?

菠蘿AcNINV家族全基因組分離及表達分析

2024-04-30 04:30吳建陽陳妹姚艷麗張秀梅
果樹學報 2024年4期
關鍵詞:亞族菠蘿外顯子

吳建陽 陳妹 姚艷麗 張秀梅

摘? ? 要:【目的】鑒定出菠蘿NINV家族全基因組成員,初步闡明NINV基因與蔗糖代謝的關系?!痉椒ā坎捎蒙镄畔W方法鑒定并分析菠蘿NINV家族全基因組成員,通過實時熒光定量PCR分析其表達特性,利用HPLC對蔗糖含量進行測定?!窘Y果】在菠蘿中共鑒定出6個NINV基因,分布于5條不同染色體上,其二級結構主要由α-螺旋和無規則卷曲組成,該基因家族啟動子區域光反應元件數量最多。AcNINV外顯子數量介于4~6個之間,其中AcNINV3、6外顯子的數量為6個,亞細胞定位預測發現這2個基因都分布于葉綠體,屬于α亞族;AcNINV1、2、4、5外顯子的數量為4個,亞細胞定位預測發現這4個基因都分布于質膜,屬于β亞族。在果柄、果皮、果心中表達量最高的是AcNINV2基因,在果肉中表達量最高的是AcNINV6基因。蔗糖含量隨著菠蘿果實成熟呈先升高后降低的變化趨勢,而AcNINV4基因在菠蘿果實成熟過程中呈下調表達?!窘Y論】AcNINV4可能是催化果實蔗糖降解的水解酶基因。

關鍵詞:菠蘿(Ananas comosus);蔗糖含量;堿性/中性轉化酶;基因家族;基因表達

中圖分類號:S668.3 文獻標志碼:A 文章編號:1009-9980(2024)04-0598-13

Genome-wide identification and expression analysis of AcNINV family in pineapple

WU Jianyang1, 2, CHEN Mei3, 4, YAO Yanli3, 4, ZHANG Xiumei3, 4*

(1Zhanjiang Preschool Education College, Zhanjiang 524037, Guangdong, China; 2Basic Education College of Lingnan Normal University, Zhanjiang 524037, Guangdong, China; 3South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS)/Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Zhanjiang 524091, Guangdong, China; 4National Key Laboratory for Tropical Crop Breeding, Sanya 572024, Hainan, China)

Abstract: 【Objective】 Sucrose plays a crucial role in plant growth and development. The alkaline/neutral invertase (NINV) proteins irreversibly cleave sucrose into fructose and glucose. To date, the genome-wide identification, characterization, and expression profile analysis of the NINV gene families have been reported in many species but not in pineapple. 【Methods】 Genome sequence and annotation data were acquired from the pineapple genome database through the blastp against protein database and the tblastn against genome databases using the query sequences of Arabidopsis thaliana NINV proteins to identify the potential members of the NINV gene families in pineapple. The physicochemical characteristics, including molecular weight (MW), theoretical isoelectric points (pI), and instability index were obtained using the ExPASy tool. The CDS sequence and protein length were acquired from the pineapple genome database. The synteny analysis between different species and exon/intron structures were visualized using the TBtools. The conserved motifs of the AcNINV gene families were analyzed using the online MEME tool. The phylogenetic tree was constructed using the MEGA 5.0 through the neighbor-joining approach. The total RNA was isolated in accordance with the method described by Wu et al. RT-qPCR was performed using the LightCycler480 Ⅱ System (Roche, Switzerland) and the DyNAmo Flash SYBR Green qPCR kit (Thermo, USA). RT-qPCR was performed in a total volume of 10 μL, which contained 1 μL diluted cDNAs and 5 ?L SYBR Green PCR Master Mix, and the primer final concentration was 250 nmol·L-1. The sucrose content was determined by HPLC. 【Results】 In this study, six NINV genes (AcNINV1-6) were identified. The six AcNINV genes were distributed on five different chromosomes (LG1, LG3, LG14, LG17, LG21). There were two genes on LG21: AcNINV5 and AcNINV6, while another AcNINV gene on the other chromosomes. AcNINV proteins had a length of 556-673 aa and MW between 63.03 and 74.80 ku. Only one collinear NINV gene pair between pineapple and A. thaliana, and eight collinear NINV gene pairs between pineapple and Oryza sativa were identified. The number of exons in the AcNINV ranged from 4 to 6, and the number of introns ranged from 3 to 5. The AcNINV1, 2, 4, 5 possessed 4 exons and 3 introns, the AcNINV3 and AcNINV6 had 6 exons and 5 introns. A total of 10 conserved motifs were predicted in the AcNINV genes. Among them, the AcNINV1, 2, 4, 5 contained 10 conserved motifs, but the AcNINV3, 6 only had 9 conserved motifs and lacked motif10. A phylogenetic tree was constructed by combining six AcNINV genes from pineapple with the amino acid sequences of the NINV gene family from three species, including Arabidopsis, rice, and cassava. Six AcNINV genes were clustered into two subfamilies, i.e., α and β. The AcNINV1, 2, 4, 5 belonged to clade β, the AcNINV3 and AcNINV6 belonged to clade α. The promoter cis-elements of the AcNINVs were examined using the Plant-CARE database. There were many cis-elements involved in light (MRE, ATC-motif, Box 4, L-box, GATA-motif, G-box, GT1-motif, TCCC-motif, 3-AF1 binding site, LAMP-element, Sp1, TCT-motif, GA-motif, chs-CMA1a, AT1-motif, AE-box), stress (TC-rich repeats, LTR, ARE, GC-motif) and hormones (ABRE, TGA-element, AuxRR-core, P-box, O2-site, TATC-box, TCA-element, TCA-element, CGTCA-motif, TGACG-motif) in the promoter region. The number of light responsive elements were the largest group, followed by the hormone responsive elements, stress responsive elements. The AcNINV5 had the most cis-elements in light response and hormone response. The AcNINV1 had the most cis-elements in stress response. The sucrose content increased first and then decreased. The sucrose content remained constant on the 20th-40th days after anthesis (DAA). Afterwards, the sucrose content extensively increased from 40 DAA to 80 DAA and reached the highest value on the 80 DAA, which was 126-fold higher than that at 20 DAA. The sucrose content from 80th DAA to 100th DAA extensively decreased but was still 12-fold higher than that on 20th DAA. The expression of the six AcNINV genes was studied using RT-qPCR during fruit development in pineapple. The expression was significant different among the different AcNINV gene members. The expression of the six AcNINV genes were presented three types. The first type was upregulated, such as the AcNINV2, 3, 6. The second type was downregulated first and then upregulate, but the amplitude of change was not significant, the AcNINV1, 5 belonged to this type. The third type was downregulated, and the AcNINV4 gene belonged to this type. The expression level of the AcNINV4 gene remained almost unchanged on the 20th-40th DAA, but it rapidly decreased from the 40th DAA to the 100th DAA. On the 20th DAA, the AcNINV4 gene expression was five times more than that of the 100th DAA. Meanwhile, RT-qPCR was used to clarify the expression profile of the AcNINV gene families in the different tissues. The AcNINV1 had the highest expression in the peduncle and the lowest expression in the core. The expression level of the AcNINV2, AcNINV3 and AcNINV6 were highest in the pericarp and lowest in the flesh. The expression level of the AcNINV4 and AcNINV5 was the highest in the peduncle and lowest in the flesh. Furthermore, the AcNINV2 gene had the highest expression in the peduncle, pericarp, and core. While the AcNINV6 gene had the highest expression level in the flesh. 【Conclusion】 A total of six NINV genes (AcNINV1-6) were identified and they were distributed on 5 chromosomes in pineapple. The sucrose content increased with the ripening of pineapple fruit, and the AcNINV4 gene was downregulated during the ripening process of pineapple fruit. Therefore, it was speculated that AcNINV4 may be a hydrolytic enzyme gene that may catalyze the degradation of fruit sucrose.

