?

雜草對9類常用不同作用機制除草劑的非靶標抗性機制研究進展

2024-02-06 14:39馬紅王月超孫瑩高紅陶波韓玉軍
植物保護 2024年1期
關鍵詞:草甘膦靶標除草劑

馬紅 王月超 孫瑩 高紅 陶波 韓玉軍

摘要

除草劑的應用為農業生產帶來便利,但長期、單一使用某一種或相同機制的除草劑也引發了雜草對除草劑的抗性問題??剐噪s草種類逐漸增加,抗性形成機制復雜,導致農田雜草的治理難度增加。雜草對除草劑的抗性機制主要分為兩種,一種是除草劑靶標位點基因的突變或過量表達導致的靶標抗性,另一種是雜草對除草劑吸收、轉運、固存和代謝等一個或多個生理過程發生變化導致的非靶標抗性。本文綜述了雜草對9類不同作用方式除草劑的非靶標抗性機制的生理、生化和分子基礎的研究進展,以期為抗性雜草綜合治理提供參考。

關鍵詞

雜草;?除草劑;?作用方式;?非靶標抗性;?抗性機制

中圖分類號:

S?481.4;?S?451.1

文獻標識碼:?A

DOI:?10.16688/j.zwbh.2022688

Advances?in?nontarget?resistance?mechanisms?of?weeds?to?nine?kinds?of?commonly?used?herbicides?with?different?mechanisms?of?action

MA?Hong1,?WANG?Yuechao1,2,?SUN?Ying1,?GAO?Hong1,?TAO?Bo1,?HAN?Yujun1*

(1.?College?of?Plant?Protection,?Northeast?Agricultural?University,?Harbin?150030,?China;?2.?Crop?Resources?

Institute,?Heilongjiang?Academy?of?Agricultural?Sciences,?Harbin?150086,?China)

Abstract

The?application?of?herbicides?has?brought?convenience?to?agricultural?production,?but?longterm?use?of?single?herbicide?or?herbicides?with?the?same?mode?of?action?has?caused?the?problem?of?weed?resistance?to?herbicides.?The?types?of?resistant?weeds?keep?increasing,?and?the?formation?mechanism?of?resistance?is?complex,?which?leads?to?the?difficulty?in?the?control?of?weeds?in?farmlands.?The?resistance?mechanisms?of?weeds?to?herbicides?are?mainly?divided?into?two?types.?One?is?target?resistance?caused?by?mutations?or?overexpression?of?herbicidetargeted?genes,?and?the?other?is?nontarget?resistance?caused?by?changes?in?one?or?more?physiological?processes?such?as?herbicide?uptake,?transport,?sequestration,?and?metabolism.?In?this?review,?the?physiological,?biochemical?and?molecular?bases?of?nontarget?resistance?mechanisms?of?weeds?to?nine?kinds?of?herbicides?with?different?action?modes?were?summarized?to?provide?a?reference?for?the?comprehensive?management?of?resistant?weeds.

Key?words

weeds;?herbicides;?mode?of?action;?nontarget?resistance;?resistance?mechanism

農田雜草的發生使我國每年糧食產量下降1?750萬t,嚴重威脅我國糧食安全[1]。除草劑的引入有效控制了農田雜草的發生和危害,提高了作物的產量和質量[2]。然而,相同作用機理的除草劑連續重復施用,導致雜草對除草劑的抗性問題日益嚴重。目前,全球已有72個國家的96種作物田的267種雜草對除草劑產生抗性,其中涉及513個抗除草劑生物型[3]。雜草抗藥性的形成主要與雜草的生物學特性、除草劑的特性與選擇壓力、農藝措施等有關[4]。了解除草劑的作用機制可以在很大程度上預測雜草抗性的發展方向,減緩雜草抗藥性形成的速度,制定合理的雜草綜合治理策略。以往的研究報道中除草劑抗性多數集中在靶標抗性上,對非靶標抗性方面的研究較少。但近年來,非靶標抗性方面的研究逐漸得到了重視。本文就雜草對幾種常見不同作用機制除草劑的非靶標抗性機制的研究進展進行總結。

1?雜草對除草劑抗性機制研究概況

雜草對除草劑抗性指雜草在接觸到對野生型雜草具有致死效果的除草劑劑量后,能夠生存和繁殖的遺傳能力[5]。雜草對除草劑的抗性大致可分為靶標抗性和非靶標抗性[5]。靶標抗性主要是指除草劑靶標位點基因的突變導致靶標蛋白對除草劑敏感性下降或靶標蛋白過量表達[6],靶標抗性主要由單基因性狀決定[7]。雜草對除草劑的非靶標抗性機制比靶標抗性機制復雜得多[8]。非靶標抗性機制是到達靶標位點的除草劑有效成分減少,包括雜草對除草劑吸收/轉運的減少、代謝解毒除草劑能力的增強以及對除草劑的屏蔽作用等,從而降低除草劑對雜草的傷害[56]。雜草對除草劑非靶標抗性中最常見的機制就是代謝解毒能力增強[9],這種作用受到多種酶的調控。多數情況下植物完成對除草劑的解毒作用需要4個階段,首先由細胞色素P450單加氧酶(CYP450s)或其他氧化酶將除草劑氧化,隨后谷胱甘肽?S轉移酶(GSTs)或糖基轉移酶(GTs)等與第一步產物結合,通過ABC轉運蛋白等將結合物轉運至液泡或細胞外,最后將液泡中或細胞外的產物降解完成對除草劑的解毒作用[5]。雖然也有研究報道在一些雜草中發現了單基因遺傳的非靶標抗性,但涉及解毒酶的非靶標抗性通常是由多基因調控的,并且不同雜草對不同作用機制除草劑或同一作用機制的不同除草劑的解毒調控基因以及解毒方式也不盡相同,可能導致同種雜草對作用機制完全不同的其他種類除草劑產生抗性[7,10]。因此關于除草劑非靶標抗性的研究有利于挖掘雜草對不同作用機制除草劑的抗性基因,從酶學、分子及代謝等不同方面研究雜草對不同除草劑抗藥性問題。

2?雜草對不同作用機制除草劑的非靶標抗性機制的研究進展

2.1?雜草對乙酰乳酸合酶(ALS)抑制劑的非靶標抗性機制

ALS抑制劑類除草劑自1982年投入使用后,雜草對該類除草劑抗性即開始逐漸發展,1998年以后對該類除草劑有抗性雜草的種類數量已超過其他類型除草劑[11],在所有作用方式除草劑中位列第一。目前,全球有170種雜草對ALS抑制劑產生抗性,其中我國報道的有17種[3]。ALS抑制劑類除草劑也被稱為乙酰羥基酸合成酶(AHAS)抑制劑,主要抑制支鏈氨基酸異亮氨酸、亮氨酸和纈氨酸的生物合成[12]。ALS抑制劑作為高效、廣譜的除草劑,可以應用于玉米、大豆、水稻、小麥和油菜等多種作物田。目前已經報道的抗ALS抑制劑的雜草中,多數是氨基酸突變引起的靶標抗性起到主要作用,但也有文獻報道雜草對除草劑代謝的增強提高了雜草對ALS抑制劑的抗性,說明抗ALS抑制劑的雜草中存在非靶標抗性機制[11]。

