離子滲氮能大幅提升表面硬度與耐磨性是多種強化相因素共同作用的結果。

表3 鈦催滲低溫離子滲氮與常規離子滲氮綜合效果對比

Tab.3 Comparison of the comprehensive effects of conventional plasma nitriding and low temperature plasma Ti-nitriding

4 結論

在420 ℃/4 h工藝條件下,對304奧氏體不銹鋼進行鈦催滲低溫離子滲氮處理,與常規低溫離子滲氮對比,得出如下結論。

1)鈦催滲低溫離子滲氮處理時,滲氮層厚度隨Ti添加量的增加而增加,當Ti添加量達到1.6 g時,鈦催滲低溫離子滲氮催滲效果最為顯著,滲氮層厚度由常規低溫離子滲氮處理的11.37 μm增加到48.32 μm,即滲氮層工藝效率提升4倍以上。

2)鈦催滲低溫離子滲氮滲層主要由S相和αN及表面彌散分布的Ti2N組成,與常規低溫離子滲氮相比,新增了Ti2N和αN。

3)鈦催滲低溫離子滲氮處理后,表面硬度隨Ti添加量增加而提升,當Ti添加量達到1.6 g時,由常規低溫離子滲氮的978HV0.025提升至1 350HV0.025。

4)鈦催滲低溫離子滲氮后,相較于常規不銹鋼低溫離子滲氮,耐蝕性進一步改善。

5)鈦催滲低溫離子滲氮試樣耐磨性隨Ti添加量增加而提高,當Ti添加量達到1.6 g時,耐磨性能最佳,磨痕變窄變淺、磨痕面積減少。摩擦因數由常規低溫離子滲氮的0.96降低至0.42。磨損率由20.9 μg/(N·m)降低至7.4 μg/(N·m),下降約2/3。

[1] UNAL O, MALEKI E, VAROL R. Comprehensive Analysis of Pulsed Plasma Nitriding Preconditions on the Fatigue Behavior of AISI 304 Austenitic Stainless Steel[J]. Inter-national Journal of Minerals Metallurgy and Materials, 2021, 28(4): 657-664.

[2] LI Y XU H Z, ZHU F, et al. Low Temperature Anodic Nitriding of AISI304 Austenitic Stainless Steel[J]. Mate-rials Letters, 2014, 128: 231-234.

[3] LU Y Y, WU J Q, WEI K X, et al. Dynamic Equilibrium of the Surface Oxide Film During Plasma Oxynitrocarbu-rising and Its effect on Performances[J]. Journal of Mate-rials Research and Technology, 2022, 20: 2271-2276.

[4] 孫斐, 胡佳佳, 王樹凱, 等. 氣壓對304奧氏體不銹鋼低溫離子滲氮組織與性能影響[J]. 材料熱處理學報, 2014, 35(S2): 221-225.SUN Fei, HU Jia-jia, WANG Shu-kai, et al. Effect of Gas Pressure in Low Temperature Plasma Nitriding on the Microstructure and Properties for 304 Austenitic Stainless Steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(S2): 221-225.

[5] BORGIOLI F, GALVANETTO E, BACCI T. Low Tem-perature Nitriding of AISI300 and 200 Series Austenitic Stainless Steels[J]. Vacuum, 2016, 127: 51-60.

[6] 吳夢澤, 李烈軍, 彭繼華. 氫氮比對奧氏體不銹鋼低溫離子滲氮性能的影響[J]. 材料熱處理學報, 2018, 39(9): 105-112.WU Meng-ze, LI Lie-jun, PENG Ji-hua. Effect of Hyd-rogen to Nitrogen Ratio on Low Temperatureion Nitri-ding of Austenitic Stainless Steel[J]. Transactions of Ma-terials and Heat Treatment, 2018, 39(9): 105-112.

[7] 王引真, 馮雅, 孫永興, 等. 表面納米化與離子滲氮對304不銹鋼的影響[J]. 材料科學與工藝, 2019, 27(1): 59-64. WANG Yin-zheng, FENG Ya, SUN Yong-xing, et, al. Effect of Surface Nanocrystallization and Plasma Nitri-ding Parameters on 304 Stainless Steel[J]. Materials Scie-nce and Technology, 2019, 27(1): 59-64.

[8] LI D, WU J Q, MIAO B, et al. Enhancement of Wear Resistance by Sand Blasting-assisted Rapid Plasma Nitri-ding for 304 Austenitic Stainless Steel[J]. Surface Engi-neering, 2020, 36, 5: 524-530

[9] WANG L. Surface Modification of AISI304 Austenitic Stainless Steel by Plasma Nitriding[J]. Applied Surface Science, 2003, 211: 308-314.

[10] DONG H. S-phase Surface Engineering of Fe-Cr, Co-Cr and Ni-Cr alloys[J]. International Materials Reviews, 2010, 55(2): 65-98.

[11] WANG S K, CAI W, LI J C, et al. A Novel Rapid D.C. Plasma Nitriding at Low Gas Pressure for 304 Austenitic Stainless Steel[J]. Materials Letters, 2013, 105: 47-49.