Key words: Pineapple (Ananas comosus); Sucrose content; Alkaline/neutral invertase; Gene family; Gene expression

菠蘿(Ananas comosus)是鳳梨科的草本植物[1],是我國重要的熱帶水果,中國是世界十大菠蘿生產國之一。在中國種植菠蘿的主要省份包括廣東、廣西、海南、云南和福建。2018年,中國菠蘿產量為162萬t[2]。

蔗糖是光合作用的主要產物[3],蔗糖的含量直接影響果實的品質和風味。蔗糖轉化酶是水解蛋白酶,定向水解蔗糖生成果糖和葡萄糖[4],依據其在植物細胞內的位置可分為胞質轉化酶、細胞壁轉化酶和液泡轉化酶;依據其最佳pH 值的不同,液泡轉化酶和細胞壁轉化酶又被稱為酸性轉化酶(acid invertase,AIN),胞質轉化酶則被稱為堿性/中性轉化酶(alkaline/neutral invertase,NINV)[5]。AIN不僅可以水解蔗糖,還能水解其他含β-果糖的寡糖,比如水蘇糖、核糖,但NINV卻專一性地催化蔗糖[4]。由于NINV不穩定、易失活,因此對它的研究報道不多,生理功能知之甚少[6],但近些年來,隨著生物技術的快速發展,關于NINV的研究越來越多。

NINV在植物生長發育中具有至關重要的作用,特別是在生殖器和根系的發育中;在成熟組織中,由于AIN活性低,因此NINV對蔗糖的分解更為關鍵[7]。在杏果實發育過程中NINV活性與蔗糖的積累呈顯著負相關[8],在草莓果實發育過程中也發現相同的結論[9]。另外,NINV通過分解蔗糖,激活糖信號通路和改變滲透勢進而參與植物脅迫防御[10]。

NINV基因首次從大豆下胚軸中分離獲得[11],NINV由多基因家族編碼,辣椒中有7個成員[12],水稻[13]、茶樹[10]、柑橘[14]中有8個成員,擬南芥[15]和鐵皮石斛[16]中有9個成員,木薯中有11個成員[17],蘋果中有12個成員[18],毛果楊中有16個成員[19],但在菠蘿中至今還未有NINV基因家族的報道。筆者借助于菠蘿基因組數據庫,首先全面鑒定出NINV基因家族成員,再分析不同成員在菠蘿果實成熟過程中的表達特性,以此初步闡明NINV基因與蔗糖代謝的關系。本研究結果豐富了NINV基因在調控菠蘿蔗糖中的研究內容,并將為利用分子生物學手段培育菠蘿新品種提供重要理論支撐。

1 材料和方法

1.1 植物材料

菠蘿(Ananas comosus ‘Comte de paris)于2019年1—4月采摘于中國熱帶農業科學院南亞熱帶作物研究所菠蘿種資資源庫。共選擇150株長勢一致的菠蘿植株進行掛牌,從謝花后(days after anthesis,DAA)20 d到果實成熟期間每10 d隨機采取9個大小一致的果實。將9個果實分為3組,每組為1個生物學重復,分離后的果肉用于基因表達分析。另外,選取9株長勢一致的成熟菠蘿進行組織特異性表達分析。樣品在田間收獲后立即帶回實驗室,并進行果肉、葉基、葉柄、果皮、果心的分離,分離的組織放入液氮速凍后存放于-80 ℃冰箱。