大量研究證明,代謝抗性是雜草對ALS抑制劑產生非靶標抗性的主要途徑,在這個過程中CYP450s基因的過量表達起了重要作用。Zhao等[13]在對抗甲基二磺隆看麥娘Alopecurus?aequalis的抗性機制進行研究時發現CYP94A1和CYP71A4在抗性植株中過量表達。顏伯?。?4]發現CYP71C2基因介導硬稃稗Echinochloa?glabrescens對五氟磺草胺的抗性,并能賦予擬南芥Arabidopsis?thaliana抗五氟磺草胺。Shen等[15]在研究抗苯磺隆播娘蒿Descurainia?sophia時發現CYP77B34基因可以賦予擬南芥抗多種類型的除草劑,包括ALS抑制劑、原卟啉原氧化酶(PPO)抑制劑、超長鏈脂肪酸(VLCFA)合成抑制劑、光系統Ⅱ(PSⅡ)抑制劑等。劉健等[16]使用CYP450s抑制劑預處理抗五氟磺草胺稻稗Echinochloa?oryzoides后,其對五氟磺草胺抗性顯著降低,這說明CYP450s在其對ALS抑制劑的代謝抗性中起到很大作用。這種現象也存在于作物當中,Saika等[17]發現,秈稻中的CYP72A31使秈稻對雙草醚的耐受能力高于粳稻,過表達CYP72A31的擬南芥獲得了對芐嘧磺隆的耐藥性,CYP72A31可以提高雜草對雙草醚和芐嘧磺隆的代謝。除CYP450s外,ABC轉運蛋白也參與對ALS抑制劑的非靶標抗性[1821]。Liu等[18]在抗苯磺隆的鵝腸菜Stellaria?aquatica中發現了3個CYP450s基因和1個ABC轉運蛋白基因在所有抗性植株中均過量表達,這說明雜草對ALS抑制劑非靶標抗性形成中存在著多種基因和酶系的復合調控作用。

2.2?雜草對光系統Ⅱ(PSⅡ)抑制劑的非靶標抗性機制

光系統Ⅱ(PSⅡ)抑制劑通過競爭結合葉綠體光系統Ⅱ復合體中D1蛋白上的質體醌(QB)結合位點,阻礙電子從PSⅡ傳遞到PSⅠ,從而抑制NADPH和ATP的產生,使植物不能正常進行光合作用而死亡[22]。目前,全球共有87種,我國有3種雜草對PSⅡ抑制劑產生抗性[3]。

大多數情況下,PSⅡ抑制劑的抗性主要是通過CYP450s和/或GSTs對除草劑的代謝進行單一或復合調控。Nakka等[23]的研究發現,抗莠去津長芒莧Amaranthus?palmeri體內的GSTs與莠去津結合速度是敏感種群的24倍。Evans等[24]在糙果莧Amaranthus?tuberculatus中確認了1個Phi類GST基因AtuGSTF2與莠去津抗性有關,進一步發現,將莠去津施于抗莠去津糙果莧后6?h,約有92%的莠去津被GSTs結合,而在敏感植株中,92%的莠去津仍作為母體化合物保留在植株內[25]。Gray等[26]在苘麻Abutilon?theophrasti中發現谷胱甘肽共軛作用和N脫烷基作用可以代謝莠去津。此外,用CYP450s抑制劑1氨基苯并三氮唑進行預處理會導致抗性硬直黑麥草Lolium?rigidum對西瑪津的敏感性增加[27]。Svyantek等[28]發現,在編碼D1蛋白的psbA基因未突變的情況下,抗PSⅡ抑制劑的早熟禾Poa?annua對莠去津的吸收、轉運減少,CYP450s介導的早熟禾對除草劑的代謝增強,說明除了增強代謝外,吸收和轉運的減少也能促進雜草對PSⅡ抑制劑產生抗性。

2.3?雜草對5烯醇式丙酮酰莽草酸3磷酸合酶(EPSPS)抑制劑的非靶標抗性機制

草甘膦是一種非選擇性的廣譜除草劑,具有獨特的化學結構,其與磷酸烯醇式丙酮酸(PEP)競爭性結合EPSPS[29],使莽草酸途徑無法正常進行。EPSPS作為莽草酸途徑的關鍵酶,催化PEP和莽草酸3磷酸(S3P)合成氨基酸前體[3031]。莽草酸途徑受阻致使植物不能產生芳香族氨基酸色氨酸、酪氨酸和苯丙氨酸,導致植物的生長和發育受到抑制,進而死亡。目前全球有56種,我國有2種雜草對草甘膦產生了抗性[3]。

抗草甘膦雜草的非靶標抗性機制主要與轉運蛋白有關。Peng等[32]通過GSFLX?454焦磷酸測序發現,施用草甘膦后抗草甘膦小蓬草Erigeron?canadensis的幾個ABC轉運蛋白基因的表達量增加。Ge等[33]的研究發現,抗草甘膦小蓬草植株內超過85%的草甘膦被封存在液泡中,而敏感植株中只有15%。而且這種現象在施用草甘膦后的幾天之內不可逆轉[3335]。Pan等[36]發現,抗草甘膦稗草Echinochloa?crusgalli中定位于質膜的EcABCC8可以將草甘膦排出細胞,并且在EcABCC8基因序列一致的情況下,抗性植株中EcABCC8表達量更高,細胞中草甘膦含量更低。這些研究表明,轉運蛋白將草甘膦主動轉運至液泡內封存或排出細胞都可以增加雜草對草甘膦的抗性。

雜草對草甘膦產生抗性的另一個重要原因是代謝增強。研究發現,在施用草甘膦168?h后,耐性兩耳草Digitaria?insularis體內超過56%的草甘膦被代謝為氨甲基膦酸(AMPA)、乙醛酸、肌氨酸,而在敏感植株中只有10%草甘膦被代謝[37]。在抗性小蓬草中草甘膦也被快速代謝,在施用草甘膦后96?h,幾乎100%的草甘膦被代謝為AMPA、乙醛酸和肌氨酸[38]。植物和微生物中醛酮還原酶(AKR)基因的沉默或突變都會增加它們對草甘膦的敏感性。Vemanna等[39]的研究表明,在煙草Nicotiana?tabacum中過量表達假單胞菌Pseudomonas的PsAKR基因或水稻的OsAKR基因可獲得對草甘膦的抗性,Pan等[40]采用RNAseq分析澳大利亞的光頭稗Echinochloa?colona種群,發現了一種高活性的醛酮還原酶重疊群對草甘膦表現出代謝抗性;并且在表達EcAKR41的大腸桿菌Escherichia?coli中也發現了AMPA和乙醛酸等草甘膦代謝物,這與抗性稗草對草甘膦的代謝極為相似。