[12] 張乘瑋, 付天琳, 陳涵悅, 等. 鈦合金縫隙腐蝕、離子滲氮與表面納米化的研究進展[J]. 表面技術, 2019, 48(11): 114-123.ZHANG Cheng-wei, FU Tian-lin, CHEN Han-yue, et al. Research Progress on Crevice Corrosion, Plasma Nitri-ding and Surface Nanocrystallization of Titanium Alloys[J]. Surface Technology, 2019, 48(11): 114-123.

[13] 鐘厲, 王帥峰, 門昕皓, 等. 38CrMoAl鋼鈦催滲等離子氮化工藝研究[J]. 表面技術, 2021, 50(12): 159-166.ZHONG Li, WANG Shuai-feng, MEN Xin-hao, et al. Research on Plasma Nitriding Process of 38CrMoAl Steel with Ti Catalyst[J]. Surface Technology, 2021, 50(12): 159-166.

[14] 麻恒, 趙曉兵, 魏坤霞, 等. 42CrMo4鋼硼氮離子復合滲與離子滲氮對比研究[J]. 表面技術, 2022, 51(4): 121-126. MA Heng, ZHAO Xiao-bing, WEI Kun-xia, et al. Com-parative Study of Plasma Boron-nitriding and Plasma Nitriding for 42CrMo4 Steel. Surface Technology, 2022, 51(4): 121-126.

[15] 毛長軍, 魏坤霞, 劉細良, 等. 微量鈦對離子滲氮滲層特性及性能的影響[J]. 中國表面工程, 2020, 33(1): 34- 38. MAO Chang-jun, WEI Kun-xia, LIU Xi-liang, et al. Effects of Trace Titanium on Characteristics and Proper-ties of Plasma Nitriding Layer[J]. China Surface Enginee-ring, 2020, 33(1): 34-38.

[16] LI G J, WANG J, LI C, et al. Microstructure and Dry- sliding Wear Properties of DC Plasma Nitrided 17-4 PH Stainless Steel[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Ma-terials and Atoms, 2008, 266(8): 1964-1970.

[17] 李小英, 田林海, 竇文博, 等.經濟型雙相不銹鋼的離子氮化及其組織結構和腐蝕磨損性能[J]. 中國表面工程, 2015, 28(3): 1-9. LI Xiao-ying, TIAN Lin-hai, DOU Wen-bo, et al. Micros-tructure and Corrosion Wear Resistance of Plasma Nit-rided LDX2101 Lean Duplex Stainless Steel[J]. China Surface Engineering, 2015, 28(3): 1-9.

[18] GB/T 11354-2005, 鋼鐵零件滲氮層深度測定和金相組織檢驗[S]. GB/T 11354-2005, Determination of Nitrided Case Depth and Metallographic Microstructure Examination for Steel and Iron Parts[S].

[19] SHEN L, WANG L, WANG Y, et al. Plasma Nitriding of AISI304 Austenitic Stainless Steel with Pre-shot Peening[J]. Surface and Coatings Technology, 2010, 204(20): 3222- 3227.

[20] AMUTH S, SASIDHAR K N, MEKA S R. High Nitrogen Alloying of AISI316L Stainless Steel Powder by Nitri-ding[J]. Powder Technology, 2021, 390(693): 456-463.

[21] LI R T, WEI K X, ZHAO X B, et al. Excellent Behavior of Coatings on 304 Stainless Steel by Efficient Low Tem-perature Plasma Titanium-nitriding[J]. Materials Letters, 2022, 324: 132795.

[22] KHIDIROV I. Revision of the Ti-N Phase Diagram as Probed by Neutron Diffraction[J]. Russian Journal of Inorganic Chemistry, 2011, 56(2): 298-303.

[23] LIU L, SHEN H H, LIU X Z, et al. Wear Resistance of TiN(Ti2N)/Ti Composite Layer Formed on C17200 Alloy by Plasma Surface Ti-alloying and Nitriding[J]. Applied Surface Science, 2016, 388: 1-6.

[24] PERUMAL P, RAMANATHAN K, GANESAN L, et al. Investigation of TiN Coating Uniformity and Its Cor-rosion Behaviour Using Image Process[J]. Materials Res-earch Express, 2019, 6(4): 1-21.

[25] BATORY D, SZYMANSKI W, PANJAN M, et al. Plasma Nitriding of Ti6Al4V Alloy for Improved Water Erosion Resistance[J]. Wear, 2017, 374: 120-127.

[26] WANG X G, YAN M F, LIU R L, et, al. Effect of Rare Earth Addition on Microstructure and Corrosion Behavior of Plasma Nitrocarburized M50NiL Steel[J]. Journal of Rare Earths, 2016, 34(11): 1148-1155.