1.2 菠蘿AcNINV基因家族的鑒定

從TAIR數據庫(http://www.arabidopsis.org/index.jsp)中下載擬南芥所有NINV基因序列,利用擬南芥NINV基因序列在菠蘿基因組(http://pineapple.angiosperms.org/pineapple/html/index.html)[20]中進行Blast序列比對,再利用SMART在線軟件(http://smart.embl-heidelberg.de/)對所有序列進行驗證,從而獲得菠蘿AcNINV基因家族所有成員序列。

1.3 序列分析

利用ExPASy工具(https://web.expasy.org/protparam/)獲得AcNINV基因家族成員分子質量(MW)、理論pI、親水性總平均值(GRAVY)和不穩定指數,從菠蘿基因組數據庫中獲得CDS序列、蛋白質長度等指標,利用TBtools[21]繪制AcNINV基因家族在染色體上的定位和分布圖。AcNINV蛋白序列的二級結構利用SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)在線軟件進行分析?;騺喖毎ㄎ活A測利用CELLO:Subcellular Localization Predictive System(http://cello.life.nctu.edu.tw/)在線軟件進行分析。利用TBtools[21]進行不同物種間AcNINV基因共線性分析。

1.4 基因結構和保守基序分析

外顯子/內含子結構利用TBtools可視化分析[21]。利用MEME在線工具(http://meme-suite.org/tools/meme)和TBtools對AcNINV基因家族的保守基序進行分析和可視化,最大基序數設置為10。

1.5 菠蘿AcNINV基因系統發育分析

使用ClustalX和MEGA-5.0采用鄰接(NJ)方法構建AcNINV基因與其他物種NINV基因系統進化樹。

1.6 啟動子順式作用元件分析

利用TBtools提取起始密碼子(ATG)上游2000 bp的基因序列,然后利用PlantCARE在線軟件(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)預測各個基因的順式作用元件,再利用TBtools繪制順式作用元件圖。

1.7 蔗糖含量的測量

根據Zhang等[22]的方法采用高效液相色譜法(HPLC)提取并測定蔗糖含量。反應條件為:柱溫35 ℃,流動相為乙腈和蒸餾水,體積比7∶3,流速1 mL·min-1。

1.8 RNA提取、質量控制和cDNA合成

采用Wu等[23]的方法分離總RNA,用DNaseⅠ(TaKaRa,Otsu,Japan)去除DNA污染。安捷倫2100生物分析儀(Agilent Technologies,Santa Clara,CA,USA)用于檢測RNA的數量和質量。用M-MLV cDNA合成試劑盒(Promega)合成第一鏈cDNA。

1.9 實時熒光定量PCR分析

在LightCycler480 Ⅱ (Roche, Switzerland)上使用DyNAmo Flash SYBR Green qPCR kit (Thermo,USA)試劑盒進行實時熒光定量PCR(RT-qPCR)分析。用Primer Premier 5.0軟件設計熒光定量引物(表1)。RT-qPCR反應總體積為10 μL:1 μL稀釋cDNA、5 μL SYBR Green PCR Master Mix、引物最終濃度為250 nmol·L-1,以AcActin(HQ148720)作為內參基因[24]。反應條件如下:50 ℃ 2 min,95 ℃ 5 min,然后在95 ℃ 10 s,55 ℃ 30 s,72 ℃ 30 s下進行40個循環。每個反應都設3個技術重復,候選基因的相對表達水平用2?ΔΔCT方法進行分析[25]。

2 結果與分析

2.1 菠蘿AcNINV基因家族的鑒定及特性分析

從菠蘿基因組中分離出6個AcNINV基因家族成員,分別命名為AcNINV1~6。AcNINV蛋白的長度為556~673 aa,分子質量(MW)在63.03~74.80 ku之間變化,理論等電點為5.68~6.35,不穩定指數大于40,親水性數值小于0。對這些AcNINV基因進行亞細胞定位預測,發現AcNINV3和AcNINV6分布于葉綠體上,其余家族成員都分布于質膜上(表2)。

2.2 菠蘿AcNINV蛋白質二級結構分析

利用SOPMA在線分析工具預測菠蘿AcNINV蛋白序列的二級結構(表3),菠蘿AcNINV基因家族均含有α-螺旋、β-轉角、無規則卷曲及延伸鏈等4種構型,但各部分所占比例明顯不同。菠蘿AcNINV基因家族的二級結構主要由α-螺旋和無規則卷曲組成,其次為延伸鏈,β-轉角所占比例最低。

2.3 菠蘿AcNINV基因家族染色體定位分析

利用TBtools軟件繪制基因在染色體上的位置(圖1),6個AcNINV基因分別定位于5條不同的染色體(LG)上。其中LG21上有2個基因(AcNINV5和AcNINV6),其余染色體上都只有1個AcNINV基因。

2.4 菠蘿AcNINV基因共線性分析

為了探明AcNINV基因的進化關系,構建了菠蘿與擬南芥、水稻的共線性圖譜,從圖2中可以看出菠蘿AcNINV基因與擬南芥中僅有一對基因(AT3G05820.1與Aco006374.1)有共線性關系,但與水稻有8對基因(LOC_Os02g32730.1與Aco007782.1、LOC_Os04g3-