雜草對草甘膦吸收的減少也可以促使雜草對草甘膦產生低水平抗性。植株氣孔密度與大小,表皮毛密度等表觀性狀的差異都會影響雜草對草甘膦的吸收[41]。轉錄組測序(RNAseq)發現草甘膦處理后抗性多花黑麥草Lolium?multiflorum與敏感多花黑麥草中差異基因大部分與質膜有關,表明抗性雜草中可能存在阻止草甘膦進入細胞的屏障[42]。DominguezValenzuela等[43]在抗草甘膦紫菀Aster?squamatus種群中發現吸收減少、轉運減少以及代謝增加3種機制同時存在。Yanniccari等[44]在抗草甘膦扁穗雀麥Bromus?catharticus中也發現,相比于敏感型植株,草甘膦在抗性植株葉片上存留、吸收和轉運更少。

此外,研究者發現,草甘膦處理三裂葉豚草Ambrosia?trifida后其葉片會迅速枯萎,從植物上脫落[4546]。這種死亡脫落的快速響應機制一定程度上限制了草甘膦在植物體內的移動,即減少了除草劑的轉運,含有草甘膦的組織脫落后,植株可以繼續生長。應用外源苯丙氨酸和酪氨酸可以很大程度上逆轉這種快速響應,并且抗性植株中葉片脫落部位活性氧增加,說明這種逆轉機制可能與莽草酸途徑失調和活性氧的積累有關。

2.4?雜草對乙酰輔酶A羧化酶(ACCase)抑制劑的非靶標抗性機制

乙酰輔酶A羧化酶(ACCase)是合成脂肪酸的關鍵酶,對植物的生存至關重要[47]。ACCase抑制劑使雜草不能正常進行脂肪酸合成最終死亡[48]。作為重要的選擇性除草劑,ACCase抑制劑被大量應用后,雜草抗性發展迅速,迄今為止全球已有50種,我國有10種雜草對該類除草劑產生了抗性[3]。

雜草對ACCase抑制劑的抗性多數是CYP450s參與的代謝抗性。研究發現硬直黑麥草抗性種群可以快速降解禾草靈[4950],其代謝物與小麥中通過環羥基化和糖結合形成的代謝物很相似[51],表明雜草對ACCase抑制劑的抗性與小麥抗除草劑類似,存在CYP450s參與的代謝增強作用[5152]。胡椒基丁醚(PBO)或馬拉硫磷等預處理可以降低日本看麥娘Alopecurus?japonicus和棒頭草Polypogon?fugax對ACCase抑制劑的抗性[5354]。而CYP450誘導劑2,4滴預處理可提高禾草靈敏感型硬直黑麥草種群對禾草靈的代謝速率從而提高其抗性[55],證實了CYP450s在增強雜草代謝抗性中發揮作用。

除CYP450s的調控作用外,GSTs和GTs也參與對ACCase抑制劑代謝的調控。Gaines等[50]對抗禾草靈的硬直黑麥草進行RNAseq,發現2個CYP450s、1個GT和1個氮酸酯單加氧酶(NMO)基因在禾草靈代謝抗性中發揮作用。彭謙[56]通過RNAseq也明確了稗草對噁唑酰草胺的抗性與EcGSTF1基因有關。Pan等[57]在菵草Beckmannia?syzigachne對精噁唑禾草靈的非靶標抗性中發現CYP450s、GSTs、UDP以及酯酶在內的15個基因上調表達或突變,證實了多種酶在雜草對ACCase抑制劑非靶標抗性中起到調控作用。

2.5?雜草對合成生長素類除草劑的非靶標抗性機制

合成生長素類除草劑(SAH)是模擬天然植物激素吲哚3乙酸(IAA)的一類除草劑[58]。此類除草劑主要用于防除單子葉作物田中的闊葉雜草[59]。自1945年2,4滴引入并商用以來,SAH的應用已有70余年,雜草對SAH的抗性進化較為緩慢,到目前為止全球有41種,我國有5種雜草對合成生長素類除草劑產生抗性[3]。

雜草對SAH除草劑非靶標抗性機制之一是對SAH吸收減少,通常是由于葉片角質層或其他結構屏障阻礙除草劑吸收到植物體內[60]。對代謝水平一致的,抗、感2,4滴的野萵苣Lactuca?serriola植株同時施用2,4滴?96?h后,抗性植株葉片比敏感植株中2,4滴含量更少[6061]。證明了植株表型差異會影響除草劑吸收從而賦予雜草抗性。

SAH向作用部位傳導減少也是主要的非靶標抗性機制之一。東方大蒜芥Sisymbrium?orientale經2,4滴處理后72?h,抗性植物的葉片中大約殘留有77%的2,4滴,而在敏感植物中只有32%的2,4滴還保留在葉片中[62]??果湶菸返啬wBassia?scoparia的RNAseq分析表明,與麥草畏敏感地膚相比,抗性地膚體內影響生長素運輸的基因下調表達,這可能是導致地膚對麥草畏產生抗性的原因[63]。

另一個主要的抗性機制是SAH的快速代謝,在這個過程中CYP450s參與的環羥基化作用促進了除草劑的解毒代謝。在抗性糙果莧中,2,4滴的代謝速度比敏感植株快得多[64]。Torra等[65]發現抗2,4滴虞美人Papaver?rhoeas的根和地上部可以檢測到在敏感植株中檢測不到的兩種羥基代謝物,證實了抗性植株中存在CYP450s參與的羥基化作用,使植株對除草劑的代謝增強。此外,當用CYP450s抑制劑馬拉硫磷預處理后,抗SAH的糙果莧、虞美人、長芒莧對SAH的敏感性增加也說明了CYP450s參與雜草抗性的產生[6467]。

2.6 雜草對光系統Ⅰ(PSⅠ)抑制劑的非靶標抗性機制

百草枯是一種非選擇性的快速除草劑,它通過轉移PSⅠ的電子使光合作用受到抑制。百草枯接受單個電子生成還原性的陽離子自由基,其與氧進一步反應時生成超氧離子[68]。在有光的條件下,百草枯催化產生超氧離子,最終形成羥基自由基并導致脂質過氧化[6869]。目前全球共有32種,我國有5種雜草對光系統Ⅰ抑制劑產生抗性[3]。

已報道的對光系統Ⅰ抑制劑的非靶標抗性機制主要是通過液泡隔離減少除草劑轉運。研究發現,施用百草枯后抗性硬直黑麥草原生質體中百草枯含量比敏感植株高出2~3倍,表明除草劑可能被封存在液泡中[70]。在意大利黑麥草Lolium?perenne中也有類似抗百草枯機制的報道[71]。但這種抗性機制的分子基礎還有待證實。

