?

梨果實石細胞木質素合成調控機制研究進展

2024-04-30 09:34王紅寶王永博王晉李勇李曉王迎濤王亞茹
果樹學報 2024年4期
關鍵詞:木質素

王紅寶 王永博 王晉 李勇 李曉 王迎濤 王亞茹

摘? ? 要:石細胞是由木質素沉積形成的厚壁組織細胞,是制約梨果實品質提升的重要因素。梨果肉石細胞的形成與木質素的生物合成、轉移和沉積密切相關。因此,探究梨果實發育過程中木質素合成調控機制對調節石細胞形成及果實品質改良具有重要意義??偨Y近年來與梨果實木質素合成調控機制有關的研究,對轉錄因子、激素、糖、鈣、活性氧、光質及花粉直感等調控因子在梨果實木質素合成中的作用機制進行綜述,旨在為梨果實木質素的調控網絡深入研究及品質改良提供參考。

關鍵詞:梨;石細胞;木質素;調控機制

中圖分類號:S661.2 文獻標志碼:A 文章編號:1009-9980(2024)04-0750-14

Research progress in the regulation mechanism of lignin synthesis in pear stone cells

WANG Hongbao, WANG Yongbo, WANG Jin*, LI Yong, LI Xiao, WANG Yingtao, WANG Yaru*

(Shijiazhuang Institute of Fruit Trees, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050061, Hebei, China)

Abstract: Stone cells are sclerenchyma cells formed by deposition of lignin, which is the most significant factor limiting the quality of pears. Therefore, it is of great significance to explore the mechanism of lignin synthesis regulation in pear fruit development for the genetic regulatory network of stone cell traits. In this paper, the mechanisms of transcriptional factors, hormones, sugars, calcium, reactive oxygen species, light quality and pollen sensitivity in lignin synthesis in pear fruits are reviewed, aiming to provide reference for the regulatory network of lignin in pear fruits and genetic improvement of fruit quality. Several transcription factors involved in lignin biosynthesis have been identified in pears, such as MYB, NAC, bZIP, KNOX and zinc finger protein, among which MYB and NAC transcription factors play key regulatory roles in lignin synthesis. Study has showed that PbrMYB169, an R2R3MYB transcription factor of Pyrus bretschneideri, positively regulates lignification of stone cells in pear fruits. On the one hand, PbrMYB24 activates the transcription of lignin and cellulose biosynthesis genes by binding to different cis-element. On the other hand, PbrMYB24 binds directly to the promoters of PbrMYB169 and PbrNSC, activating the gene expression. Moreover, both PbrMYB169 and PbrNSC activate the promoter of PbrMYB24, enhancing gene expression. Research has identified PbMYB61 and PbMYB308 as candidate transcriptional regulators of stone cell formation, revealing that PbMYB61 regulates stone cell lignin formation by binding to the AC element in the PbLAC1 promoter to upregulate expression. Exogenous application of 200 μmol·L-1 NAA can reduce stone cell content and also significantly decrease the expression level of PbrNSC encoding a transcriptional regulator. In addition, PbrARF13-PbrNSC-PbrMYB132 regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals. Research has found several hormone-responsive elements in the upstream regulatory sequences of PbPALs family members. ABA, SA and MeJA could regulate the expression of PbPAL1 and PbPAL3 genes, and affect the formation of fruit stone cells. A series of experiments have proved that PbUGT72AJ2 mediates glycosylation by catalyzing the glucose conjugation of monolignols and may affect the expression of downstream genes as well as the content of monolignols to affect the lignin deposition and stone cell development in pear fruit. The treatment of exogenous glucose has significantly enhanced the accumulation of lignin in pear calli. Expression of structural genes (PbPAL, PbHCT, PbCOMT and PbPRX) in lignin biosynthesis is up-regulated after glucose treatment. Transien expression of PbPFP has resulted in a significant increase of lignin content in Dangshansuli fruits on 35th day after full bloom (DAB) and in tobacco leaves, indicating that PbPFP might be associated with the enhancement of lignin biosynthesis in response to glucose treatment. Ca2+ is known to inhibit stone cells in pear fruits. In order to further explore how calcium-nitrate treatment affects lignin synthesis, the PbCML3 has been identified in pears and relevant experiments have been conducted to find that the overexpression of PbCML3 would increase the content of pear stone cell. Further analysis has identified a transcription factor, PuDof2.5, and its targets gene PuPRX42- like (lignin polymerase gene) expression has decreased in CaCl2-treated samples, which are involved in suppressing lignin biosynthesis in pear fruit. ROS is closely associated with lignin deposition and stone cell formation. Research has showed that PuRBOHF, an RBOH isoform, plays an important role in secondary wall formation in pear stone cells. Inhibitors of RBOH activity suppress ROS accumulation and stone cell lignification in pear fruit. Moreover, it has been showed that PuMYB169 regulates PuRBOHF expression, while PuRBOHF-derived ROS induces the transcription of PuPOD2 and PuLAC2. Research has showed that secondary cell wall thickening and lignin accumulation in pears may regulate by different wavelengths of light. It is reported that CRY-mediated blue-light signal plays an important role in cell wall lignification and promotes the formation of stone cells in pears by regulating downstream genes. Results have showed that blue light induces the expression of lignin structure genes and promotes lignin accumulation. Furthermore, four blue light receptors cryptochromes have been identified in white pear, named PbCRY1a, PbCRY1b, PbCRY2a and PbCRY2b. Previous studies have reported that pollination affects the expression of laccase gene microRNA in pear fruits, and the expression of peroxidase 47 (PER47), β-glucosidase (BGLU15) and laccase-4 (LAC4), thus affecting lignin synthesis. This finding demonstrates that pollination with different sources of pollens affects the synthesis of lignin in pear fruit on the levels of gene and protein expression.