3490.1與Aco007782.1、LOC_Os02g34560.1與Aco007893.1、LOC_Os04g35280.1與Aco007893.1、LOC_Os04g35280.1與Aco003240.1、LOC_Os02g3-

4560.1與Aco003240.1、LOC_Os11g07440.1與Aco003240.1、LOC_Os04g35280.1與Aco011221.1)有共線性關系。

2.5 菠蘿AcNINV基因結構和保守基序分析

對已鑒定的AcNINV基因的外顯子/內含子結構進行分析,發現AcNINV外顯子數量介于4到6個之間,其中AcNINV3和AcNINV6基因外顯子數量都是6個,其余基因外顯子都為4個;內含子數量介于3到5個之間,其中AcNINV3和AcNINV6基因內含子數量最高為5個,其余基因內含子數量為3個(圖3)。利用MEME進行保守基序分析,在6個AcNINV基因中共預測了10個保守基序。其中AcNINV1、2、4、5均含有10個保守基序,但AcNINV3、6只有9個保守基序,缺少了motif 10。

2.6 菠蘿AcNINV基因系統進化樹分析

為了更好地闡明菠蘿AcNINV基因家族之間的進化關系,將菠蘿6個AcNINV基因與擬南芥、水稻、木薯等4個物種的NINV基因家族氨基酸序列構建了系統發育樹。菠蘿6個AcNINV基因被聚類到α和β兩個亞族,其中AcNINV1、2、4、5屬于β亞族,AcNINV3、6屬于α亞族(圖4)。

2.7 菠蘿AcNINV基因啟動子順式作用元件分析

為了探析菠蘿NINV基因是如何被調控表達的,利用Plant-CARE預測了目的基因上游2000 bp順式作用元件。結果(圖5)表明,光反應元件(MRE、ATC-motif、Box 4、L-box、GATA-motif、G-box、GT1-motif、TCCC-motif、3-AF1 binding site、LAMP-element、Sp1、TCT-motif、GA-motif、chs-CMA1a、AT1-motif、AE-box)的數量最多,其次是激素反應元件(ABRE、TGA-element、AuxRR-core、P-box、O2-site、TATC-box、TCA-element、TCA-element、 CGTCA-motif、TGACG-motif)和逆境反應元件(TC-rich repeats、LTR、ARE、GC-motif)。其中AcNINV5所含順式作用元件數量最多,AcNINV2所含順式作用元件數量最少。

2.8 菠蘿果實發育過程中蔗糖含量的變化

在菠蘿果實發育過程中,蔗糖含量呈先上升后下降的趨勢(圖6)。從20~40 DAA,蔗糖含量保持不變;此后,從50~80 DAA蔗糖含量急劇增加,并在80 DAA達到最高值,為20 DAA的126倍;從80~100 DAA急劇下降,但最終蔗糖含量仍比20 DAA高12倍[1]。正是由于蔗糖含量隨著果實的生長發育而增加,因此果實的甜度會隨著果實的生長發育而提高。

2.9 菠蘿果實發育過程中AcNINV基因家族的表達分析

利用RT-qPCR技術研究了6個AcNINV基因在菠蘿果實發育過程中的表達模式(圖7),不同AcNINV基因成員其表達差異巨大。6個AcNINV基因在菠蘿果實發育過程中的表達呈現出3種類型,第一種為上調表達,AcNINV2、3、6等3個基因屬于這種類型;第二種為先下調再上調表達,但變化幅度不大,AcNINV1、5等2個基因屬于這種類型;第三種為顯著下調表達,AcNINV4基因屬于這種類型。AcNINV4基因在20~40 DAA的表達量幾乎沒變化,但從40 DAA開始迅速下降,并持續到100 DAA,該基因在20 DAA的表達量是100 DAA的5倍。

2.10 AcNINV基因在不同組織中的表達分析

為了闡明AcNINV基因不同家族成員的表達特性,利用RT-qPCR分析了不同組織的表達量,從圖8可以看出,不同家族成員的表達特性不同,AcNINV1在果柄中的表達量最高,在果心中最低;AcNINV2、3、6在果皮中的表達量最高,在果肉中最低;AcNINV4、5在果柄中的表達量最高,在果肉中最低。綜合AcNINV基因家族在不同組織中的表達特性發現,在果柄、果皮、果心中表達量最高的是AcNINV2基因,在果肉中表達量最高的是AcNINV6基因。

3 討 論

蔗糖、果糖和葡萄糖是菠蘿果實中的主要糖類[26],在本研究中蔗糖含量隨果實發育而增加,這一結果和筆者課題組之前的結論一致[27]。筆者在本研究的菠蘿中共鑒定出6個AcNINV基因成員,AcNINV蛋白的長度為556~673 aa,分子質量(MW)在63.03~74.80 ku之間變化,理論等電點為5.68~6.35,6個AcNINV基因位于5條染色體上?;蚬簿€性分析發現菠蘿與水稻NINV基因的共線性基因對有8對,但菠蘿與擬南芥的共線性基因對只有1對。

NINV基因家族根據進化關系可以分為α和β亞族,其中α亞族定位在細胞核、葉綠體和線粒體上,β亞族定位在細胞溶質上[28-30]。另外,兩個亞族成員的主要區別在于外顯子/內含子數量不同,α亞族有6個外顯子,β亞族只有4個外顯子[17,19,31]。在辣椒中CaNINV基因外顯子數量介于3到6個之間,CaNINV1、2、3基因均有6個外顯子,屬于α亞族,CaNINV4、5、6基因均有4個外顯子,屬于β亞族[12]。木薯11個MeNINV基因外顯子數量介于4到6個之間,其中MeNINV1、6、7、8、9、10屬于α亞族,MeNINV2、3、4、5和nINV1屬于β亞族[17]。研究表明,AcNINV外顯子數量介于4到6個之間,內含子數量介于3到5個之間,其中AcNINV3、6外顯子的數量為6個,亞細胞定位預測發現這2個基因都分布于葉綠體上,屬于α亞族;AcNINV1、2、4、5外顯子的數量為4個,亞細胞定位預測發現這4個基因都分布于質膜上,屬于β亞族。這些結果與前人的結論一致。

