?

異雙活性基染料纖維素化合物堿性水解的理論計算

2024-04-24 07:46畢皓東汪影趙旭朱博孫昌付一政劉建立
絲綢 2024年4期
關鍵詞:活性染料纖維素

畢皓東 汪影 趙旭 朱博 孫昌 付一政 劉建立

Theoretical calculation of alkaline hydrolysis of heterobifunctional reactive dye-cellulose compounds

摘要:為了防護異雙活性基染料由纖維素上水解脫落進而在洗滌中造成衣物褪色與串色,探究其在堿性條件下與纖維素鍵合共價鍵的水解機理具有重要意義。文章以異雙活性基染料活性黃210與纖維素鍵合共價鍵水解為代表,基于單活性基染料與纖維素的脫落機理推測了活性黃210從纖維素脫落的可能途徑,之后采用密度泛函理論計算了各水解途徑的反應活化能,并比較了水解過程中染料纖維素聚合物部分反應位點的局部親核性。結果表明:纖維素與染料乙烯砜基鍵合處先水解,均三嗪基鍵合處后水解。在乙烯砜基鍵合處的醚鍵先水解為乙烯基砜,與OH-的親核反應性較大,能壘為17.1 kcalmol;之后乙烯基砜再水解為β-羥乙基砜,親核反應性居中,能壘為27.8 kcalmol。在均三嗪基鍵合處的親核反應性較小,均三嗪基水解為羥基三嗪能壘較高,為48.6 kcalmol。

關鍵詞:活性染料;纖維素;染料水解;密度泛函理論;波函數理論;親核反應性;反應活化能

中圖分類號:TS193.1

文獻標志碼:A

文章編號:10017003(2024)04000909

DOI:10.3969j.issn.1001-7003.2024.04.002

收稿日期:20230707;

修回日期:20240312

基金項目:江蘇省自然科學基金青年基金項目(BK20200608)

作者簡介:畢皓東(2000),男,碩士研究生,研究方向為紡織可持續發展與生態環境保護。通信作者:劉建立,教授,jian-li.liu@hotmail.com。

雙活性基染料由于其優異的染色牢度、較高的耐光性和豐富的色彩范圍,被廣泛應用于棉纖維及蛋白質纖維的染色[1]。在目前的研究中,單活性基與纖維素分子的水解斷鍵反應機理及水解產物被人們所熟知。比如在堿性下鹵代均三嗪型活性基和乙烯砜型活性基與纖維素鍵合物最終會被水解為羥基三嗪、β-羥乙基砜和纖維素陰離子[2-3],但對同時含有鹵代均三嗪型和乙烯砜型活性基的異雙活性基染料與纖維素間的斷鍵反應過程并不明確。

量子化學計算是研究染料化學特性和光學特性極具潛力的工具[4],前線分子軌道理論(Frontier Molecular Orbital,FMO)是將波函數理論最早應用于分析分子反應性的成功例子之一[5]。概念密度泛函理論(Conceptual Density Functional Theory, CDFT)是一種從分子構型和電子密度的角度出發,基于密度泛函揭示分子化學反應性的理論[6]。FMO和CDFT是定性和定量預測分子反應性的兩個代表性理論。從CDFT中得到的一些化學描述符如福井函數、化學硬(軟)度、親電(核)性等,是一類新型的專門用于描述物質化學反應性的結構指數[7]。吉布斯自由能的變化可用于推測化學反應發生的方向和預測反應的熱力學性質[7-9]。Pei等[10]利用密度泛函理論(Density Functional Theory, DFT)研究了有機硅非水介質和傳統水基染色體系中活性染料的水解反應能隙,闡明了染料在兩種介質中的水解反應機理。張永波[11]采用DFT模擬了乙烯砜型染料在堿性下與纖維素鍵合反應過程中的能量變化,表明染料只需較低的能量壁壘就能完成與纖維的反應,獲得了傳統實驗中無法獲得的結果。Kausar等[12]通過DFT計算了亞甲基藍染料和纖維素的靜電勢、前線分子軌道和能隙等電子特性,解釋了染料吸附在纖維素黏土海藻酸鈉復合材料上的相互作用機理。這些學者采用量子化學計算研究活性染料的水解及吸附性能,為探索染料與纖維素鍵合共價鍵斷鍵水解過程提供了積極的經驗借鑒。