Key words: Pear; Stone cell; Lignin; Regulation mechanism

梨(Pyrus)是中國乃至世界范圍內重要的水果之一,爽脆可口,香甜多汁,深受消費者的喜歡[1]。梨果實品質受多種因素的綜合影響,其中一類木質化的厚壁組織細胞——石細胞便是重要的因素之一[2]。石細胞含量過高會導致果肉粗糙、口感低劣、硬度增加,同時也會影響梨果實糖分、有機酸、維生素含量等品質指標[3]。石細胞由薄壁組織細胞在其初生壁上沉積木質素等而形成。木質素在細胞壁外層開始發生,逐步向質膜發展,以分散顆粒狀沿纖維素微纖絲的方向分層沉積,交替排列,直到充滿整個細胞腔,形成石細胞[4]。木質素由多個木質素單體聚合而成,其生物合成過程由苯丙氨酸起始,經過一系列羥基化、甲基化、連接和還原反應生成木質素單體,木質素單體被運送到外質體氧化聚合形成愈創木基木質素(Guaiacyl lignin,G-型木質素)、對-羥基苯基木質素(Hydroxy-phenyl lignin,H-木質素)和丁香基木質素(Syringyl lignin,S-木質素)[5]。梨果實石細胞木質素屬于G-S木質素,充分發育的梨石細胞含有約40%的木質素[6]。因此,調控木質素的積累是降低梨果實石細胞含量的關鍵。

目前,梨果實木質素生物合成的調控機制不斷被解析,其合成調控過程受到信號途徑、環境因素等多重因子的調控,要實現從分子層面抑制木質素的合成需要更為完整的理論支撐。為此,筆者圍繞近些年梨果實木質素生物合成調控機制研究(轉錄因子、激素、糖、鈣、活性氧、光質、花粉直感)展開綜述,旨在為深入研究梨果實木質素合成調控網絡奠定理論基礎,為通過生物技術手段進行梨果實品質的遺傳改良提供參考。

1 梨果實木質素合成相關的酶基因

木質素的生物合成由PAL、C4H、4CL、HCT、C3H、CSE、COMT、CCoAOMT、CCR等酶催化完成(表1)[7-17]。其中PAL和4CL是調控木質素含量的關鍵酶,C3H、CCoAOMT和COMT是木質素特異途徑中的關鍵酶,CCR、CAD和POD是木質素單體合成及聚合的關鍵酶。PAL是木質素代謝途徑中的關鍵酶和限速酶,位于苯丙烷代謝途徑的入口[18]。在梨果實的不同發育階段,PbPAL1和PbPAL2表現出與木質素含量一致的變化趨勢,并與木質素生物合成的關鍵基因表達模式相似,在擬南芥中過表達結果顯示隨著木質素含量的增加,維管間纖維和木質部細胞的細胞壁增厚[7]。作為苯丙烷代謝途徑中的第2步關鍵酶C4H,PbC4H1、PbC4H2和PbC4H3不僅可以增加維管間纖維和木質部細胞的木質素含量,還可以增加細胞壁厚度[8,19]。

