?

航空生物燃料與石油基航空燃料混合比例確定方法

2024-04-17 05:04樊婕曹桂松何敏高金偉
化工管理 2024年9期
關鍵詞:燃料黏度航空

樊婕,曹桂松,何敏,高金偉

(中國航發商用航空發動機有限責任公司,上海 200241)

1 概述

國際航空運輸協會承諾,實現航空業2020 年的碳排放量達到峰值不再增長,然而隨著航空業的蓬勃發展,航空油料的消耗量持續上漲,碳排放量并沒有停止增長的勢頭。在聯合國政府間氣候變化專門委員會的報告中指出,到2050 年,航空業的溫室氣體排放將從全球總排放的2% 增加到3%。為了遏制航空運輸業的溫室氣體排放,保障航空業可持續發展,使用航空生物燃料成為最現實可行的實現航空業碳減排的重要途徑之一[1]。

航空生物燃料[2]是利用生物質生產的液體燃料,在生產中吸收的二氧化碳與燃燒時排放的二氧化碳基本抵消,在全生命周期內達到二氧化碳相對零排放。截至2021 年初,共有8 種航空生物燃料生產工藝獲得美國材料與試驗協會認證,但使用時與傳統航空燃料的最大混合體積比不超過50%[3]。國內常用的3 號噴氣燃料在最新的技術標準GB/T 6537—2018《3 號噴氣燃料》中4.3 要求與傳統燃料混合時費托合成油改質工藝生產的及脂類或脂肪酸類加氫改質工藝生產的燃料組成的體積分數應不高于50 %[4]。

為盡可能發揮航空生物燃料的減排潛力,理想狀態下航空生物燃料應無須與任何傳統燃料混合使用,但由于現在大多生產技術只是復刻了傳統燃料中以正構烷烴和異構烷烴為代表的石蠟類組分,航空生物燃料的性能特性在多大程度上還原航空煤油還有待驗證,對生物燃料的特性掌握還不夠全面,還無法確定生物燃料的穩定性,目前多數是以一定比例的生物燃料加入傳統航空油料中混合使用[5]。航空生物燃料與石油基航空燃料密度差異較大,國內暫無相關成熟的調和裝置[6],混合時難以保證完全均勻。為了確定混合后不同位置的混合比例,本文通過分析航空生物燃料與國產石油基航空燃料的性能指標差異性,通過建立混合比例模型,擬合出不同比例下性能指標變化曲線,建立了確定混合燃料中航空生物燃料比例的方法,用于指導航空混合燃料的實際生產與應用。

2 材料和方法

2.1 材料

試驗材料如下:

(1)航空生物燃料:某型號國產生物燃料;

(2)石油基航空燃料:3 號噴氣燃料;

(3)石油醚:90~120 ℃,分析純;

(4)無水乙醇:分析純;

(5)樣品瓶:100 mL 透明塑料瓶;

(6)注射器:5 mL 無膠塞一次性塑料注射器。

2.2 分析測試儀器

試驗分析測試儀器如下:

(1)數字密度計,DMA 4100M 型,奧地利安東帕有限公司;

(2)石油產品運動黏度試驗器(低溫),FDT-0406 型,長沙富蘭德實驗分析儀器有限公司;

(3)毛細管黏度計:平氏,φ0.6 mm;

(4)水銀溫度計:溫度范圍18~22 ℃,分度值0.1 ℃,最大允許誤差±0.2 ℃;

(5)秒表:測量精度0.1 s。

2.3 性能參數的選擇

不同油品具有特定的物理化學性質,當兩種燃料的性能參數有明顯差異時,混合后該性能參數的變化能較顯著地反映混合比例的變化。表1 列出了航空生物燃料與石油基航空燃料性能指標的對比情況[7]。由表1 可知,除了在芳烴含量、烯烴含量、總硫含量、密度、運動黏度上有差異外,航空生物燃料與石油基航空燃料性能參數要求基本一致。由于芳烴含量、烯烴含量、總硫含量等組分分析項目的檢測手段較繁瑣,考慮到混合后檢測方法的易用性,選擇15 ℃密度和20 ℃運動黏度作為反映混合比例變化的性能指標。