啟動子分析表明,AcNINV家族的啟動子區域含有激素反應元件、逆境反應元件和光反應元件。在毛白楊[32]和西瓜、甜瓜[33]中也發現類似結果。且本研究發現,在眾多反應元件中光反應元件數量最多,據此推測光照條件能顯著調控NINV基因的表達,進而影響NINV酶活性,最終影響蔗糖的含量,這也能解釋為什么同一品種的菠蘿在不同季節收獲其果實糖積累的類型不同[34]。

NINV基因具有組織表達特異性[7]。Shen等[12]分析了辣椒7個基因家族成員在根、莖、葉、花芽、花、果實發育9個階段的表達特性,發現CaNINV1和CaNINV6在所有組織中的表達量都較低,且未檢測到CaNINV7表達。CaNINV4主要在根中表達,在果實僅有微弱表達。CaNINV2和CaNINV3在果實中的表達量高于其他組織。CaNINV5在所有組織中的表達量都是最高的。在鐵皮石斛5個NI基因中,在根中表達量高的為DoNI1和DoNI3,在花中表達量高的為DoNI4和DoNI5,在莖中表達量高的為DoNI2[35]。在木薯中,MeNINV5在雄花中特異性表達,在葉片、雌花和果實中僅微弱表達,且在其他器官中未檢測到;MeNINV1、4、7的表達模式相似,在莖、雄花和雌花中均有表達;MeNINV6、10主要在葉、莖、雄花和雌花中表達;MeNINV2、3和5在雄花中的表達量高于其他組織;MeNINV8在花中顯著表達,在塊莖根中僅微弱表達;MeNINV9在雌花中顯著表達[17]。筆者研究發現,在6個AcNINV基因中,在果柄、果皮、果心中表達量最高的是AcNINV2基因,在果肉中表達量最高的是AcNINV6基因。推測這兩個基因可能在植物器官生長中起到重要作用,因為前人研究發現在擬南芥中,At-A/N-Inv G基因影響側根的生長[29];同時敲除At-A/N-Inv G和At-A/N-Inv I基因植株生長緩慢,矮化,根的伸長區生長緩慢[36];At-A/N-Inv C基因影響莖的伸長、花芽的分化[37-38];A/N-Inv H敲除突變體開花時間推遲、植株莖的伸長減弱[39]。百脈根NINV基因Ljinv1-1、Ljinv1-2、Ljinv1-3缺失導致植株生長緩慢,根部受損,影響花芽和小孢子分化[30,40]。敲除水稻OsCYT-INV1基因,水稻根系變短,開花延緩[41]。

同時前人研究表明NINV在蔗糖代謝中發揮重要作用[42],橡膠樹乳管中HbNIN2參與蔗糖代謝,從而影響乳膠產量[42],橡膠HbNINa基因通過調控蔗糖代謝,進而在葉片發育過程中起到重要作用[43]。番茄果實SlCIN3基因在轉色期和紅熟期的表達量是綠熟期的4~5倍,據此推測該基因可能是番茄果實后期己糖代謝的關鍵基因[44]。楊寧等[32]將PtoNIN1過表達到擬南芥中,發現提高了轉基因植株角果、莖、蓮座葉的鮮質量,且促進了轉基因植株蔗糖的代謝。鐵皮石斛中DcNI4基因不可逆地將蔗糖分解為果糖和葡萄糖[16],NI的表達與葡萄果皮、果肉中葡萄糖和果糖的含量變化呈正相關[45]。在柑橘中研究發現,CitNI5可能參與了蔗糖代謝的調控,且該基因與果實蔗糖含量變化呈負相關[14]。Joubert等[46]利用RNAi技術,將NI基因轉入甘蔗,發現NI活性顯著下降,而蔗糖含量顯著上升。筆者研究發現6個AcNINV基因在菠蘿果實發育過程中呈現出不同的表達特性,AcNINV2、3、6等3個基因為上調表達;AcNINV1、5等2個基因為先下調再上調表達,但變化幅度不大;AcNINV4基因表現為顯著下調,且從20~40 DAA,蔗糖含量基本保持不變,AcNINV4基因的表達量也基本保持不變;從40~80 DAA,蔗糖含量持續增加,AcNINV4基因的表達量呈先顯著下降之后再有所回升的變化趨勢;從80~100 DAA,蔗糖含量顯著下降,AcNINV4基因的表達量稍有下降。綜上所述,推測AcNINV4可能是催化果實蔗糖降解的水解酶基因。

4 結 論

筆者在菠蘿中共鑒定出6個NINV基因,分布于5條不同染色體上,其二級結構主要由α-螺旋和無規則卷曲組成,該基因家族啟動子區域光反應元件數量最多。AcNINV3、6外顯子的數量為6個,分布于葉綠體上,屬于α亞族;AcNINV1、2、4、5外顯子的數量為4個,分布于質膜上,屬于β亞族。在果柄、果皮、果心中表達量最高的是AcNINV2基因,在果肉中表達量最高的是AcNINV6基因。蔗糖含量隨著菠蘿果實成熟呈先升高后降低的變化趨勢,而AcNINV4基因在菠蘿果實成熟過程中呈下調表達,據此推測,AcNINV4可能是催化果實蔗糖降解的水解酶基因。

參考文獻References:

[1] WU J Y,CHEN M,YAO Y L,FU Q,ZHU Z Y,ZHANG X M. Identification,characterisation,and expression profile analysis of the sucrose phosphate synthase gene family in pineapple (Ananas comosus)[J]. The Journal of Horticultural Science and Biotechnology,2022,97(2):201-210.