在碭山酥梨基因組中鑒定到29個4CL基因和82個HCT基因,其中Pb4CL1和Pb4CL3可能參與了梨果實木質素合成,PbHCT49、PbHCT50、PbHCT2、PbHCT17、PbHCT18和PbHCT85的基因表達與梨果實石細胞表達模式相符,被鑒定為參與石細胞形成的重要候選基因,4CL活性抑制和HCT基因轉錄末端序列的缺失都會導致木質素含量降低[1,9]。Xu等[10]認為PbCSE1與木質素沉積和石細胞形成有關,過表達PbCSE1可提高梨果實木質素含量,并且參與木質素生物合成的相關基因的表達量也有所增加。為鑒定梨OMT基因家族,Cheng等[12]對26個OMT基因進行時空表達分析,其中PbCCOMT1和PbCCOMT3的啟動子區域都含有木質素合成的調控基序,并且在梨果實發育過程中PbCCOMT1和PbCCOMT3的轉錄水平與石細胞和木質素含量呈正相關。COMT主要參與S-木質素的合成,催化G-木質素轉化為S-木質素,20世紀梨中COMT基因與木質素含量呈正相關,與石細胞形成有很大相關性[11]。

Cheng等[13]從梨基因組中挖掘出31個CCR基因和26個CAD基因,構建了CCRs和CADs的系統發育樹,通過實時定量聚合酶鏈式反應(qRT-PCR)明確了PbCAD2、PbCCR1、PbCCR2和PbCCR3參與了梨果實中木質素的合成[14]。其中PbCCR1在碭山酥梨木質素的生物合成中起著積極的作用,過表達PpCAD2具有更高的木質素含量和CAD酶活性,CAD活性下降可以改變木質素結構,而對木質素總量沒有顯著影響[5]。此外,研究發現,PbrCAD1、PbrCAD20、PbrCAD27和PbrCAD31的表達模式與梨果實發育過程中石細胞含量的變化相似[15]。在Wangkumbae梨發育過程中PpPOD1與木質素變化趨勢一致,PpPOD2、PpPOD3、PpPOD4等基因可能是梨果實中石細胞合成的關鍵基因[17]。將Pyr-miR1890的兩個靶基因PbLAC1和PbLAC14進行遺傳轉化,過表達PbLAC1可以顯著增加木質素含量和木質部細胞的細胞壁厚度,參與了木質素的生物合成[16]。

2 調控梨果實木質素合成的轉錄因子

在石細胞形成過程中,木質素生物合成基因形成了一個復雜的網絡,轉錄因子的調節作用在其中發揮著重要作用,如MYB(v-myb avian myeloblastosis viral oncogene homolog)、NAC(NAM、ATAF和CUC)、bZIP(basic region-leucine zipper)、KNOX(Knotted1-like homebox)和鋅指蛋白(zinc-finger)等。其中MYB轉錄因子在木質素生物合成共表達網絡中數量更多,并且與木質素通路結構基因的連接更顯著(表2)[20-32]。

2.1 MYB

在梨中已鑒定出多個與木質素生物合成相關的MYB轉錄因子。通過qRT-PCR分析PbMYB的表達,鑒定出PbMYB25和PbMYB52參與梨果實發育過程中木質素生物合成的調控[33]。R2R3-MYB轉錄因子作為MYB轉錄因子中最大的一類,在梨基因組中已鑒定出104個,其中有28個被認為是參與木質素生物合成途徑的調控因子[34]。近期研究發現,在梨果肉愈傷組織和擬南芥花序莖中過表達PbrMYB24,可顯著提高木質素、纖維素含量,增厚次生細胞細胞壁。雙熒光素酶試驗、酵母單雜交試驗和EMSA表明,PbrMYB24通過結合不同的順式作用元件(AC-Ⅰ,AC-Ⅱ和MBS)直接激活木質素和纖維素合成基因的表達。此外,PbrMYB24可以調控PbrNSC和PbrMYB169的表達,同時也能被PbrNSC和PbrMYB169所激活,形成的層級調控網絡協同調控石細胞中木質素和纖維素合成[20]。

