?

膠質纖維酸性蛋白在腦損傷中作用的研究進展

2024-04-30 17:59吳永萌馬寧李國婧陰懷清
中西醫結合心腦血管病雜志 2024年5期
關鍵詞:腦損傷綜述結構

吳永萌 馬寧 李國婧 陰懷清

摘要 膠質纖維酸性蛋白(GFAP)是成熟星形膠質細胞的標志。GFAP負責星形膠質細胞的細胞結構和機械強度,并支持其鄰近神經元的生理功能和維持血腦屏障。通過反應性星形膠質細胞增生,GFAP參與腦損傷、神經退行性疾病的病理生理學過程。綜述GFAP的結構、功能、病理生理作用及其在腦損傷中的作用等方面的研究進展,以促進GFAP作為腦損傷生物標志物的潛在臨床價值(包括支持性診斷標準、監測疾病進展和提高預后準確性等方面)的研究。

關鍵詞 腦損傷;膠質纖維酸性蛋白;結構;功能;病理生理作用;綜述

doi:10.12102/j.issn.1672-1349.2024.05.015

基金項目 山西省自然基金項目(No.20210302124650)

作者單位 1.山西醫科大學(太原? 030001);2.山西醫科大學第一醫院(太原? 030001)

通訊作者 陰懷清,E-mail:yhq0351@163.com

引用信息 吳永萌,馬寧,李國婧,等.膠質纖維酸性蛋白在腦損傷中作用的研究進展[J].中西醫結合心腦血管病雜志,2024,22(5):852-856.

星形膠質細胞占中樞神經系統細胞的30%~40%,與神經系統中的其他細胞(包括神經元)建立大量的相互作用[1]。膠質纖維酸性蛋白(glial fibrillary acidic protein,GFAP)是星形膠質細胞的標志性中間纖維[2],在灰質和白質、小腦、腦室下區和顆粒下區的成熟星形膠質細胞及視網膜中的Mueller細胞中表達[1]。腦特異性GFAP位于星形膠質細胞中,在細胞損傷和死亡后釋放[3]。GFAP在成人腦損傷中表現出臨床預后潛力,包括創傷性腦損傷[4]、中風[5]和神經退行性疾?。?]。新生兒血清GFAP濃度升高與腦室周圍白質損傷[7]、體外膜氧合后腦損傷及出生相關缺氧缺血性腦病出院時磁共振異常有關[8],可提高對新生兒腦病神經發育結果的預測[9-11]?,F對GFAP的結構、功能、病理生理作用及其在腦損傷中的作用等方面的研究進展進行綜述,促進以GFAP作為腦損傷生物標志物的潛在臨床價值(包括支持性診斷標準、監測疾病進展和提高預后準確性等方面)的研究。

1 GFAP的結構

GFAP是一種主要存在于星形膠質細胞中,長度為8~12 nm的Ⅲ型中間纖維結構蛋白[12-14],人GFAP基因于1989年克?。?5],該基因定位于染色體17q21,由9個外顯子[16]和8個內含子組成,分布在約10 kb的DNA上,產生約3 kb的成熟mRNA[17],以編碼432個氨基酸組成的GFAP[1]。主要異構體GFAP-α在中樞神經系統神經膠質細胞和神經元中高度表達,GFAP-β、γ、ε、κ和ζ異構體在中樞神經系統神經元和神經膠質外的組織和細胞類型中表達[18]。GFAP和其他Ⅲ型中間絲蛋白具有相同的結構特性[2],其單體均由氨基末端“頭”、中央螺旋“桿”和羧基末端“尾”域組成[17]。頭部和尾部結構域無特定結構,高度保守的桿狀結構域包含4個主要α-螺旋片段[19]。

2 GFAP的功能

2.1 一般功能

GFAP在中樞神經系統中有重要作用,如細胞通信、血腦屏障形成[20],這些作用的實現主要基于其細胞骨架和支架的功能。

2.1.1 細胞骨架與形態指標

GFAP是星形膠質細胞中細胞和細胞核的支撐系統或“支架”[21],功能之一是為與其他細胞或細胞外基質接觸的質膜提供機械支持,且GFAP的表達對大腦正常組織及血腦屏障完整性至關重要。