本文首先基于單活性基染料與纖維素間共價鍵的水解反應機理推測了雙活性基染料活性黃210(C.I. Reactive Yellow 210,RY210)與纖維素鍵合共價鍵水解的可能途徑。之后結合FMO、CDFT和分子動力學模擬構建了染料纖維素聚合物模型。最后通過DFT計算了二聚體模型每一步水解反應的活化能,探究染料從纖維素上水解脫落的過程,同時在CDFT基礎上討論了聚合物分子均三嗪基水解為羥基三嗪、乙烯砜基鍵合處醚鍵水解為乙烯基砜和乙烯基砜水解為β-羥乙基砜過程中與OH-的親核反應性大小。本研究對控制染料從纖維上水解脫落褪色與串色、設計和合成更加高效和環保的染料有一定的幫助。

1? 模擬方法

1.1? 模型的構建及優化

由PubChem有機小分子生物活性數據庫下載RY210的分子模型數據文件,采用Matthews 等[13]構建的纖維素模型生成器直接生成纖維素模型。目前對纖維素物理及化學降解的研究表明[14-16],對于不同長度纖維素鏈組成的無定形模型,其物理和化學性質沒有顯著差異,因此為了控制構建模型的復雜度和減少計算量,以纖維素二糖代替纖維素鏈。采用BIOVIA Materials Studio 2019中的Forcite模塊對RY210 和纖維素二糖分子進行初步優化,采用Gaussian16(Revision C.01)在B3LYP6-31G(d) 理論水平下對初步優化后的模型做進一步的結構優化和頻率振動計算[17],使用“Stable”關鍵詞檢查波函數穩定性并應用D3方法描述分子間色散作用[18],使其具有穩定的熱力學性質。同時對零點能進行矯正,矯正因子為0.980 6,以減少系統誤差并考慮非諧波效應[19]。在M06-2X-D36-311G(d)理論水平下計算了所有水解化合物的單點能,以進一步計算反應的吉布斯自由能。所有計算均在氣相下進行。波函數分析使用Multiwfn(Version 3.8(dev))軟件[20],并使用VMD(Version 1.9.4a53)可視化分析結果[21]。

1.2? 電子特性分析

采用靜電勢(Electrostatic Potential,ESP)、FMO、簡縮福井函數(Condensed Fukui Function, CFF)、簡縮雙描述符(Condensed Dual Descriptor, CDD)和相對親電性s+As-A、相對親核性s-As+A,對纖維素二糖及二聚體化合物模型進行電子特性分析。簡縮福井函數(CFF)是將福井函數收縮到原子上,以定量比較不同位點上福井函數的大小。采用Hirshfeld電荷計算后衡量親電、親核反應如下式[22] 所示:

親電反應性: f-A=qAN-1-qAN(1)

親核反應性: f+A=qAN-qAN+1(2)

式中:qAN為有N個電子的分子中原子A的電荷。

雙描述符(CDD) 描述為福井函數對電子總數的一階偏導數,也是密度泛函理論下預測反應位點的有效工具。其也可以采用Hirshfeld電荷計算[23],如下式所示:

f(2)A=f+A-f-A=2qAN-qAN+1-qAN-1(3)

相對親電性s+As-A和相對親核性s-As+A預測位點反應性比一般的反應描述符更準確,可以避免受到基組或相關效應的強烈影響。s+As-A值越大的位點更有可能被親核試劑攻擊,而s-As+A值越大的位點更有可能被親電試劑攻擊。簡縮局部軟度s+A和s-A定義如下式[24]所示:

s-A=s(qAN-1-qAN)(4)

s+A=s(qAN-qAN+1)(5)