[2] 袁俊杰,陳文,李志勇,魏霜,馬新華,盧乃會,楊卓瑜,渭婷玉,龍陽. 湛江關區鮮菠蘿產業發展及出口對策探討[J]. 質量安全與檢驗檢測,2020,30(5):107-110.

YUAN Junjie,CHEN Wen,LI Zhiyong,WEI Shuang,MA Xinhua,LU Naihui,YANG Zhuoyu,WEI Tingyu,LONG Yang. Discussion on the development of pineapple industry and its export strategy in Zhanjiang[J]. Quality Safety Inspection and Testing,2020,30(5):107-110.

[3] PERSIA D,CAI G,DEL CASINO C,FALERI C,WILLEMSE M T M,CRESTI M. Sucrose synthase is associated with the cell wall of tobacco pollen tubes[J]. Plant Physiology,2008,147(4):1603-1618.

[4] BASSON C E,GROENEWALD J H,KOSSMANN J,CRONJ? C,BAUER R. Sugar and acid-related quality attributes and enzyme activities in strawberry fruits:Invertase is the main sucrose hydrolysing enzyme[J]. Food Chemistry,2010,121(4):1156-1162.

[5] 雷鈺欣,曹子千,李紀璇,劉福慶,張雙,許志茹. 高等植物轉化酶的研究進展[J].分子植物育種,2021:1-20. (2021-07-08)[2023-10-20]. DOI:10.13271/j.mpb.022.001242.

LEI Yuxin,CAO Ziqian,LI Jixuan,LIU Fuqing,ZHANG Shuang,XU Zhiru. Research progress of invertase in higher plants[J]. Molecular Plant Breeding,2021:1-20. (2021-07-08)[2023-10-20]. DOI:10.13271/j.mpb.022.001242.

[6] XIANG L,LE ROY K,BOLOURI-MOGHADDAM M R,VANHAECKE M,LAMMENS W,ROLLAND F,VAN DEN ENDE W. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana[J]. Journal of Experimental Botany,2011,62(11):3849-3862.

[7] DAHRO B,WANG F,PENG T,LIU J H. PtrA/NINV,an alkaline/neutral invertase gene of Poncirus trifoliata,confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency[J]. BMC Plant Biology,2016,16:76.

[8] 陳美霞,趙從凱,陳學森,房師梅,張憲省. 杏果實發育過程中糖積累與蔗糖代謝相關酶的關系[J]. 果樹學報,2009,26(3):320-324.

CHEN Meixia,ZHAO Congkai,CHEN Xuesen,FANG Shimei,ZHANG Xiansheng. Relationship between accumulation of sugar and sucrose-metabolizing enzymes during apricot fruit development[J]. Journal of Fruit Science,2009,26(3):320-324.

[9] 張玲. 草莓蔗糖代謝與轉運相關基因對果實糖分積累的影響機理[D]. 蘭州:甘肅農業大學,2017.

ZHANG Ling. The effect of genes for sucrose metabolism and transportion on fruit sugar accumulation in strawberry (Fragaria × ananassa Duch.)[D]. Lanzhou:Gansu Agricultural University,2017.

[10] QIAN W J,YUE C,WANG Y C,CAO H L,LI N N,WANG L,HAO X Y,WANG X C,XIAO B,YANG Y J. Identification of the invertase gene family (INVs) in tea plant and their expression analysis under abiotic stress[J]. Plant Cell Reports,2016,35(11):2269-2283.

[11] CHEN J Q,BLACK C C. Biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls[J]. Archives of Biochemistry and Biophysics,1992,295(1):61-69.

[12] SHEN L B,YAO Y,HE H,QIN Y L,LIU Z J,LIU W X,QI Z Q,YANG L J,CAO Z M,YANG Y. Genome-wide identification,expression,and functional analysis of the alkaline/neutral invertase gene family in pepper[J]. International Journal of Molecular Sciences,2018,19(1):224.

[13] JI X M,VAN DEN ENDE W,VAN LAERE A,CHENG S H,BENNETT J. Structure,evolution,and expression of the two invertase gene families of rice[J]. Journal of Molecular Evolution,2005,60(5):615-634.

[14] 李恒. 柑橘CitNI5和CitMYB52參與蔗糖代謝的轉錄調控初探[D]. 杭州:浙江大學,2020.

LI Heng. Preliminary research on transcriptional regulation of citrus CitNI5 and CitMYB52 in sucrose metabolism[D]. Hangzhou:Zhejiang University,2020.

[15] MARUTA T,OTORI K,TABUCHI T,TANABE N,TAMOI M,SHIGEOKA S. New insights into the regulation of greening and carbon-nitrogen balance by sugar metabolism through a plastidic invertase[J]. Plant Signaling & Behavior,2010,5(9):1131-1133.

[16] 劉晨. 鐵皮石斛多糖代謝途徑關鍵催化酶中性/堿性轉化酶DcNI4的挖掘與功能研究[D]. 杭州:浙江農林大學,2021.