2.1.2 細胞間連接和通信

GFAP與其他細胞骨架蛋白和橋粒共同作用,參與形成細胞間連接,并錨定細胞-基質連接,促進細胞間通信,以響應細胞信號和內環境變化[22]。

2.1.3 分子相互作用平臺

GFAP與功能分子共定位,甚至發生分子結合,還可作為細胞功能蛋白及酶和其底物之間相互作用的平臺[22]。

2.1.4 參與細胞分裂

GFAP調控細絲裝配,參與星形膠質細胞分裂過程,表現為GFAP頭域磷酸化及GFAP在有絲分裂過程中向子細胞分離部位遷移[23]。

2.2 參與突觸外神經遞質傳遞

星形膠質細胞是細胞外神經遞質、有機陰離子和其他神經活性物質的主要來源之一[22]。GFAP調控星形膠質細胞囊泡運輸,通過胞吐作用、囊泡循環和溶酶介導的自噬釋放不同遞質轉運體的運動[23]。因此,GFAP在遞質動態平衡中發揮著關鍵作用,這些轉運體有助于清除突觸間隙的神經遞質以保護神經元免受神經遞質過剩的影響[24]。

2.3 導向作用

GFAP的導向作用包括一個彈性細胞骨架網絡,該網絡與GFAP的重組、運輸和膜蛋白回收機制結合,并為星形膠質細胞中功能蛋白的運輸和定位提供指南[22]。

3 GFAP的生理病理作用

腦損傷發生時,星形膠質細胞被激活,GFAP上調。作為星形膠質細胞特有的結構蛋白,GFAP為星形膠質細胞提供穩定性,從而影響其形狀和運動[25]。因此,GFAP認為是多種神經病理條件下反應性星形膠質細胞的生物標志物。循環中GFAP水平升高可能與神經系統疾病有關,包括創傷性腦損傷[26]、脊髓損傷[1]、缺氧缺血性腦?。?7]、急性缺血性腦卒中[28-29]、顱內及蛛網膜下腔出血[30]、多發性硬化[31]、阿爾茨海默?。?2-33]、癲癇[34]、Alexander?。?5]、抑郁癥[36]、神經炎癥[37]、糖尿病酮癥酸中毒[38]、帕金森?。?9]和視神經脊髓炎譜系障礙[40]。GFAP是較多中樞神經系統疾病中腦損傷的潛在生物標志物。

任何中樞神經系統的病理反應中,星形膠質細胞的防御功能均表現為反應性星形膠質細胞增生[41],即由中樞神經系統損傷引發的星形膠質細胞多成分和復雜的重塑,其特征是GFAP表達增加,可促進大量神經保護和促炎因子相關的星形膠質細胞生化和生理的深刻變化,是細胞病理生理學的重要組成部分,GFAP抑制常加重神經病理變化[42]。