2.7?雜草對原卟啉原氧化酶(PPO)抑制劑的非靶標抗性機制

在亞鐵血紅素和葉綠素合成過程中,原卟啉原氧化酶(PPO)的作用是將原卟啉原Ⅸ轉化為原卟啉Ⅸ[72]。PPO被抑制導致中間產物在細胞膜上積累,這些中間產物被光氧化,最終導致活性氧(ROS)的產生。ROS破壞細胞膜中的脂肪和蛋白質,使其發生脂質過氧化,破壞細胞膜結構,使細胞質外泄,最后造成植物死亡[7374]。目前全球已發現14種,我國發現3種雜草對PPO抑制劑產生抗性[3]。

關于PPO抑制劑抗性的報道多為靶標抗性[7577]。非靶標抗性的報道主要集中在長芒莧和糙果莧中,主要由CYP450s和GSTs調控。用馬拉硫磷預處理未發生基因突變的抗唑草酮糙果莧后發現其對唑草酮的敏感性增加,證明CYP450s參與了糙果莧對唑草酮的抗性[78]。同樣,對未發生基因突變的抗氟磺胺草醚的長芒莧進行馬拉硫磷或NBDcl預處理后其對氟磺胺草醚也更加敏感,也說明CYP450s和GSTs介導了其對氟磺胺草醚的抗性[7980]。

2.8?雜草對超長鏈脂肪酸(VLCFA)合成抑制劑的非靶標抗性機制

超長鏈脂肪酸(VLCFA)合成抑制劑影響超長鏈脂肪酸碳鏈延長[81]。超長鏈脂肪酸是合成甘油三酯、蠟質、磷脂和復雜的鞘脂的必要條件,對植物各種功能的發揮至關重要[82]。細胞分裂過程以及維持膜運輸途徑都需要磷脂和鞘脂[8284]。目前全球已經發現13種,我國發現2種雜草對超長鏈脂肪酸合成抑制劑產生抗性[3]。

雜草對超長鏈脂肪酸合成抑制劑的非靶標抗性機制主要為GSTs和CYP450s介導的代謝抗性。Busi等[85]在硬直黑麥草種群中發現了對砜吡草唑的代謝抗性,在施藥后24?h內大約88%的砜吡草唑被代謝,代謝產物可以與谷胱甘肽結合,并發現2個GST基因在抗性植株內2~6倍過表達。此外,Brabham等[86]在長芒莧中發現了對精異丙甲草胺的抗性,將GSTs抑制劑NBDcl加到瓊脂溶液中進行長芒莧的萌發試驗,觀察到了抗性長芒莧根系生長減少,表明GSTs參與了長芒莧的非靶標抗性。Strom等[87]發現GSTs抑制劑4氯7硝基苯呋喃唑和CYP450s抑制劑馬拉硫磷可降低抗性長芒莧代謝精異丙甲草胺的量。進一步試驗發現,長芒莧對精異丙甲草胺的代謝由第一階段O脫甲基化和第二階段與谷胱甘肽結合協同發揮作用,其中CYP450s介導的O脫甲基化反應賦予長芒莧對精異丙甲草胺的抗性[88]。Rangani等[89]發現ApGSTU19、ApGSTF8、ApGSTF2以及ApGSTF2like基因的過量表達使長芒莧根系中GSTs活性升高,與長芒莧對精異丙甲草胺的抗性密切相關。

2.9?雜草對對羥基苯丙酮酸雙加氧酶(HPPD)抑制劑的非靶標抗性機制

HPPD抑制劑能抑制對羥基苯丙酮酸雙加氧酶的活性,阻礙對羥基苯基丙酮酸(HPPA)向尿黑酸(HGA)的轉化,使質體醌和生育酚不能正常合成[90]。質體醌對電子從PSⅡ向PSⅠ轉移至關重要,也是類胡蘿卜素形成所需的八氫番茄紅素去飽和酶(PDS)的輔助因子[91]。HPPD抑制劑類除草劑大多抑制類胡蘿卜素的形成,導致葉綠素分子的光氧化和細胞膜的脂質過氧化,最終導致植物死亡[92]。

關于HPPD抑制劑的雜草抗性報道相對較少。截至目前,已經發現的抗HPPD抑制劑的雜草非靶標抗性主要是由CYT450s調控的除草劑代謝??瓜趸遣萃L芒莧體內的硝磺草酮在施用硝磺草酮24?h后被代謝90%以上[91]。并且抗硝磺草酮糙果莧可以通過二酮環的4羥基化促進對硝磺草酮的代謝[93]。此外,研究發現與環磺酮敏感型長芒莧相比,抗環磺酮植株中環磺酮被快速地4羥基化,糖基化,并伴隨著CYP450s的表達量增加[94]。Guo等[95]研究發現,CYP81A亞家族可以提高稻稗E.oryzoides對異噁草酮的代謝抗性,進而發現轉CYP81A12、CYP81A21、CYP81A15和CYP81A24基因的擬南芥對異噁草酮的抗性增加,表明CYP450s參與了異噁草酮的代謝[95]。此外,Hideo[96]在水稻中發現HIS?1基因編碼的Fe(Ⅱ)/2氧戊二酸依賴性加氧酶對β三酮類除草劑具有解毒作用,可以賦予水稻、擬南芥對β三酮類除草劑的抗性。但在雜草中是否存在與水稻相似的對HPPD類除草劑的代謝機制尚未得到證實,值得進一步深入研究。

3?展望

自除草劑普及后,抗性雜草的種類和數量逐年增多,抗性水平不斷提高,抗性雜草的治理難度也隨之增大。截至目前,我國已經有74個抗性個體共44個生物型抗性雜草在玉米、大豆、水稻、小麥等主要作物田及果園中發生較為嚴重[3,97],如不加以研究和治理,將會嚴重影響產量,對我國糧食安全造成嚴重威脅。了解雜草抗性生物型對除草劑的抗性水平和抗性機制有助于定制有效的雜草管理策略。相比于靶標抗性,非靶標抗性對雜草綜合治理帶來的威脅更大。非靶標抗性可能使雜草對不同作用機制的除草劑產生抗性,甚至對尚未上市的除草劑也會產生抗性。因此,了解非靶標抗性的進化機制,特別是CYP450s、GSTs、ABC轉運蛋白等多種酶調控的作用機制尤為重要。隨著轉錄組學、代謝組學、基因編輯等技術被應用到除草劑抗性機制的研究中,人們將更直觀地了解到雜草的非靶標抗性機理,將對雜草抗藥性基因的挖掘、抗除草劑作物的培育、全新生物除草劑的開發以及雜草抗藥性的治理提供更多的參考依據。

參考文獻

[1]?張超宇.?我國除草劑的發展趨勢分析[J].?農民致富之友,?2017(19):?119.