式中:s為系統的全局柔軟度,定義為s=1(I-A);I是垂直電離能;A是電子親和力。

2? 結果和分析

2.1? 染料纖維素間共價鍵水解反應路徑

纖維素與RY210均三嗪基和乙烯砜基形成的都是醚鍵,堿性環境下都會水解。在均三嗪基鍵合處發生的是SNAr2反應,OH-先與纖維素相連的碳原子發生親核加成,形成帶負電的中間體,其次發生消除取代反應,水解反應共2步;在乙烯砜基鍵合處首先是醚鍵發生β-消除反應,此過程是沒有中間產物的SN2反應,只有一步。之后在形成的乙烯基β碳處與OH-發生親核加成,形成中間產物,最后完全水解為β-羥乙基砜,水解反應共3步[25]。由于兩種活性基團在纖維素鍵合處與OH-反應性不同,其水解斷鍵也存在先后順序。本文以RY210為例,染料纖維素化合物水解路徑可能有7條,如圖1所示。其中路徑1、5是均三嗪基和乙烯砜基其中之一先單獨完全水解,之后另一活性基再完全水解;路徑2是r1乙烯砜基鍵合處先水解成乙烯基砜,之后均三嗪基鍵合處先完全水解,最后乙烯基砜完全水解為β-羥乙基砜;路徑3、4、6、7則是水解過程中在兩個活性基鍵合處未完全水解,出現復合水解狀態。

2.2? 染料纖維素化合物模型構建及優化

在構建染料纖維素二聚體化合物之前,首先對纖維素二糖和RY210分子單體進行優化。兩個單體經過DFT方法優化后部分基團的鍵長、鍵角和二面角大小等參數如表1所示。值得注意的是,在纖維素二糖分子上,左右兩個吡喃糖上的伯羥基與其相連的兩個碳原子所成的二面角大小并不相同,分別為67.08°和-52.43°。存在差異的原因可能是纖維素分子左右兩側的葡萄糖單元不完全平行,葡萄糖?;掀渌u基之間也會相互影響。已有研究表明,纖維素二糖分子中第6位碳原子上的伯羥基由于空間位阻較小而易與染料接觸[26]。在與染料反應的過程中,纖維素分子先在堿性下形成帶負電的陰離子,之后作為親核試劑進攻活性染料分子上的活性位點[3]。但是在目前的研究中,分子中左右兩個吡喃糖第6位碳原子上的伯羥基與OH-發生親核取代的反應性差異并不清楚。因此,采用ESP、 FMO和兩個化學反應描述符CFF、CDD來探討纖維素二糖分子上左右兩個6號碳相連伯羥基的反應性,進而確定分子上能夠與OH-發生親核反應生成纖維素陰離子的活性位點,以提高染料纖維素化合物模型構筑的準確性。

2.2.1? 靜電勢

靜電勢(ESP)是可視化電荷分布及評估反應物分子遠距離親電、親核反應性的有效工具,ESP越正(越負)的區域被認為越有可能吸引親核(親電)試劑進攻[21]。纖維素二糖分子的ESP如圖2(a)所示,靜電勢為負值的區域(藍色)電子較為聚集,為親電反應位點;正值的區域(紅色)電子較為稀缺,為親核反應位點[27]。由圖2(a)可以看出,分子中O6-1處靜電勢紅色較深,大小為9.33 kcalmol,為可能的親核反應位點。這與Cao等[16]通過DFT研究纖維素二糖表明ESP的結果相同。O6-2處靜電勢藍色較深,大小為-41.86 kcalmol,為可能的親電反應位點。因此,纖維素二糖分子上O6-1處羥基較O6-2處更易與OH-發生親核反應。

2.2.2? 前線分子軌道

根據FMO理論, 體系的最高占據軌道(HOMO)和親電反應有關, 體系的最低未被占據軌道(LUMO)和親核反應有關[28]。纖維素二糖分子的前線分子軌道示意如圖2(b)所示,圖2(b)中藍色和紅色分別表示波函數的正相位和負相位。由圖2(b)可以看出,HOMO電子云主要分布在1′、3′、6′碳原子所連的氧原子上,說明這些氧原子周圍電子密度較大,易發生親電反應。在1′碳和5′碳之間的環氧基及兩個吡喃糖之間的糖苷鍵上同樣顯示了HOMO電子云分布,表明其亦為親電反應活性位點,具有特殊的化學性質。同時可以明顯地看到,LUMO電子云分布在6號碳相連的伯羥基上,此處的H原子顯示出較強的電子接收能力,表明此處易與和OH-發生親核反應。值得注意的是,所有的HOMO和LUMO電子云均分布于分子單個吡喃糖上,與郭彩等[29]通過DFT計算纖維素二糖LUMO分布結論一致。這可能是由于纖維素分子在三維空間中存在一定程度的扭曲和構象變化,從而導致FMO電子云分布得不均勻。