LIU Chen. Mining and functional characterization of key catalase enzyme alkaline/neutral invertase DcNI4 involved in polysaccharide biosynthesis pathway in Dendrobium catenatum[D]. Hangzhou:Zhejiang A & F University,2021.

[17] YAO Y,GENG M T,WU X H,LIU J,LI R M,HU X W,GUO J C. Genome-wide identification,expression,and activity analysis of alkaline/neutral invertase gene family from cassava (Manihot esculenta Crantz)[J]. Plant Molecular Biology Reporter,2015,33(2):304-315.

[18] HYUN T K,EOM S H,KIM J S. Genomic analysis and gene structure of the two invertase families in the domesticated apple (Malus × domestica Borkh.)[J]. Plant Omics,2011,4(7):391-399.

[19] BOCOCK P N,MORSE A M,DERVINIS C,DAVIS J M. Evolution and diversity of invertase genes in Populus trichocarpa[J]. Planta,2008,227(3):565-576.

[20] MING R,VANBUREN R,WAI C M,TANG H B,SCHATZ M C,BOWERS J E,LYONS E,WANG M L,CHEN J,BIGGERS E,ZHANG J S,HUANG L X,ZHANG L M,MIAO W J,ZHANG J,YE Z Y,MIAO C Y,LIN Z C,WANG H,ZHOU H Y,YIM W C,PRIEST H D,ZHENG C F,WOODHOUSE M,EDGER P P,GUYOT R,GUO H B,GUO H,ZHENG G Y,SINGH R,SHARMA A,MIN X J,ZHENG Y,LEE H Y,GURTOWSKI J,SEDLAZECK F J,HARKESS A,MCKAIN M R,LIAO Z Y,FANG J P,LIU J,ZHANG X D,ZHANG Q,HU W C,QIN Y,WANG K,CHEN L Y,SHIRLEY N,LIN Y R,LIU L Y,HERNANDEZ A G,WRIGHT C L,BULONE V,TUSKAN G A,HEATH K,ZEE F,MOORE P H,SUNKAR R,LEEBENS-MACK J H,MOCKLER T,BENNETZEN J L,FREELING M,SANKOFF D,PATERSON A H,ZHU X G,YANG X H,SMITH J A C,CUSHMAN J C,PAULL R E,YU Q Y. The pineapple genome and the evolution of CAM photosynthesis[J]. Nature Genetics,2015,47(12):1435-1442.

[21] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,FRANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.

[22] ZHANG M F,LI Z L. A comparison of sugar-accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC[J]. Food Chemistry,2005,90(4):785-790.

[23] WU J Y,ZHANG H N,LIU L Q,LI W C,WEI Y Z,SHI S Y. Validation of reference genes for RT-qPCR studies of gene expression in preharvest and postharvest longan fruits under different experimental conditions[J]. Frontiers in Plant Science,2016,7:780.

[24] LI Y H,WU Q S,HUANG X,LIU S H,ZHANG H N,ZHANG Z,SUN G M. Molecular cloning and characterization of four genes encoding ethylene receptors associated with pineapple (Ananas comosus L.) flowering[J]. Frontiers in Plant Science,2016,7:710.

[25] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.

[26] 張秀梅,杜麗清,謝江輝,陳佳瑛,弓德強,李偉才. 蔗糖代謝相關酶在卡因菠蘿果實糖積累中的作用[J]. 果樹學報,2006,23(5):707-710.

ZHANG Xiumei,DU Liqing,XIE Jianghui,CHEN Jiaying,GONG Deqiang,LI Weicai. Roles of sucrose-metabolizing enzymes in accumulation of sugars in Cayenne pineapple fruit[J]. Journal of Fruit Science,2006,23(5):707-710.

[27] ZHANG X M,LIU S H,DU L Q,YAO Y L,WU J Y. Activities,transcript levels,and subcellular localizations of sucrose phosphate synthase,sucrose synthase,and neutral invertase and change in sucrose content during fruit development in pineapple (Ananas comosus)[J]. The Journal of Horticultural Science and Biotechnology,2019,94(5):573-579.

[28] 宋莉璐,張荃. 植物中參與活性氧調控的基因網絡[J]. 生命科學,2007,19(3):346-352.

SONG Lilu,ZHANG Quan. Reactive oxygen gene network of plants and its regulation[J]. Chinese Bulletin of Life Sciences,2007,19(3):346-352.

[29] LOU Y,GOU J Y,XUE H W. PIP5K9,an Arabidopsis phosphatidylinositol monophosphate kinase,interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth[J]. The Plant Cell,2007,19(1):163-181.

[30] WINGLER A,ROITSCH T. Metabolic regulation of leaf senescence:Interactions of sugar signalling with biotic and abiotic stress responses[J]. Plant Biology,2008,10(Suppl. 1):50-62.

[31] FUJII S,HAYASHI T,MIZUNO K. Sucrose synthase is an integral component of the cellulose synthesis machinery[J]. Plant and Cell Physiology,2010,51(2):294-301.

[32] 楊寧,楊雄,李國雷,陳仲. 毛白楊堿性/中性轉化酶基因PtoNIN1的克隆與功能研究[J]. 北京林業大學學報,2023,45(5):35-46.

YANG Ning,YANG Xiong,LI Guolei,CHEN Zhong. Cloning and functional study of the alkaline/neutral invertase gene PtoNIN1 in Populus tomentosa[J]. Journal of Beijing Forestry University,2023,45(5):35-46.

[33] 熊思亦,張聰聰,馬榮雪,閆星,魏春華,張顯. 西瓜、甜瓜蔗糖轉化酶基因家族鑒定及表達分析[J].分子植物育種,2023,21(12):3829-3839.