[2]?HAMILL?A?S,?HOLT?J?S,?MALLORYSMITH?C?A.?Contributions?of?weed?science?to?weed?control?and?management?[J].?Weed?Technology,?2004,?18:?15631565.

[3]?HEAP?I.?The?international?herbicideresistant?weed?database?[DB/OL].?[20221013].?http:∥www.weedscience.org.

[4]?韓慶莉,?沈嘉祥.?雜草抗藥性的形成、作用機理研究進展[J].?云南農業大學學報,?2004(5):?556561.

[5]?畢亞玲,?李君君,?戴玲玲,?等.?雜草對除草劑非靶標抗性機理研究進展[J].?植物保護,?2020,?46(5):?15.

[6]?李健,?李美,?高興祥,?等.?雜草抗藥性及其機理研究進展[J].?山東農業科學,?2016,?48(12):?165170.

[7]?DLYE?C,?JASIENIUK?M,?CORRE?V?L.?Deciphering?the?evolution?of?herbicide?resistance?in?weeds?[J].?Trends?in?Genetics,?2013,?29(11):?649658.

[8]?白霜.?牛繁縷對苯磺隆代謝抗性基因的挖掘及功能驗證[D].?泰安:?山東農業大學,?2019.

[9]?SANDERMANN?H.?Molecular?ecotoxicology?of?plants?[J].?Trends?in?Plant?Science,?2004,?9(8):?406413.

[10]PRESTON?C.?Inheritance?and?linkage?of?metabolismbased?herbicide?crossresistance?in?rigid?ryegrass?(Lolium?rigidum)?[J].?Weed?Science,?2003,?51(1):?412.

[11]HEAP?I.?Global?perspective?of?herbicideresistant?weeds?[J].?Pest?Management?Science,?2014,?70(9):?13061315.

[12]UMBARGER?H?E.?Amino?acid?biosynthesis?and?its?regulation?[J].?Annual?Review?of?Biochemistry,?1978,?47:?532606.

[13]ZHAO?Ning,?YAN Yanyan,?GE?Lu’an,?et?al.?Target?site?mutations?and?cytochrome?P450s?confer?resistance?to?fenoxapropPethyl?and?mesosulfuronmethyl?in?Alopecurus?aequalis?[J].?Pest?Management?Science,?2019,?75(1):?204214.

[14]顏伯俊.?細胞色素P450氧化酶介導的硬稃稗(Echinochloa?glabrescens)對五氟磺草胺的抗藥性機理研究[D].?南京:?南京農業大學,?2020.

[15]SHEN?Jing,?YANG?Qian,?HAO?Lubo,?et?al.?The?metabolism?of?a?novel?cytochrome?P450?(CYP77B34)?in?tribenuronmethylresistant?Descurainia?sophia?L.?to?herbicides?with?different?mode?of?actions?[J/OL].?International?Journal?of?Molecular?Sciences,?2022,?23(10):?5812.?DOI:?10.3390/ijms23105812.

[16]劉健,?房加鵬,?董立堯.?稻稗HJHL715種群對五氟磺草胺的抗藥性水平及抗性機理分析[J].?植物保護學報,?2020,?47(1):?197204.

[17]SAIKA?H,?HORITA?J,?TAGUCHISHIOBARA?F,?et?al.?A?novel?rice?cytochrome?P450?gene,?CYP72A31,?confers?tolerance?to?acetolactate?synthaseinhibiting?herbicides?in?rice?and?Arabidopsis?[J].?Plant?Physiology,?2014,?166(3):?12321240.

[18]LIU?Weitang,?BAI?Shuang,?ZHAO?Ning,?et?al.?Nontarget?sitebased?resistance?to?tribenuronmethyl?and?essential?involved?genes?in?Myosoton?aquaticum?(L.)?[J/OL].?BMC?Plant?Biology,?2018,?18(1):?225.?DOI:?10.1186/s128700181451x.

[19]ZHAO?Ning,?LI?Wei,?BAI?Shuang,?et?al.?Transcriptome?profiling?to?identify?genes?involved?in?mesosulfuronmethyl?resistance?in?Alopecurus?aequalis?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?1391.?DOI:?10.3389/fpls.2017.01391.

[20]DUHOUX?A,?CARRERE?S,?GOUZY?J,?et?al.?RNASeq?analysis?of?ryegrass?transcriptomic?response?to?an?herbicide?inhibiting?acetolactatesynthase?identifies?transcripts?linked?to?nontargetsitebased?resistance?[J].?Plant?Molecular?Biology,?2015,?87(4/5):?473487.

[21]YANG?Qian,?DENG?Wei,LI?Xuefeng,?et?al.?Targetsite?and?nontargetsite?based?resistance?to?the?herbicide?tribenuronmethyl?in?flixweed?(Descurainia?sophia?L.)?[J/OL].?BMC?Genomics,?2016,?17:?551.?DOI:?10.1186/s1286401629158.

[22]劉玉曉,?許曉明.?PSⅡ抑制劑作用位點的研究進展和方法[J].?農藥,?2007(3):?154158.

[23]NAKKA?S,?GODAR?A?S,?THOMPSON?C?R,?et?al.?Rapid?detoxification?via?glutathione?Stransferase?(GST)?conjugation?confers?a?high?level?of?atrazine?resistance?in?Palmer?amaranth?(Amaranthus?palmeri)?[J].?Pest?Management?Science,?2017,?73(11):?22362243.

[24]EVANS?A?F,?O’BRIEN?S?R,?MA?R,?et?al.?Biochemical?characterization?of?metabolismbased?atrazine?resistance?in?Amaranthus?tuberculatus?and?identification?of?an?expressed?GST?associated?with?resistance?[J].?Plant?Biotechnology?Journal,?2017,?15(10):?12381249.

[25]VENNAPUSA?A?R,?FALECO?F,?VIEIRA?B,?et?al.?Prevalence?and?mechanism?of?atrazine?resistance?in?waterhemp?(Amaranthus?tuberculatus)?from?Nebraska?[J].?Weed?Science,?2018,?66(5):?595602.

[26]GRAY?J,?BALKE?N,?STOLTENBERG?D.?Increased?glutathione?conjugation?of?atrazine?confers?resistance?in?a?Wisconsin?velvetleaf?(Abutilon?theophrasti)?biotype?[J].?Pesticide?Biochemistry?and?Physiology,?1996,?55(3):?157171.

[27]BURNET?M?W?M,?LOVEYS?B?R,?HOLTUM?J?A?M,?et?al.?Increased?detoxification?is?a?mechanism?of?simazine?resistance?in?Lolium?rigidum?[J].?Pesticide?Biochemistry?and?Physiology,?1993,?46(3):?207218.

[28]SVYANTEK?A?W,?ALDAHIR?P,?CHEN?S,?et?al.?Target?and?nontarget?resistance?mechanisms?induce?annual?bluegrass?(Poa?annua)?resistance?to?atrazine,?amicarbazone,?and?diuron?[J].?Weed?Technology,?2016,?30(3):?773782.