2.2.3? 簡縮局部描述符

CDFT理論中描述親核(親電)反應的CFF值f+A(f-A)越正,體系被親核(親電)試劑攻擊的可能性越強。 CDD的值越正(負),越有可能發生親核(親電)反應[6]。本文計算了纖維素二糖分子左右6號碳伯羥基上的氧原子O6-1、O6-2的CFF和CDD的值,結果如表2所示。f-A值的大小順序為O6-1

基于此分析,可以得出與ESP和FMO分析一致的結論,即在纖維素二糖分子中,由于空間位置的不同,第6位碳上伯羥基化學反應性不同,O6-1所在羥基主要作為親核攻擊位點,O6-2所在羥基主要作為親電攻擊位點。因此,O6-1所在羥基易與OH-反應生成纖維素陰離子,之后與RY210染料分子上的均三嗪和乙烯砜活性基發生反應生成染料纖維素聚合物。

2.3? 染料纖維素化合物的斷鍵水解

2.3.1? 模型的構建及優化

采用蒙特卡洛方法,在Materials Studio 2019中構筑染料纖維素二聚體化合物模型。為了保證二聚體模型初始幾何結構的合理性,本文對纖維素二糖和RY210分子鍵合的空間位置進行了探索??紤]二糖分子和染料分子之間正反(纖維素二糖以圖2(a)所示朝向為正,以沿兩個吡喃糖為軸翻轉180°后構象為反)、平行、垂直排列形成化合物,將染料中的發色團用H代替以減小計算量[30],共得到如圖3(a)所示的8個化合物預設構型。使用Forcite模塊對這些構象進行初步幾何優化,之后在NVT系綜下進行5次退火循環,溫度范圍為300~800 K,模擬持續時間設置為 50 ps,時間步長設置為 1 fs,最后選擇退火后能量最低的一幀在300 K下運行1 000 ps的分子動力學。上述模擬均選用COMPASSⅡ力場,靜電力和范德華力的計算均采用atom based方法,計算精度為fine。動力學優化1 000 ps過程中的各個構型能量變化如圖3(b)所示,可以看出各構型能量波動平穩,表明其結構處于相對穩定的狀態。優化后的最低能量構型及能量大小如圖3(c)所示,可以看出8個預設構型中構型r2的平均能量最低,平均為-177.820 kcalmol,表明其分子結構相對最穩定,可用于做進一步的優化和能量計算。

2.3.2? 反應活化能

在標準狀態(1 atm,298.15 K)下,采用DFT方法計算了圖1中7條反應路徑的反應活化能,每一步水解反應的活化能結果如圖4(a)所示。不同水解體的能級,特別是從反應物到中間體的能量壁壘,決定了水解反應的難易程度。能壘越大,反應發生越困難。由圖4(a)可以看出,各水解路徑中乙烯砜基鍵合處發生β-消除反應生成乙烯基砜需要的能壘最低,為17.1 kcalmol,最容易被水解;乙烯基砜被水解為β-羥乙基砜的能壘次之,為27.8 kcalmol;而均三嗪基鍵合處水解為羥基三嗪能壘最高,為48.5 kcalmol,最難被水解。這可能是由于乙烯基砜中的砜基具有較強的吸電子效應,使乙烯基被極化,與之相連的碳原子電子云密度下降而帶部分正電荷,很容易和OH-發生親核加成而具有更高的反應活性,容易發生水解反應。而與均三嗪基相連的纖維素陰離子吸電子性較弱,碳原子的電子云密度受其影響較低,同時也較難從碳環上離去[25]。各反應路徑的能量臺階圖如圖4(b)所示。由圖4(b)可以看出,達到二聚體化合物復合水解路徑的水解中間體ts5所需要的活化能最高,為93.4 kcalmol,相較于化合物單水解的水解中間體ts1、ts3、ts4更高,說明染料纖維素化合物更傾向與單活性基水解。因此,當均三嗪基鍵合處和乙烯砜基鍵合處共價鍵水解相互獨立時,由于乙烯砜基鍵合處共價鍵水解能壘更小,染料纖維素鍵合的醚鍵最先發生β-消除反應生成乙烯基砜,之后乙烯基砜被水解為β-羥乙基砜,均三嗪基鍵合處由于有最大的反應能壘,最后被水解為羥基三嗪。綜上,路徑5是染料從纖維素上水解脫落的最可能路徑。