Effect of Low Temperature Plasma Nitriding with Ti Catalyst on the Microstructure and Properties of 304 Stainless Steel

1a,b,1a,31a,b,1a,2,1a,c,1a,b,2*

(1. a. Jiangsu Key Laboratory of Materials Surface Science and Technology, b. National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Jiangsu Changzhou 213164, China; 2. Huaide College, Changzhou University, Jiangsu Jingjiang 214500, China; 3. Institute of Modern Equipment Manufacturing, Changzhou Institute of Industry Technology, Jiangsu Changzhou 213164, China)

304 austenitic stainless steel has excellent corrosion resistance, but its poor hardness and wear resistance make it hard to meet the requirements in some applications, and thus surface modification is required to promote its practical applications. Plasma nitriding (PN) is a widely used surface modification technology, while higher temperature plasma nitriding results in a decrease of the corrosion resistance and lower temperature plasma nitriding (LPN) brings about quite low efficiency. In order to overcome the problems in the traditional plasma nitriding, low temperature plasma nitriding with Ti catalyst is primarily proposed in this study, and the research aims to effectively enhance the hardness and wear resistance without reduction of corrosion resistance and with high efficiency. To reach this research goal, low temperature plasma nitriding with Ti catalyst (LPNTi) was conducted at 420 ℃ for 4 h by putting some amount of sponge titanium around the samples during plasma nitriding, and the effect of plasma nitriding with Ti catalyst on the microstructure and properties of 304 austenitic stainless steel was systematically investigated by optical microscope, SEM, EDS, X-ray diffractometer (XRD), microhardness tester, friction and wear tester, electrochemical workstation, etc. The results indicated that excellent corrosion resistance of 304 austenitic stainless steel was kept and even turned to be better after plasma nitriding with Ti catalyst compared with that under traditional plasma nitriding, with the corrosion potential increasing from –320.77 mV to –316.68 mV. SEM, XRD and EDS analysis showed that LPNTi layer was mainly composed of S phase, αNand a little Ti2N with high hardness, which meant that Ti was helpful for the phase transformation of γ to α, and αNwas formed due to this phase transformation. The surface hardness could be significantly enhanced from 978HV0.025 by plasma nitriding to 1350HV0.025 by plasma nitriding with Ti catalyst due to the double strengthening effect from αNand Ti2N, which was more than 6 times of 208HV of the matrix. Meanwhile, the wear resistance was dramatically enhanced, the friction coefficient decreased from 0.96 to 0.42, the weight wear rate decreased from 20.9 μg/(N·m) to 7.4 μg/(N·m), decreasing by about 2/3, and the wear marks became much narrower and shallower and the wear area was reduced greatly. More importantly, the nitriding efficiency was remarkably improved as well, with the thickness of nitrided layer increasing from 11.37 um by PN to 48.32 um by LPNTi under the same nitriding condition of 420 ℃/4 h, more than 4 times thicker than that by PN. In all, the excellent corrosion resistance of 304 austenitic stainless steel can be held and even becomes better after low temperature plasma nitriding with Ti catalyst (LPNTi) treatment. The surface hardness and wear resistance can be dramatically enhanced due to the formation of S phase strengthened by αNand a little Ti2N. More importantly, the treatment efficiency of plasma can be remarkably improved, which is more than 4 times of that by plasma nitriding.

Ti catalyst; plasma nitriding; 304 austenitic stainless steel; corrosion resistance; hardness; wear resistance

2022-08-03;

2023-02-16

TG178

A

1001-3660(2023)10-0422-08

10.16490/j.cnki.issn.1001-3660.2023.10.038

2022-08-03;

2023-02-16

國家自然科學基金(21978025, 51774052);江蘇省第三期優勢學科建設項目(PAPD-3);江蘇高校品牌專業建設工程資助項目(TAPP);材料表面科學與技術重點實驗室開放課題;江蘇省研究生創新基金項目(CX10292)

The "National Natural Science Foundation of China (21978025; 51774052); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-3); Top-notch Academic Program Projects of Jiangsu Higher Education Institutions (TAPP); Open Project of Jiangsu Key Laboratory of Materials Surface Science and Technology and Postgraduate Research & Practice Innovation Program of Jiangsu Province(CX10292)

李潤濤, 孫斐, 汪丹丹, 等. 鈦催滲低溫離子滲氮對304不銹鋼組織性能的影響[J]. 表面技術, 2023, 52(10): 422-429.

LI Run-tao, SUN Fei, WANG Dan-dan, et al. Effect of Low Temperature Plasma Nitriding with Ti Catalyst on the Microstructure and Properties of 304 Stainless Steel[J]. Surface Technology, 2023, 52(10): 422-429.

通信作者(Corresponding author)

責任編輯:藍英僑

猜你喜歡
滲氮耐蝕性奧氏體
某大修曲軸滲氮工藝研究
時效硬化滲氮鋼的開發與應用
磷對鋅-鎳合金耐蝕性的影響
GGG-NiMn13 7無磁奧氏體球墨鑄鐵熔煉工藝研究
AZ31B鎂合金復合鍍鎳層的制備及其耐蝕性研究
考慮滲氮層影響的活塞銷疲勞強度研究
Ghosts in the shell: identif i cation of microglia in the human central nervous system by P2Y12 receptor
不銹鋼低壓真空滲氮組織與性能研究
超級奧氏體不銹鋼254SMo焊接接頭耐蝕性能
500 MPa 級高建鋼形變奧氏體連續冷卻轉變行為研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合