XIONG Siyi,ZHANG Congcong,MA Rongxue,YAN Xing,WEI Chunhua,ZHANG Xian. Identification and expression analysis of invertase gene family in watermelon and melon[J]. Molecular Plant Breeding,2023,21(12):3829-3839.

[34] 張秀梅,李建國,竇美安,姚艷麗,杜麗清,孫光明. 不同季節菠蘿果實糖積累的差異[J]. 園藝學報,2010,37(11):1751-1758.

ZHANG Xiumei,LI Jianguo,DOU Meian,YAO Yanli,DU Liqing,SUN Guangming. Difference in sugar accumulation of pineapple fruit harvested in different seasons[J]. Acta Horticulturae Sinica,2010,37(11):1751-1758.

[35] 苗小榮,??∑?,王愛勤,黃維,何龍飛. 鐵皮石斛中性/堿性轉化酶家族基因的克隆和表達分析[J].分子植物育種,2022,20(19):6362-6370.

MIAO Xiaorong,NIU Junqi,WANG Aiqin,HUANG Wei,HE Longfei. Cloning and expression analysis of neutral/alkaline invertase gene in Dendrobium officinale[J]. Molecular Plant Breeding,2022,20(19):6362-6370.

[36] BARRATT D H P,DERBYSHIRE P,FINDLAY K,PIKE M,WELLNER N,LUNN J,FEIL R,SIMPSON C,MAULE A J,SMITH A M. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(31):13124-13129.

[37] TAMOI M,TABUCHI T,DEMURATANI M,OTORI K,TANABE N,MARUTA T,SHIGEOKA S. Point mutation of a plastidic invertase inhibits development of the photosynthetic apparatus and enhances nitrate assimilation in sugar-treated Arabidopsis seedlings[J]. The Journal of Biological Chemistry,2010,285(20):15399-15407.

[38] BAILEY T L,BODEN M,BUSKE F A,FRITH M,GRANT C E,CLEMENTI L,REN J Y,LI W W,NOBLE W S. MEME SUITE:Tools for motif discovery and searching[J]. Nucleic Acids Research,2009,37(Web Server issue):W202-W208.

[39] BATTAGLIA M E,MARTIN M V,LECHNER L,MART?NEZ-NO?L G M A,SALERNO G L. The riddle of mitochondrial alkaline/neutral invertases:A novel Arabidopsis isoform mainly present in reproductive tissues and involved in root ROS production[J]. PLoS One,2017,12(9):e0185286.

[40] WELHAM T,PIKE J,HORST I,FLEMETAKIS E,KATINAKIS P,KANEKO T,SATO S,TABATA S,PERRY J,PARNISKE M,WANG T L. A cytosolic invertase is required for normal growth and cell development in the model legume,Lotus japonicus[J]. Journal of Experimental Botany,2009,60(12):3353-3365.

[41] JIA L Q,ZHANG B T,MAO C Z,LI J H,WU Y R,WU P,WU Z C. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.)[J]. Planta,2008,228(1):51-59.

[42] LIU S J,LAN J X,ZHOU B H,QIN Y X,ZHOU Y H,XIAO X H,YANG J H,GOU J Q,QI J Y,HUANG Y C,TANG C R. HbNIN2,a cytosolic alkaline/neutral-invertase,is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree)[J]. New Phytologist,2015,206(2):709-725.

[43] 肖小虎,戚繼艷,方永軍,曹冰,龍翔宇,唐朝榮. 巴西橡膠樹中堿性轉化酶HbNINa基因的克隆和表達模式分析[J]. 熱帶作物學報,2013,34(7):1264-1269.

XIAO Xiaohu,QI Jiyan,FANG Yongjun,CAO Bing,LONG Xiangyu,TANG Chaorong. Cloning and expression analysis of an alkaline/neutral invertase gene in Hevea brasliensis[J]. Chinese Journal of Tropical Crops,2013,34(7):1264-1269.

[44] 張瓊瓊. 番茄堿性/中性轉化酶SlCIN3基因功能研究[D]. 沈陽:沈陽農業大學,2019.

ZHANG Qiongqiong. The primary study of an alkaline/neutral invertase SlCIN3 gene function in tomato[D]. Shenyang:Shenyang Agricultural University,2019.

[45] NONIS A,RUPERTI B,PIERASCO A,CANAGUIER A,ADAM-BLONDON A F,DI GASPERO G,VIZZOTTO G. Neutral invertases in grapevine and comparative analysis with Arabidopsis,poplar and rice[J]. Planta,2008,229(1):129-142.

[46] JOUBERT D,BOSCH S,BOTHA F C,KOSSMANN J,GROENEWALD J H. Down-regulation of neutral invertase activity in sugarcane cell suspension cultures leads to increased sucrose accumulation[J]. South African Journal of Botany,2007,73(2):293.

猜你喜歡
亞族菠蘿外顯子
外顯子跳躍模式中組蛋白修飾的組合模式分析
二穗短柄草CYP72A亞族成員表達分析及亞細胞定位
苦蕎蛋白磷酸酶2C家族的鑒定及表達分析
外顯子組測序助力產前診斷胎兒骨骼發育不良
最愛酸酸甜甜菠蘿雞
辣椒HD-Zip基因家族鑒定、系統進化及表達分析
菠蘿
吃菠蘿為什么要用鹽水泡
外顯子組測序助力產前診斷胎兒骨骼發育不良
Ataxonomic study of the Subtribe Lathrobiina(Coleoptera,Staphylinidae) in Shanghai
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合