2.3.3? 復合物的局部反應性

為了進一步探究染料纖維素二聚體化合物在不同活性基鍵合處共價鍵的水解差異,基于CDFT,本文對二聚體化合物r1上纖維素與乙烯砜基鍵合處發生β消除反應的兩個氫原子β-H1,β-H2、r1上均三嗪基鍵合處的碳原子Cx(圖5 (a))、r1水解產物r1-1(只有乙烯砜基處醚鍵水解為乙烯砜產物)上均三嗪基鍵合處的碳原子Cy及r1-1乙烯基上的β碳原子Cz(圖5 (b))與OH-的親核反應性進行了分析,并在表3中給出了描述親核攻擊的簡縮福井函數f+A和相對親電性s+As-A數值,數值越大表明與OH-的反應性越大。在r1分子上, f+A 和s+As-A大小順序為Cx<β-H1<β-H2,說明乙烯砜鍵合處的β氫相較于均三嗪基鍵合處的碳原子更容易被OH-進攻,反應性更大。而對于r1-1, f+A和s+As-A數值的大小順序為Cy

HOMO-LUMO能隙(EL-EH)是描述體系穩定性的參數之一,能隙越大分子越穩定[28]。水解產物r1-1、r1-2、r2-1、r2-2和r3的HOMO-LUMO軌道分布和能隙如圖6所示,可見r1-1的HOMO軌道幾乎完全分布在碳氮雜環上,而LUMO主要分布在乙烯基上,表明此處易被OH-進攻發生親核反應。而在均三嗪基與纖維素鍵合處沒有顯示出LUMO分布,也說明其親核性較乙烯基處差?;衔飏1-2、r2-1、r2-2、r3的HOMO分布與r1-1類似,除了r2-2的LUMO分布在乙烯基上,r3的LUMO在伯醇上,其他的LUMO分布不明顯。此外,能隙大小順序為r3>r2-1>r1-2>r2-2>r1-1,說明最終水解產物r3最穩定, r1穩定性最差。另外,含有乙烯基砜的化合物穩定性較差,反應性相對較大。同樣說明了染料纖維素化合物均三嗪基鍵合處與OH-的親核反應性更低,乙烯基砜處與OH-的親核反應性比均三嗪活性基處更高,更易被水解。

3? 結? 論

本文首先基于單活性基染料與纖維素間共價鍵的水解反應機理,推測了異雙活性基染料與纖維素鍵合處共價鍵可能的水解途徑,之后根據FMO、CDFT及分子動力學模擬構建了纖維素二糖和染料分子二聚體化合物模型,最后采用DFT計算了各路徑每步水解反應的吉布斯自由能,同時根據FMO和CDFT對二聚體化合物及不同水解產物進行了電子特性分析。結果如下:

1) 基于FMO和CDFT分析纖維素二糖分子上左右兩個伯羥基與OH-的親核反應性發現,其親核反應性有顯著差異。計算的染料纖維素二聚體化合物模型不同水解路徑反應自由能推斷的活性黃210染料與纖維素鍵合處的共價鍵水解過程為:活性黃210在乙烯砜基鍵合處的醚鍵先發生β-消除反應水解為乙烯砜,能壘為17.1 kcalmol,然后乙烯基砜與OH-發生親核加成,水解為β-羥乙基砜,能壘為27.8 kcalmol;在均三嗪基鍵合處最后水解為羥基三嗪,能壘為48.6 kcalmol。

2) 基于CDFT分析二聚體化合物及其水解產物上與OH-發生反應位點的局部親核性及各水解產物能隙表明:乙烯砜基鍵合處發生β-消除反應的兩個氫原子與OH-的親核性最大, β-消除反應發生最容易;化合物醚鍵水解后的乙烯基上與OH-發生親核加成的碳原子親核性次之,乙烯基水解反應發生較容易;均三嗪基鍵合處與纖維素相連的碳原子親核反應性最小,水解反應發生最難。各水解產物能隙大小與水解難易程度有關,能隙越大,水解反應發生越難。

參考文獻:

[1]BENEDETTO C D, MACARIO A, SICILIANO C, et al. Adsorption of reactive blue 116 dye and reactive yellow 81 dye from aqueous solutions by multi-walled carbon nanotubes[J]. Materials, 2020, 13(12): 2757.