[29]DUKE?S?O,?POWLES?S?B.?Glyphosate:?a?onceinacentury?herbicide?[J].?Pest?Management?Science,?2008,?64(4):?319325.

[30]ROBERTS?F.?Evidence?for?the?shikimate?pathway?in?apicomplexan?parasites?[J].?Nature,?1998,?393(6687):?801805.

[31]蘇少泉.?草甘膦述評[J].?農藥,?2005(4):?145149.

[32]PENG?Yanhui,?ABERCROMBIE?L?L?G,?YUAN?J?S,?et?al.?Characterization?of?the?horseweed?(Conyza?canadensis)?transcriptome?using?GSFLX?454?pyrosequencing?and?its?application?for expression?analysis?of?candidate?nontarget?herbicide?resistance?genes?[J].?Pest?Management?Science,?2010,?66(10):?10531062.

[33]GE?Xia,?D’AVIGNON?D?A,?ACKERMAN?J?J?H,?et?al.?Rapid?vacuolar?sequestration:?the?horseweed?glyphosate?resistance?mechanism?[J].?Pest?Management?Science,?2010,?66(4):?345348.

[34]GE?Xia,?D’AVIGNON?D?A,?ACKERMAN?J?J?H,?et?al.?Vacuolar?glyphosatesequestration?correlates?with?glyphosate?resistance?in?ryegrass?(Lolium?spp.)?from?Australia,?south?America,?and?Europe:?a?P31?NMR?investigation?[J].?Journal?of?Agricultural?and?Food?Chemistry,?2012,?60(5):?12431250.

[35]GE?Xia,?D’AVIGNON?D?A,?ACKERMAN?J?J?H,?et?al.?In?vivo?31P-nuclear?magnetic?resonance?studies?of?glyphosate?uptake,?vacuolar?sequestration,?and?tonoplast?pump?activity?in?glyphosateresistant?horseweed?[J].?Plant?Physiology,?2014,?166(3):?12551268.

[36]PAN?Lang,?YU?Qin,?WANG?Junzhi,?et?al.?An?ABCCtype?transporter?endowing?glyphosate?resistance?in?plants [J/OL].?Proceedings?of?the?National?Academy?of?Sciences?of?the?United?States?of?America,?2021,?118(16):?e2100136118.?DOI:?10.1073/pnas.2100136118.

[37]CARVALHO?L,?ROJANODELGADO?A,?ALVES?P?L,?et?al.?Differential?content?of?glyphosate?and?its?metabolites?in?Digitaria?insularis?biotypes?[J].?Communications?in?Plant?Sciences,?2013,?3(3/4):?1720.

[38]GONZALEZTORRALVA?F,?ROJANODELGADO?A?M,?DE?CASTRO?M?D?L,?et?al.?Two?nontarget?mechanisms?are?involved?in?glyphosateresistant?horseweed?(Conyza?canadensis?L.?Cronq.)?biotypes?[J].?Journal?of?Plant?Physiology,?2012,?169(17):?16731679.

[39]VEMANNA?R?S,?VENNAPUSA?A?R,?EASWARAN?M,?et?al.?Aldoketo?reductase?enzymes?detoxify?glyphosate?and?improve?herbicide?resistance?in?plants?[J].?Plant?Biotechnology?Journal,?2017,?15(7):?794804.

[40]PAN?Lang,?YU?Qin,?HAN?Heping,?et?al.?Aldoketo?reductase?metabolizes?glyphosate?and?confers?glyphosate?resistance?in?Echinochloa?colona?[J].?Plant?Physiology,?2019,?181(4):?15191534.

[41]PLACIDO?H?F,?SANTOS?R?F,?OLIVEIRA?R?S,?et?al.?Morphological?characterization?of?the?foliar?surface?in?glyphosateresistant?tall?windmill?grass?[J].?Agronomy?Journal,?2022,?114(1):?641650.

[42]CECHIN?J,?PIASECKI?C,?BENEMANN?D?P,?et?al.?Transcriptome?analysis?identifies?candidate?target?genes?involved?in?glyphosateresistance?mechanism?in?Lolium?multiflorum?[J/OL].?Plants,?2020,?9(6):?685.?DOI:?10.3390/plants9060685.

[43]DOMINGUEZVALENZUELA?J?A,?DE?LA?CRUZ?R?A,?PALMABAUTISTA?C,?et?al.?Nontarget?site?mechanisms?endow?resistance?to?glyphosate?in?saltmarsh?aster?(Aster?squamatus)?[J/OL].?Plants,?2021,?10(9):?1970.?DOI:?10.3390/plants10091970.

[44]YANNICCARI?M,?VAZQUEZGARCIA?J?G,?GOMEZLOBATO?M?E,?et?al.?First?case?of?glyphosate?resistance?in?Bromus?catharticus?Vahl.:?examination?of?endowing?resistance?mechanisms?[J/OL].?Frontiers?in?Plant?Science,?2021,?12:?617945.?DOI:?10.3389/fpls.2021.617945.

[45]VAN?HORN?C?R,?MORETTI?M?L,?ROBERTSON?R?R,?et?al.?Glyphosate?resistance?in?Ambrosia?trifida:?Part?1.?Novel?rapid?cell?death?response?to?glyphosate?[J].?Pest?Management?Science,?2018,?74(5):?10711078.

[46]MORETTI?M?L,?VAN?HORN?C?R,?ROBERTSON?R,?et?al.?Glyphosate?resistance?in?Ambrosia?trifida:?Part?2.?Rapid?response?physiology?and?nontargetsite?resistance?[J].?Pest?Management?Science,?2018,?74(5):?10791088.

[47]NIKOLSKAYA?T,?ZAGNITKO?O,?TEVZADZE?G,?et?al.?Herbicide?sensitivity?determinant?of?wheat?plastid?acetylCoA?carboxylase?is?located?in?a?400amino?acid?fragment?of?the?carboxyltransferase?domain?[J].?Proceedings?of?the?National?Academy?of?Sciences?of?the?United?States?of?America,?1999,?96(25):?1464714651.

[48]李永豐,?張自常,?楊霞,?等.?稻田稗屬雜草對芳氧苯氧丙酸酯類除草劑的差異敏感性及其機理[J].?江蘇農業學報,?2015,?31(3):?543551.

[49]BUSI?R,?VILAAIUB?M?M,?POWLES?S?B.?Genetic?control?of?a?cytochrome?P450?metabolismbased?herbicide?resistance?mechanism?in?Lolium?rigidum?[J].?Heredity,?2011,?106(5):?817824.

[50]GAINES?T?A,?LORENTZ?L,?FIGGE?A,?et?al.?RNASeq?transcriptome?analysis?to?identify?genes?involved?in?metabolismbased?diclofop?resistance?in?Lolium?rigidum?[J].?Plant?Journal,?2014,?78(5):?865876.