盡管反應性星形膠質細胞增生是基因表達和細胞變化的漸進性變化的精細分級連續體,但出于描述和分類的目的,分為3個類別[24]。1)輕度至中度反應性星形膠質細胞增生:少量或不增生的星狀膠質細胞;GFAP表達增高,細胞體及突起肥大均只在個別星狀膠質細胞區出現,鄰近星狀膠質細胞的突起無明顯混合、交疊或缺失。輕度或中度反應性星形膠質細胞增生通常與輕度非穿透性和非挫傷性損傷、彌漫性先天免疫活化(病毒感染、系統細菌感染)及距離中樞神經系統局灶性病變距離較遠有關。上述形態和機能變化是可逆的[43]。2)嚴重彌漫性反應性星形膠質細胞增生:星形膠質細胞增殖,導致突起顯著延長,超出單個星形膠質細胞原有結構域,GFAP表達上調,細胞體和突起明顯肥大。相鄰星形膠質細胞突起混合和重疊,個別星形膠質細胞結構域模糊和破壞。此變化導致組織結構長期重組,未形成致密屏障。嚴重的彌漫性反應性星形膠質細胞增生通常發生在嚴重的局灶性病變、感染或對慢性神經退行性病變有反應的區域周圍。3)嚴重的反應性星形膠質細胞增生伴致密的膠質瘢痕形成:包括與較輕形式相關的變化,如GFAP顯著上調及明顯的細胞體和突起肥大。膠質瘢痕的形成表現為反應性星形膠質細胞突起明顯重疊,單個星形膠質細胞區域消失,星形膠質細胞增殖及致密、狹窄的膠質瘢痕明顯形成。病因包括穿透性創傷、嚴重挫傷、侵襲性感染或膿腫形成、腫瘤、慢性神經變性、系統性炎癥損害。

從功能角度分析,反應性星形膠質細胞增生的目的[42]:1)增加對損傷應激神經元的神經保護和營養支持;2)將受損區域與中樞神經系統組織其余部分隔離;3)重建受損血腦屏障;4)在某些情況下,可能促進受損區域周圍腦回路重塑。一般認為,一定程度的腦損傷后膠質細胞增生可能有利于腦損傷后的恢復過程,過度的膠質細胞增殖及其相關的神經炎癥反應對腦結構和功能的恢復產生負面影響[2]。

反應性星形膠質細胞增生的正面效應:形成屏障,限制病變并防止其擴散[44];減少白細胞浸潤,促進血腦屏障修復[45];限制腦卒中和神經創傷中的神經元損失[46];減少損傷后神經元突觸的損失[47];限制神經退行性變,減緩神經退行性疾病的發展[48]。負面效應:限制損傷后突觸再生[49];限制軸突再生[50];限制脊髓損傷后再生和功能恢復[51];限制神經移植物和神經干/祖細胞的整合[52]。

4 GFAP在腦損傷中的作用

GFAP基因功能獲得性突變引起相關蛋白在星形膠質細胞高水平表達,并沉積形成蛋白聚集體,常導致Alexander病,這是一種以星形細胞包涵體為特征的致命神經退行性疾?。?3]。GFAP缺失小鼠出現了與腦白質丟失相關的腦積水、異常的髓鞘形成、腦白質血運不良、血腦屏障結構和功能受損、星形細胞結構和功能異常[54]。因此,GFAP的表達對正常白質結構和血腦屏障完整性是必不可少的,其缺失導致遲發性中樞神經系統髓鞘障礙[22]。盡管GFAP缺失小鼠和野生型小鼠海馬體超微結構相同,實驗發現大鼠海馬長時程顯著增強[55]。研究小腦時,實驗發現長期抑郁在突變體中比野生型要弱得多,在前額葉皮質被針刺傷后,GFAP缺失型小鼠膠質瘢痕形成[56]。這可能是由于反應性星形膠質細胞增生期間發生的波形蛋白上調所致,缺乏GFAP和波形蛋白的星形膠質細胞形成發育不良的膠質瘢痕。由此可見GFAP對誘導反應性星形膠質細胞增生并非是必需的[54]。GFAP缺失的星形膠質細胞在β-淀粉樣肽沉積邊緣的突起組織不佳,未形成屏障[57],說明GFAP可能是成熟星形膠質細胞抑制大腦中某些類型的高度炎癥性病變必需的。GFAP在提供抗張強度方面可能發揮著與角蛋白類似的作用,由于GFAP通過其包裹的末端為血管系統提供結構完整性以應對在物理創傷中類似于搖晃嬰兒綜合征的剪切力[54],即GFAP缺失小鼠對血管剪切高度敏感。在GFAP基因缺失小鼠中風模型中,實驗發現GFAP相關的調節血流功能障礙,表現為短暫的頸動脈阻斷導致的局部腦血流量較低,再灌注期間顱內壓較高,從而導致腦梗死體積增加,這些結果表明GFAP缺失小鼠對腦缺血的易感性較高[58],提示GFAP在局灶性腦缺血部分再灌注后缺血性腦損傷的過程中發揮著重要作用。GFAP缺失小鼠對脊髓損傷和腦缺血的抵抗力較低,且在神經損傷后出現了神經病行為和特殊的形態分子重排[59]。目前認為GFAP在中樞神經系統中的作用包括抑制成熟腦中神經元的增殖和軸突延伸,形成物理屏障以隔離受損組織,參與小腦運動學習,控制中樞血流,促進血腦屏障,支持髓鞘形成,并提供機械強度。