[2]WEN J, ZHU Z H, CHEM K C. Study on the hydrolysis kinetics of vinylsulfonyl reactive dye-fiber bond[J]. Dyes and Pigments, 1989, 10(3): 217-237.

[3]MORITA Z, YAMADA A, SHIGEHARA K, et al. The hydrolysis of the reactive groups, and side reaction, for a mixed heterobifunctional reactive dye (CI reactive red 194) and related compounds[J]. Dyes and Pigments, 1996, 30(2): 151-171.

[4]WANG L X, GAO X P, WANG S C, et al. Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas[J]. Journal of the American Chemical Society, 2023, 145(24): 13462-13468.

[5]LANDIN-SANDOVAL V J, MENDOZA-CASTILLO D I, SELIEM M K, et al. Physicochemical analysis of multilayer adsorption mechanism of anionic dyes on lignocellulosic biomasses via statistical physics and density functional theory[J]. Journal of Molecular Liquids, 2021, 322: 114511.

[6]GEERLINGS P, PROFT F D, LANGENAEKE W. Conceptual density functional theory[J]. Chemical Reviews, 2003, 103: 1793-1873.

[7]TRANG B, LI Y L, XUE X S, et al. Low-temperature mineralization of perfluo-rocarboxylic acids[J]. Science, 2022, 377(6608): 839-845.

[8]KARASIEV V V, HINZ J, HU S X, et al. On the liquid-liquid phase transition of dense hydrogen[J]. Nature, 2021, 600(7889): E12-E14.

[9]FANG G Q, WEI F F, LIN J, et al. Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity[J]. Journal of the American Chemical Society, 2023, 145(24): 13169-13180.

[10]PEI L J, LUO Y N, SALEEM M A, et al. Sustainable pilot scale reactive dyeing based on silicone oil for improving dye fixation and reducing discharges[J]. Journal of Cleaner Production, 2021, 279: 123831.

[11]張永波. 硅基非水介質染色體系中活性染料水解、鍵合機理及密度泛函理論研究[D]. 杭州: 浙江理工大學, 2019.

ZHANG Y B. Study of Hydrolysis, Bonding Mechanism and Density Functional Theory for Reactive Dyes in Siloxane Non-Aqueous Media Dyeing System[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.

[12]KAUSAR A, REHMAN S U, KHALID F, et al. Cellulose, clay and sodium alginate composites for the removal of methylene blue dye: Experimental and DFT studies[J]. International Journal of Biological Macromolecules, 2022, 209: 576-585.

[13]MATTHEWS J F, SKOPEC C E, MASON P E, et al. Computer simulation studies of microcrystalline cellulose Ibeta[J]. Carbohydrate Research, 2006, 341(1): 138-152.

[14]SHAO C F, SHAO Q, WANG X Y, et al. Study on cellulose degradation induced by hydroxyl radical with cellobiose as a model using GC-MS, ReaxFF simulation and DFT computation[J]. Carbohydrate Polymers, 2020, 233: 115677.

[15]WANG Q, SONG H, PAN S, et al. Initial pyrolysis mechanism and product formation of cellulose: An experimental and density functional theory(DFT) study[J]. Scientific Reports, 2020, 10(1): 3626.

[16]CAO B B, DU J Y, DU D M, et al. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra[J]. Carbohydrate Polymers, 2016, 149: 348-356.

[17]ZEPP R G, HOIGN J, BADER H. Nitrate-induced photooxidation of trace organic chemicals in water[J]. Environmental Science and Technology, 1987, 21: 450.

[18]BURSCH M, CALDEWEYHER E, HANSEN A, et al. Understanding and quantifying London dispersion effects in organometallic complexes[J]. Accounts of Chemical Research, 2019, 52(1): 258-266.