表1 航空生物燃料和石油基航空燃料性能指標情況

2.4 航空生物燃料與石油基航空燃料混合試驗

調配不同混合比例的航空生物燃料和噴氣燃料,分別配制航空生物燃料占總體積比例為0 %(即為石油基航空燃料)~100 %(即為航空生物燃料)的混合燃料,每10 % 遞增,按照ASTM D4052 和GB/T 265 測定混合燃料的密度和運動黏度,試驗數據如表2 所示。

表2 混合試驗數據

3 結果與討論

3.1 工作曲線的建立

3.1.1 混合比例與密度曲線法

以航空生物燃料占總體積的體積分數為橫坐標,混合燃料15 ℃密度為縱坐標建立關系曲線,采用ORIGIN 數據處理軟件,對其進行擬合,得到圖1 的標準曲線。

圖1 不同混合比例下混合燃料15 ℃密度變化

從圖1 可以看到航空生物燃料占比與15 ℃密度呈線性關系,且相關系數R2=0.999 94,接近1,說明擬合情況很好。滿足的關系式如下:

式中:ρ為混合燃料15 ℃下密度(kg/m3);φb為航空生物燃料占混合燃料總體積的體積分數,即混合比例(%)。

3.1.2 混合比例與運動黏度曲線法

以航空生物燃料占總體積的體積分數為橫坐標,混合燃料20 ℃運動黏度為縱坐標建立關系曲線,采用ORIGIN 數據處理軟件,對其進行擬合,得到圖2的標準曲線。

圖2 不同混合比例下混合燃料20 ℃運動黏度變化

從圖2 可以看到航空生物燃料占比與20 ℃運動黏度均呈多項式關系,且相關系數R2= 0.999 80,接近1,說明擬合情況很好。滿足的關系式如下:

式中:ν為混合燃料20 ℃下運動黏度(m2/s);φb為航空生物燃料占混合燃料總體積的體積分數,即混合比例(%)。

3.2 工作曲線可用性的驗證

為了驗證以上擬合曲線的可用性,配制曲線所用混合比例以外不同含量的混合燃料作為未知樣,測定其密度值和運動黏度值,得到的驗證數據如表3 和表4 所示。

表3 密度工作曲線驗證數據

表4 運動黏度工作曲線驗證數據

綜上實驗,驗證了密度工作曲線和運動黏度工作曲線的可用性,即測定混合燃料的密度和運動黏度值后,可通過工作曲線反推計算得到航空生物燃料所占的體積分數,混合燃料中航空生物燃料混合比例與15 ℃密度的關系見式(1),利用此公式計算的比例差值可控制在±0.6%以內?;旌先剂现泻娇丈锶剂匣旌媳壤c20 ℃運動黏度的關系式見式(2),利用此公式計算的差值可控制在±0.8%以內。

4 結語

(1)航空生物燃料與石油基航空燃料混合試驗表明,選擇15 ℃密度和20 ℃運動黏度作為性能指標,能夠反映混合燃料中生物燃料的混合比例變化;

(2)混合燃料15 ℃密度與生物燃料的混合比例符合線性關系,相關性良好;

(3)混合燃料20 ℃運動黏度與生物燃料的混合比例符合多項式關系,相關性良好;

(4)對未知生物燃料與石油基航空燃料混合比例的燃料,可以采用15 ℃密度、20 ℃運動黏度與混合比例的混合模型,推算出確定生物燃料的實際比例,用于指導航空混合燃料的生產與應用。

猜你喜歡
燃料黏度航空
來自沙特的新燃料
生物燃料
“閃電航空”來啦
“閃電航空”來啦
導彈燃料知多少
超高黏度改性瀝青的研發與性能評價
水的黏度的分子動力學模擬
達美航空的重生之路
SAE J300新規格增加了SAE 8和SAE 12兩種黏度級別
高黏度齒輪泵徑向力的消除
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合