GFAP在中樞神經系統外的表達較低,其水平升高的主要原因是機械性腦損傷和局部死亡后星形膠質細胞的激活[60]。有研究顯示,腦損傷的理想生物標志物是腦組織特異性的,在神經損傷后立即釋放入血[61],并準確反映損傷的位置和程度[62]。GFAP在星形膠質細胞死亡后被釋放到血液中,因此其是預測新生兒腦損傷的合適生物標志物[63]。GFAP可作為兒童和成人的診斷和預后工具[30,64-65],且與新生兒異常的腦成像對應[62],可預測新生兒缺氧缺血性腦病、早產兒相關性顱內出血、新生兒冠心病腦損傷、體外膜氧合和新生兒先天性心臟病修復期間體外循環的神經發育結果[66]。因此,GFAP水平可反映新生兒顱腦損傷后臨床的嚴重程度和顱內病變程度。2018年美國食品藥物管理局授權進行GFAP的血液檢測,用于臨床診斷腦損傷[1]。

5 小結與展望

GFAP的異常調控和表達在較多腦部疾病發展中發揮關鍵作用,這些與GFAP相關的疾病通常是可治愈的。今后研究可能側重于GFAP表達和功能的調控,通過提出關鍵干預靶點,對控制星形膠質細胞相關腦疾病至關重要。臨床證據表明,GFAP是最有研究價值的生物標志物之一,在神經損傷和其他可能的神經疾病方面具有診斷及治療作用。較好地了解GFAP在疾病中的功能可提高不同治療方案的可能性,這些治療方案可能靶向保存星形膠質細胞功能及其對神經元的穩態支持。

參考文獻:

[1] ABDELHAK A,FOSCHI M,ABU-RUMEILEH S,et al.Blood GFAP as an emerging biomarker in brain and spinal cord disorders[J].Nature Reviews Neurology,2022,18(3):158-172.

[2] YANG Z H,WANG K K W.Glial fibrillary acidic protein:from intermediate filament assembly and gliosis to neurobiomarker[J].Trends in Neurosciences,2015,38(6):364-374.

[3] ZETTERBERG H,BLENNOW K.Fluid biomarkers for mild traumatic brain injury and related conditions[J].Nature Reviews Neurology,2016,12(10):563-574.

[4] LEI J,GAO G Y,FENG J F,et al.Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients:a prospective cohort study[J].Critical Care,2015,19:362.

[5] PUSPITASARI V,GUNAWAN P Y,WIRADARMA H D,et al.Glial fibrillary acidic protein serum level as a predictor of clinical outcome in ischemic stroke[J].Open Access Macedonian Journal of Medical Sciences,2019,7(9):1471-1474.

[6] CHMIELEWSKA N,SZYNDLER J,MAKOWSKA K,et al.Looking for novel,brain-derived,peripheral biomarkers of neurological disorders[J].Neurologia i Neurochirurgia Polska,2018,52(3):318-325.

[7] STEWART A,TEKES A,HUISMAN T A,et al.Glial fibrillary acidic protein as a biomarker for periventricular white matter injury[J].American Journal of Obstetrics and Gynecology,2013,209(1):27.e1-27.e7.