[19]KEPP K P. Benchmarking density functionals for chemical bonds of gold[J]. Journal of Physical Chemistry A, 2017, 121(9): 2022-2034.

[20]LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.

[21]HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.

[22]MORELL C, GRAND A, TORO-LABBA. New dual descriptor for chemical reactivity[J]. Journal of Physical Chemistry A, 2005, 109(1): 205-212.

[23]FU R, LU T, CHEN F W. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 628-639.

[24]ROY R K, KRISHNAMURTI S, GEERLINGS P, et al. Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: Carbonyl compounds[J]. Journal of Physical Chemistry A, 1998, 102(21): 3746-3755.

[25]熊偉. 含磺酰胺基取代一氯均三嗪硫酸酯乙基砜雙活性基團反應性染料的合成及應用[D]. 大連: 大連理工大學, 2020.

XIONG W. Study and Application of Bifunctional Reactive Dyes with Sulfonamide-Containing Chloro-s-TriazineEthyl Sulfone Sulfate Groups[D]. Dalian: Dalian University of Technology, 2020.

[26]PRUS' S, KULPIN'SKI P, MATYJAS-ZGONDEK E, et al. Eco-friendly dyeing of cationised cotton with reactive dyes: Mechanism of bonding reactive dyes with CHPTAC cationised cellulose[J]. Cellulose, 2022, 29(7): 4167-4182.

[27]KENOUCHE S, SANDOVAL-YAEZ C, MARTNEZ-ARAYA J I. The antioxidant capacity of myricetin: A molecular electrostatic potential analysis based on DFT calculations[J]. Chemical Physics Letters, 2022, 801: 139708.

[28]AOUCHICHE H A, DJENNANE S, BOUCEKKINE A. DFT study of conjugated biheterocyclic oligomers exhibiting a very low HOMO-LUMO energy gap[J]. Synthetic Metals, 2004, 140(2-3): 127-133.

[29]郭彩, 周華晶, 關清卿, 等. 基于密度泛函理論研究納米纖維素層狀雙金屬氫氧化物復合材料的光熱穩定性[J]. 纖維素科學與技術, 2023, 31(1): 10-15.

GUO C, ZHOU H J, GUAN Q Q, et al. Study on the photothermal stability of cellulose nanofiberslayered bimetal hydroxides composites based on density functional theory[J]. Journal of Cellulose Science and Technology, 2023, 31(1): 10-15.

[30]TASAKA T, MATSUMOTO T, NAGASHIMA U, et al. Potential energy curve for singlet-oxygen quenching reaction by vitamin E[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 442: 114749.

Theoretical calculation of alkaline hydrolysis of heterobifunctional reactive dye-cellulose compounds

BI Haodong1a, WANG Ying1b, ZHAO Xu1a, ZHU Bo1a, SUN Chang1a, FU Yizheng2, LIU Jianli1a

(1a.College of Textile Science and Engineering; 1b.National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; 2.School of Materials Science and Engineering,

North University of China, Taiyuan 030051, China)

Abstract:Heterobifunctional reactive dyes are widely used to dye cotton and protein fabrics owing to their characteristic such as excellent dyeing fastness, high lightfastness, and wide range of colors. The primary cause of color fading and coloring during the washing of cotton fabrics is the hydrolysis of covalent bonds between dyes and cellulose. However, at present, people are only familiar with the mechanism of hydrolysis of covalent bonds formed between individual active groups and cellulose such as the common halogenated homotriazine group and vinyl sulfone group. Specifically, the ether bond formed by halotriazine active group and cellulose, and the ether bond formed by vinyl sulfone group and cellulose will be hydrolyzed under alkaline conditions. Halogenated triazine reactive group will be hydrolyzed into hydroxytriazine and vinyl sulfone reactive group will be hydrolyzed into β-hydroxyethyl sulfone, while the reaction mechanism that results in the breaking of covalent bonds between different reactive groups and cellulose molecules remains unclear. Based on the principle of quantum mechanics, quantum chemical calculations can accurately simulate the movement and interaction of electrons, as well as the formation and fracture of chemical bonds. These make predicting the properties of molecules and reactions without relying on experimental data possible. Thus, quantum chemical calculations are widely used to describe molecular structures, reaction mechanisms and energy changes. The wave function theory and density-functional theory (DFT) are two important parts of quantum chemical calculations. The frontier molecular orbital (FMO) and conceptual density functional theory (CDFT) are two representative theories to predict and rationalize molecular reactivity qualitatively and quantitatively. Some chemical reaction descriptors obtained from CDFT like Fukui function, chemical hardness or softness, electrophilicity or nucleophilicity are a new type of structural index specially used to describe the chemical reactivity of substances. This article combined wave function theory and CDFT to investigate chemical characteristics of the hydrolysis pathway of the covalent bond between heterobifunctional reactive dye and cellulose under alkaline conditions, with the heterobifunctional reactive dye named Reactive Yellow 210 (RY210) being used as an example. In order to reduce the complexity of the model, the chromophores in RY210 molecule that are not related to the reaction were replaced by hydrogen atoms. At the same time, according to previous studies, cellobiose was substituted for cellulose molecules.