[51]YU?Qin,?HAN?Hepin,?CAWTHRAY?G?R,?et?al.?Enhanced?rates?of?herbicide?metabolism?in?low?herbicidedose?selected?resistant?Lolium?rigidum?[J].?Plant?Cell?and?Environment,?2013,?36(4):?818827.

[52]AHMADHAMDANI?M?S,?YU?Qin,?HAN?Heping,?et?al.?Herbicide?resistance?endowed?by?enhanced?rates?of?herbicide?metabolism?in?wild?oat?(Avena?spp.)?[J].?Weed?Science,?2013,?61(1):?5562.

[53]FENG?Yujuan,?GAO?Yuan,?ZHANG?Yong,?et?al.?Mechanisms?of?resistance?to?pyroxsulam?and?ACCase?inhibitors?in?Japanese?foxtail?(Alopecurus?japonicus)?[J].?Weed?Science,?2016,?64(4):?695704.

[54]ZHAO?Ning,?GE?Lu’an,?YAN?Yanyan,?et?al.?Trp1999Ser?mutation?of?acetylCoA?carboxylase?and?cytochrome?P450sinvolved?metabolism?confer?resistance?to?fenoxapropPethyl?in?Polypogon?fugax?[J].?Pest?Management?Science,?2019,?75(12):?31753183.

[55]HAN?Heping,?YU?Qin,?CAWTHRAY?G?R,?et?al.?Enhanced?herbicide?metabolism?induced?by?2,4D?in?herbicide?susceptible?Lolium?rigidum?provides?protection?against?diclofopmethyl?[J].?Pest?Management?Science,?2013,?69(9):?9961000.

[56]彭謙.?稗草谷胱甘肽S轉移酶在抗噁唑酰草胺代謝抗性中的作用[D].?武漢:?華中農業大學,?2020.

[57]PAN?Lang,?LI?Jun,?ZHANG?Teng,?et?al.?Crossresistance?patterns?to?acetyl?coenzyme?A?carboxylase?(ACCase)?inhibitors?associated?with?different?ACCase?mutations?in?Beckmannia?syzigachne?[J].?Weed?Research,?2015,?55(6):?609620.

[58]BUSI?R,?GOGGIN?D?E,?HEAP?I?M,?et?al.?Weed?resistance?to?synthetic?auxin?herbicides?[J].?Pest?Management?Science,?2018,?74(10):?22652276.

[59]GROSSMANN?K.?Auxin?herbicides:?current?status?of?mechanism?and?mode?of?action?[J].?Pest?Management?Science,?2010,?66(2):?113120.

[60]KOHLER?E?A,?THROSSELL?C?S,?REICHER?Z?J.?2,4D?rate?response,?absorption,?and?translocation?of?two?ground?ivy?(Glechoma?hederacea)?populations?[J].?Weed?Technology,?2004,?18(4):?917923.

[61]RIAR?D?S,?BURKE?I?C,?YENISH?J?P,?et?al.?Inheritance?and?physiological?basis?for?2,4D?resistance?in?prickly?lettuce (Lactuca?serriola?L.)?[J].?Journal?of?Agricultural?and?Food?Chemistry,?2011,?59(17):?94179423.

[62]DANG?H,?MALONE?J?M,?BOUTSALIS?P,?et?al.?Reduced?translocation?in?2,4Dresistant?oriental?mustard?populations?(Sisymbrium?orientale?L.)?from?Australia?[J].?Pest?Management?Science,?2018,?74(6):?15241532.

[63]葉萱.?雜草對合成生長素類除草劑的抗性[J].?世界農藥,?2018,?40(6):?18.

[64]FIGUEIREDO?M?R?A,?LEIBHART?L?J,?REICHER?Z?J,?et?al.?Metabolism?of?2,4dichlorophenoxyacetic?acid?contributes?to?resistance?in?a?common?waterhemp?(Amaranthus?tuberculatus)?population?[J].?Pest?Management?Science,?2018,?74(10):?23562362.

[65]TORRA?J,?ROJANODELGADO?A?M,?REYCABALLERO?J,?et?al.?Enhanced?2,4D?metabolism?in?two?resistant?Papaver?rhoeas?populations?from?Spain?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?1584.?DOI:?10.3389/fpls.2017.01584.

[66]SHERGILL?L?S,?BISH?M?D,?JUGULAM?M,?et?al.?Molecular?and?physiological?characterization?of?sixway?resistance?in?an?Amaranthus?tuberculatus?var.?rudis?biotype?from?Missouri?[J].?Pest?Management?Science,?2018,?74(12):?26882698.

[67]SHYAM?C,?PETERSON?D?E,?JUGULAM?M.?Resistance?to?2,4D?in?Palmer?amaranth?(Amaranthus?palmeri)?from?Kansas?is?mediated?by?enhanced?metabolism?[J].?Weed?Science,?2022,?70(4):?390400.

[68]HAWKES?T?R.?Mechanisms?of?resistance?to?paraquat?in?plants?[J].?Pest?Management?Science,?2014,?70(9):?13161323.

[69]GUTTERIDGE?J?M.?Lipid?peroxidation?initiated?by?superoxidedependent?hydroxyl?radicals?using?complexed?iron?and?hydrogen?peroxide?[J].?FEBS?letters,?1984,?172(2):?245249.

[70]YU?Qin,?HUANG?Shaobai,?POWLES?S.?Direct?measurement?of?paraquat?in?leaf?protoplasts?indicates?vacuolar?paraquat?sequestration?as?a?resistance?mechanism?in?Lolium?rigidum?[J].?Pesticide?Biochemistry?and?Physiology,?2010,?98(1):?104109.

[71]BRUNHARO?C,?HANSON?B?D.?Vacuolar?sequestration?of?paraquat?is?involved?in?the?resistance?mechanism?in?Lolium?perenne?L.?spp.?multiflorum?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?1485.?DOI:?10.3389/fpls.2017.01485.

[72]張玉池,?王曉蕾,?徐文蓉,?等.?國內外抗除草劑基因專利的分析[J].?雜草學報,?2017,?35(2):?122.

[73]SHERMAN?T?D,?BECERRIL?J?M,?MATSUMOTO?H,?et?al.?Physiological?basis?for?differential?sensitivities?of?plant?species?to?protoporphyrinogen?oxidaseinhibiting?herbicides?[J].?Plant?Physiology,?1991,?97(1):?280287.

[74]石小清,?沈曉霞,?王阿國,?等.?原卟啉原氧化酶抑制劑研究與開發進展[J].?浙江化工,?2000(3):?3537.

[75]HUANG?Zhaofeng,?CUI?Hailan,?WANG?Chunyu,?et?al.?Investigation?of?resistance?mechanism?to?fomesafen?in?Amaranthus?retroflexus?L?[J/OL].?Pesticide?Biochemistry?and?Physiology,?2020,?165:?104560.?DOI:?10.1016/j.pestbp.2020.104560.