[8] GRAHAM E M,MARTIN R H,ATZ A M,et al.Association of intraoperative circulating-brain injury biomarker and neurodevelopmental outcomes at 1 year among neonates who have undergone cardiac surgery[J].The Journal of Thoracic and Cardiovascular Surgery,2019,157(5):1996-2002.

[9] YANG Z H,XU H Y,SURA L,et al.Combined GFAP,NFL,Tau,and UCH-L1 panel increases prediction of outcomes in neonatal encephalopathy[J].Pediatric Research,2023,93(5):1199-1207.

[10] CHALAK L F,SNCHEZ P J,ADAMS-HUET B,et al.Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy[J].The Journal of Pediatrics,2014,164(3):468-474.

[11] HANSEN J H,KISSNER L,CHITADZE G,et al.Glial fibrillary acid protein and cerebral oxygenation in neonates undergoing cardiac surgery[J].The Thoracic and Cardiovascular Surgeon,2019,67(S4):e11-e18.

[12] PETZOLD A.Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease[J].Brain Research,2015,1600:17-31.

[13] JURGA A M,PALECZNA M,KADLUCZKA J,et al.Beyond the GFAP-astrocyte protein markers in the brain[J].Biomolecules,2021,11(9):1361.

[14] MESSING A,BRENNER M.GFAP at 50[J].ASN Neuro,2020,12:1759091420949680.

[15] REEVES S A,HELMAN L J,ALLISON A,et al.Molecular cloning and primary structure of human glial fibrillary acidic protein[J].Proceedings of the National Academy of Sciences of the United States of America,1989,86(13):5178-5182.

[16] KAMPHUIS W,MAMBER C,MOETON M,et al.GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease[J].PLoS One,2012,7(8):e42823.

[17] MIDDELDORP J,HOL E M.GFAP in health and disease[J].Progress in Neurobiology,2011,93(3):421-443.

[18] GANNE A,BALASUBRAMANIAM M,GRIFFIN W S T,et al.Glial fibrillary acidic protein:a biomarker and drug target for Alzheimer′s disease[J].Pharmaceutics,2022,14(7):1354.

[19] VIEDMA-POYATOS ,PABLO Y D,PEKNY M,et al.The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization[J].Free Radical Biology & Medicine,2018,120:380-394.

[20] FORREST S L,KIM J H,CROCKFORD D R,et al.Distribution patterns of astrocyte populations in the human cortex[J].Neurochemical Research,2023,48(4):1222-1232.

[21] YANG Z H,ARJA R D,ZHU T,et al.Characterization of calpain and caspase-6-generated glial fibrillary acidic protein breakdown products following traumatic brain injury and astroglial cell injury[J].International Journal of Molecular Sciences,2022,23(16):8960.

[22] LI D Y,LIU X Y,LIU T M,et al.Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes[J].Glia,2020,68(5):878-897.

[23] MCKEON A,BENARROCH E E.Glial fibrillary acid protein:functions and involvement in disease[J].Neurology,2018,90(20):925-930.

[24] SOFRONIEW M V,VINTERS H V.Astrocytes:biology and pathology[J].Acta Neuropathologica,2010,119(1):7-35.

[25] ALVAREZ M,TRENT E,GONCALVES B S,et al.Cognitive dysfunction associated with COVID-19:prognostic role of circulating biomarkers and microRNAs[J].Frontiers in Aging Neuroscience,2022,14:1020092.

[26] NEWCOMBE V F J,ASHTON N J,POSTI J P,et al.Post-acute blood biomarkers and disease progression in traumatic brain injury[J].Brain,2022,145(6):2064-2076.

[27] LAGEBRANT A,LANG M,NIELSEN N,et al.Brain injury markers in blood predict signs of hypoxic ischaemic encephalopathy on head computed tomography after cardiac arrest[J].Resuscitation,2023,184:109668.

[28] GKANTZIOS A,TSIPTSIOS D,KARATZETZOU S,et al.Stroke and emerging blood biomarkers:a clinical prospective[J].Neurology International,2022,14(4):784-803.