The research process was divided into three steps. Firstly, the possible pathways and products of RY210 and cellulose polymer were conjectured based on the hydrolysis mechanism of the covalent bond between a single reactive group dye and cellulose. The ether bond formed by the active group of triazine group and cellulose will be hydrolyzed into hydroxytriazine, and the ether bond formed by the active group of vinyl sulfone and cellulose will be β-eliminated to generate vinyl sulfone, which will be further hydrolyzed into β-hydroxyethyl sulfone. Based on this known mechanism, it is hypothesized that there are seven possible hydrolysis pathways which involve hydrolysis of one reactive group alone, followed by the other reactive group, as well as hydrolysis of both reactive groups at the same time. Secondly, the study constructed a dye-cellulose polymer model. To do this, the study investigated the sites on the cellobiose molecule where OH- is easy to react with using electrostatic potential (ESP), frontier molecular orbital theory (FMO) and two chemical reaction descriptors (CFF and CDD) based on DFT. The model was constructed by taking into account their three spatial arrangements of the cellobiose and dye molecules in orthogonal, anticlinal, parallel, and perpendicular directions. Then, these structures were optimized by MD simulations, and the most stable polymer structure was identified. Further, the study calculated the Gibbs free energies of different hydrolysis pathways based on the theory of M06-2X6-311G(d). Additionally, the local nucleophilic reactivity of dye-cellulose compounds at the bonding sites of triazine and vinyl sulfone groups with OH- was compared to further verify the previous conclusions. The findings demonstrate that the cellobiose-dye polymer was readily hydrolyzed at the bonding with vinyl sulfone, but could be hydrolyzed at the bonding with triazine difficultly. The covalent bonding of vinyl sulfone with OH- displayed higher nucleophilic activity. Initially, the ether bond was hydrolyzed to form vinyl sulfone with a reaction energy barrier of 17.1 kcalmol. Following this, vinyl sulfone was hydrolyzed to produce β-hydroxyethyl sulfone with a reaction energy barrier of 27.8 kcalmol. The nucleophilic reactivity at the homotriazine group was the lowest, and the homotriazine group was hydrolyzed into hydroxytriazine with a significant amount of energy at 48.6 kcalmol. This study is helpful to further understand the mechanism of hydrolysis of heterobifunctional reactive dyes from cellulose under alkaline conditions. At the same time, the study also provides some ideas for slowing down the fading of heterobifunctional dyes from fabrics and washing crossovers, as well as designing efficient and environmentally friendly reactive dyes.

Key words:

reactive dyes; cellulose; dye hydrolysis; density functional theory; wave function theory; nucleophilic reactivity; reaction activation energy

猜你喜歡
活性染料纖維素
菠蘿纖維活性染料染色工藝研究
纖維素基多孔相變復合材料研究
纖維素氣凝膠的制備與應用研究進展
纖維素的改性及應用研究進展
纖維素纖維負載鈷酞菁對活性染料X-3B的降解
纖維素晶須的制備研究
高效降解纖維素真菌的篩選與鑒定
纖維素改性處理的研究進展
L型活性染料對蠶絲的低溫染色研究
真絲織物低尿素活性染料噴墨印花工藝研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合