[76]滕春紅,?王星茗,?崔書芳,?等.?黑龍江省大豆田反枝莧對氟磺胺草醚的抗藥性機制研究[J].?植物保護,?2019,?45(5):?197201.

[77]DU?Long,?LI?Xiao,?JIANG?Xiaojing,?et?al.?Targetsite?basis?for?fomesafen?resistance?in?redroot?pigweed?(Amaranthus?retroflexus)?from China?[J].?Weed?Science,?2021,?69(3):?290299.

[78]OBENLAND?O,?MA?R,?O’BRIEN?S,?et?al.?Carfentrazoneethyl?resistance?in?an?Amaranthus?tuberculatus?population?is?not?mediated?by?amino?acid?alterations?in?the?PPO2?protein?[J/OL].?PLoS?ONE,?2019,?14:?e0215431.?DOI:?10.1371/journal.pone.0215431.

[79]VARANASI?V?K,?BRABHAM?C,?NORSWORTHY?J?K.?Confirmation?and?characterization?of?nontarget?site?resistance?to?fomesafen?in?Palmer?amaranth?(Amaranthus?palmeri)?[J].?Weed?Science,?2018,?66(6):?702709.

[80]VARANASI?V?K,?BRABHAM?C,?KORRES?N?E,?et?al.?Nontarget?site?resistance?in?Palmer?amaranth?Amaranthus?palmeri?(S.)?Wats.?confers?crossresistance?to?protoporphyrinogen?oxidaseinhibiting?herbicides?[J].?Weed?Technology,?2019,?33(2):?349354.

[81]TANETANI?Y,?KAKU?K,?KAWAI?K,?et?al.?Action?mechanism?of?a?novel?herbicide,?pyroxasulfone?[J].?Pesticide?Biochemistry?and?Physiology,?2009,?95(1):?4755.

[82]BUSI?R.?Resistance?to?herbicides?inhibiting?the?biosynthesis?of?verylongchain?fatty?acids?[J].?Pest?Management?Science,?2014,?70(9):?13781384.

[83]LECHELTKUNZE?C,?MEISSNER?R?C,?DREWES?M,?et?al.?Flufenacet?herbicide?treatment?phenocopies?the?fiddlehead?mutant?in?Arabidopsis?thaliana?[J].?Pest?Management?Science,?2003,?59(8):?847856.

[84]MARKHAM?J?E,?MOLINO?D,?GISSOT?L,?et?al.?Sphingolipids?containing?verylongchain?fatty?acids?define?a?secretory?pathway?for?specific?polar?plasma?membrane?protein?targeting?in?Arabidopsis?[J].?Plant?Cell,?2011,?23(6):?23622378.

[85]BUSI?R,?PORRI?A,?GAINES?T?A,?et?al.?Pyroxasulfone?resistance?in?Lolium?rigidum?is?metabolismbased?[J].?Pesticide?Biochemistry?and?Physiology,?2018,?148:?7480.

[86]BRABHAM?C,?NORSWORTHY?J?K,?HOUSTON?M?M,?et?al.?Confirmation?of?Smetolachlor?resistance?in?Palmer?amaranth?(Amaranthus?palmeri)?[J].?Weed?Technology,?2019,?33(5):?720726.

[87]STROM?S?A,?HAGER?A?G,?SEITER?N?J,?et?al.?Metabolic?resistance?to?Smetolachlor?in?two?waterhemp?(Amaranthus?tuberculatus)?populations?from?Illinois,?USA?[J].?Pest?Management?Science,?2020,?76(9):?31393148.

[88]STROM?S?A,?HAGER?A?G,?CONCEPCION?J?C?T,?et?al.?Metabolic?pathways?for?Smetolachlor?detoxification?differ?between?tolerant?corn?and?multipleresistant?waterhemp?[J].?Plant?and?Cell?Physiology,?2021,?62(11):?17701785.

[89]RANGANI?G,?NOGUERA?M,?SALASPEREZ?R,?et?al.?Mechanism?of?resistance?to?Smetolachlor?in?Palmer?amaranth?[J/OL].?Frontiers?in?Plant?Science,?2021,?12:?652581.?DOI:?10.3389/fpls.2021.652581.

[90]柏亞羅.?HPPD抑制劑類除草劑的產品研發及市場概況[J].?世界農藥,?2021,?43(5):?113.

[91]NAKKA?S,?GODAR?A?S,?WANI?P?S,?et?al.?Physiological?and?molecular?characterization?of?hydroxyphenylpyruvate?dioxygenase?(HPPD)inhibitor?resistance?in?Palmer?amaranth?(Amaranthus?palmeri?S.?Wats.)?[J/OL].?Frontiers?in?Plant?Science,?2017,?8:?555.?DOI:?10.3389/fpls.2017.00555.

[92]姜麗麗.?新型二酮腈類HPPD抑制劑的設計、合成及除草活性[D].?武漢:?華中師范大學,?2015.

[93]KAUNDUN?S?S,?HUTCHINGS?S?J,?DALE?R?P,?et?al.?Mechanism?of?resistance?to?mesotrione?in?an?Amaranthus?tuberculatus?population?from?Nebraska,?USA?[J/OL].?PLoS?ONE,?2017,?12(6):?e0180095.?DOI:?10.1371/journal.pone.0180095.

[94]KUPPER?A,?PETER?F,?ZOLLNER?P,?et?al.?Tembotrione?detoxification?in?4hydroxyphenylpyruvate?dioxygenase?(HPPD)?inhibitorresistant?Palmer?amaranth?(Amaranthus?palmeri?S.?Wats.)?[J].?Pest?Management?Science,?2018,?74(10):?23252334.

[95]GUO?Feng,?IWAKAMI?S,?YAMAGUCHI?T,?et?al.?Role?of?CYP81A?cytochrome?P450s?in?clomazone?metabolism?in?Echinochloa?phyllopogon?[J].?Plant?Science,?2019,?283:?321328.

[96]HIDEO?M.?A?rice?gene?that?confers?broadspectrum?resistance?to?βtriketone?herbicides?[J].?Science,?2019,?365(6451):?393396.

[97]張翔鶴,?滿芮,?王曉麗,?等.?2013-2018年中國主要作物田雜草發生危害數據集[J].?中國科學數據(中英文網絡版),?2021,?6(4):?196205.

(責任編輯:楊明麗)

猜你喜歡
草甘膦靶標除草劑
“百靈”一號超音速大機動靶標
法國擬2020年廢除草甘膦的使用
納米除草劑和靶標生物的相互作用
禁用草甘膦或將導致農民雜草防除成本增加
封閉式除草劑什么時間噴最合適
如何正確選擇使用農藥及除草劑
復雜場景中航天器靶標的快速識別
前列腺特異性膜抗原為靶標的放射免疫治療進展
草甘膦生產廢水治理技術探討
玉米田除草劑的那些事
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合