[29] AMALIA L.Glial fibrillary acidic protein(GFAP):neuroinflammation biomarker in acute ischemic stroke[J].Journal of Inflammation Research,2021,14:7501-7506.

[30] GYLDENHOLM T,HVAS C L,HVAS A M,et al.Serum glial fibrillary acidic protein(GFAP) predicts outcome after intracerebral and subarachnoid hemorrhage[J].Neurological Sciences,2022,43(10):6011-6019.

[31] HEIMFARTH L,PASSOS F R S,MONTEIRO B S,et al.Serum glial fibrillary acidic protein is a body fluid biomarker:a valuable prognostic for neurological disease-a systematic review[J].International Immunopharmacology,2022,107:108624.

[32] ELAHI F M,CASALETTO K B,JOIE R L,et al.Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer′s disease[J].Alzheimer′s & Dementia,2020,16(4):681-695.

[33] TEUNISSEN C E,VERBERK I M W,THIJSSEN E H,et al.Blood-based biomarkers for Alzheimer′s disease:towards clinical implementation[J].The Lancet Neurology,2022,21(1):66-77.

[34] DIETRICK B,MOLLOY E,MASSARO A N,et al.Plasma and cerebrospinal fluid candidate biomarkers of neonatal encephalopathy severity and neurodevelopmental outcomes[J].The Journal of Pediatrics,2020,226:71-79.

[35] MESSING A.Refining the concept of GFAP toxicity in Alexander disease[J].Journal of Neurodevelopmental Disorders,2019,11(1):27.

[36] STEINACKER P,AL SHWEIKI M R,OECKL P,et al.Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder[J].Journal of Psychiatric Research,2021,144:54-58.

[37] MCKEON A.Glial fibrillary acidic protein immunoglobulin G in CSF:a biomarker of severe but reversible encephalitis[J].Neurology,2022,98(6):221-222.

[38] ATL G,ANK A,ACAR S,et al.Brain injury markers:S100 calcium-binding protein B,neuron-specific enolase and glial fibrillary acidic protein in children with diabetic ketoacidosis[J].Pediatric Diabetes,2018,19(5):1000-1006.

[39] GSCHMACK E,MONORANU C M,MAROUF H,et al.Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson′s disease[J].Journal of Neural Transmission,2022,129(5/6):545-555.

[40] KIM H,LEE E J,LIM Y M,et al.Glial fibrillary acidic protein in blood as a disease biomarker of neuromyelitis optica spectrum disorders[J].Frontiers in Neurology,2022,13:865730.

[41] PEKNY M,PEKNA M.Astrocyte reactivity and reactive astrogliosis:costs and benefits[J].Physiological Reviews,2014,94(4):1077-1098.

[42] PEKNY M,PEKNA M,MESSING A,et al.Astrocytes:a central element in neurological diseases[J].Acta Neuropathologica,2016,131(3):323-345.

[43] MAGAKI S D,WILLIAMS C K,VINTERS H V.Glial function(and dysfunction) in the normal & ischemic brain[J].Neuropharmacology,2018,134:218-225.

[44] BRENNAN F H,GORDON R,LAO H W,et al.The complement receptor C5aR controls acute inflammation and astrogliosis following spinal cord injury[J].The Journal of Neuroscience,2015,35(16):6517-6531.

[45] BARDEHLE S,KRGER M,BUGGENTHIN F,et al.Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation[J].Nature Neuroscience,2013,16(5):580-586.

[46] PABLO Y D,NILSSON M,PEKNA M,et al.Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion[J].Histochemistry and Cell Biology,2013,140(1):81-91.

[47] WINTER C G,SAOTOME Y,LEVISON S W,et al.A role for ciliary neurotrophic factor as an inducer of reactive gliosis,the glial response to central nervous system injury[J].Proceedings of the National Academy of Sciences of the United States of America,1995,92(13):5865-5869.

[48] KRAFT A W,HU X Y,YOON H,et al.Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice[J].FASEB Journal,2013,27(1):187-198.

[49] PEKNY M,PEKNA M.Reactive gliosis in the pathogenesis of CNS diseases[J].Biochimica et Biophysica Acta,2016,1862(3):483-491.

[50] ORRE M,KAMPHUIS W,OSBORN L M,et al.Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice[J].Neurobiology of Aging,2014,35(1):1-14.

[51] ZAMANIAN J L,XU L J,FOO L C,et al.Genomic analysis of reactive astrogliosis[J].The Journal of Neuroscience,2012,32(18):6391-6410.

[52] WILHELMSSON U,BUSHONG E A,PRICE D L,et al.Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(46):17513-17518.

[53] HAGEMANN T L.Alexander disease:models,mechanisms,and medicine[J].Current Opinion in Neurobiology,2022,72:140-147.

[54] BRENNER M.Role of GFAP in CNS injuries[J].Neuroscience Letters,2014,565:7-13.

[55] MCCALL M A,GREGG R G,BEHRINGER R R,et al.Targeted deletion in astrocyte intermediate filament(GFAP) alters neuronal physiology[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(13):6361-6366.

[56] SHIBUKI K,GOMI H,CHEN L,et al.Deficient cerebellar long-term depression,impaired eyeblink conditioning,and normal motor coordination in GFAP mutant mice[J].Neuron,1996,16(3):587-599.

[57] XU K,MALOUF A T,MESSING A,et al.Glial fibrillary acidic protein is necessary for mature astrocytes to react to beta-amyloid[J].Glia,1999,25(4):390-403.

[58] NAWASHIRO H,BRENNER M,FUKUI S,et al.High susceptibility to cerebral ischemia in GFAP-null mice[J].Journal of Cerebral Blood Flow and Metabolism,2000,20(7):1040-1044.

[59] LUCA C D,VIRTUOSO A,KORAI S A,et al.Altered spinal homeostasis and maladaptive plasticity in GFAP null mice following peripheral nerve injury[J].Cells,2022,11(7):1224.

[60] WU L,AI M L,FENG Q,et al.Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication[J].Journal of Critical Care,2019,52:172-179.

[61] WANG K K,YANG Z H,ZHU T,et al.An update on diagnostic and prognostic biomarkers for traumatic brain injury[J].Expert Review of Molecular Diagnostics,2018,18(2):165-180.

[62] BRUNETTI M A,JENNINGS J M,EASLEY R B,et al.Glial fibrillary acidic protein in children with congenital heart disease undergoing cardiopulmonary bypass[J].Cardiology in the Young,2014,24(4):623-631.

[63] ENNEN C S,HUISMAN T A,SAVAGE W J,et al.Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling[J].American Journal of Obstetrics and Gynecology,2011,205(3):251.e1-251.e7.

[64] CASTAO-LEON A M,SNCHEZ CARABIAS C,HILARIO A,et al.Serum assessment of traumatic axonal injury:the correlation of GFAP,t-Tau,UCH-L1,and NfL levels with diffusion tensor imaging metrics and its prognosis utility[J].Journal of Neurosurgery,2023,138(2):454-464.

[65] PAPA,ROSENTHAL K,COOK L,et al.Concussion severity and functional outcome using biomarkers in children and youth involved in organized sports,recreational activities and non-sport related incidents[J].Brain Injury,2022,36(8):939-947.

[66] MCKENNEY S L,MANSOURI F F,EVERETT A D,et al.Glial fibrillary acidic protein as a biomarker for brain injury in neonatal CHD[J].Cardiology in the Young,2016,26(7):1282-1289.

(收稿日期:2023-03-02)

(本文編輯薛妮)

猜你喜歡
腦損傷綜述結構
《形而上學》△卷的結構和位置
論結構
腦損傷 與其逃避不如面對
SEBS改性瀝青綜述
NBA新賽季綜述
論《日出》的結構
JOURNAL OF FUNCTIONAL POLYMERS
認知行為療法治療創傷性腦損傷后抑郁
創新治理結構促進中小企業持續成長
綜述
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合