PbrMYB169是木質素生物合成激活型轉錄因子,可通過選擇性識別啟動子中的AC-原件(ACCTAACC)結合,顯著激活木質素代謝相關8個結構基因(C3H1、CCR1、CCOMT2、CAD、4CL1、4CL2、HCT2和LAC18)啟動子活性,引起木質素沉積。在轉基因擬南芥中,過表達PbrMYB169可有效增強木質素基因的表達,促進木質素沉積和增加細胞壁厚度,但未改變丁香基和愈創木?;举|素單體的比例[21]。這與PbBZR1相反,PbBZR1抑制木質素生物合成基因PbCOMT3和phbhct6啟動子的活性,并且在梨果實中短暫沉默PbBZR1增加木質素含量,誘導15個木質素生物合成基因的表達[24]。宋林艷[22]發現PbMYB140受上游調控因子PbMYB46和PbMYB83的激活調控,PbMYB83也可間接促進木質素生物合成。

參與次生細胞壁合成和木質素生物合成調節的MYB轉錄因子是高度保守的。通過瞬時過表達和基因沉默以及穩定轉化蘋果愈傷組織,發現PbMYB61可以促進木質素的生物合成,PbMYB308具有相反的作用。進一步的試驗結果表明,PbMYB61通過與PbLAC1啟動子中的AC元件結合上調表達來調節石細胞中木質素的形成。然而,PbMYB308通過與PbMYB61結合形成不能激活PbLAC1表達的二聚體來負調節石細胞木質素合成。由此闡明了PbMYB308-PbMYB61-PbLAC1模塊參與梨石細胞中木質素的生物合成的分子機制[23]。

2.2 NAC、bZIP、KNOX

Wang等[25]通過整合木質素纖維素共表達網絡和梨果實石細胞eQTL圖譜,在206個梨品種中發現了與AtNST1/2/3相關的NAC轉錄因子,鑒定出一個NAC候選轉錄因子PbrNSC(NAC stone cell promoting factor)。研究證實PbrNSC可以通過激活PbrMYB169、Pbr4CL4和PbrLAC4啟動子發揮調控功能,促進梨果實石細胞形成和木質素沉積。研究還發現PbrNSC蛋白C端存在兩個保守的LP和WQ結構域,突變任何一個保守結構域都會影響PbrNSC轉錄因子對下游基因的轉錄調控作用,從而影響PbrNSC轉錄因子正向調控次生細胞壁合成的生物學功能。Gong等[26]采用轉錄組學、蛋白質組學和代謝組學等手段,構建了梨果實內石細胞與維管束的分布規律模型。通過共表達網絡和基因表達模式分析,發現一個關鍵轉錄因子PbbZIP48,該轉錄因子基因在果核附近高度表達,通過激活PbC3H1和PbCCOMT2的轉錄,促進了果核附近薄壁細胞的木質化,導致石細胞的大量形成。同時研究顯示,PbbZIP48通過與PbC3H1和PbCCOMT2啟動子區域的G-box(ACGTG)基序結合促進兩者表達量上調。KNOX基因家族中的BP(brevipedicellus,BP)在木質素代謝和細胞壁發育中起負調控作用。Cheng等[27]在梨基因組中鑒定出18個非重復的KNOX基因,主要分布在STM-like、BP-like、KNAT2/6-like、KNAT7-like和KNAT3-5-like亞家族中。系統發育樹聚類和序列比對表明,PbKNOX1與擬南芥BP基因是梨同源基因。同時研究發現PbKNOX1作為木質素代謝的負調節因子,其過表達不僅使導管細胞次生細胞壁厚度降低了約19%,木質素含量降低約13%,還可以下調木質素代謝途徑中多個關鍵結構基因(C4H、C3H、HCT、CCOMT、CCR、F5H、COMT和CAD)的表達,抑制石細胞木質化。

2.3 其他轉錄因子

植物同源結構域(plant homeodomain,PHD)是鋅指結構域家族的一類轉錄調控因子,廣泛參與植物的生長發育過程。Cao等[28]利用qRT-PCR技術鑒定了梨果實中10個表達的PHD-finger基因,其中PbPHD10被鑒定為調控木質素合成的重要候選基因。IDD(indeterminate domain)家族蛋白編碼作為鋅指蛋白轉錄因子之一,也參與梨果實木質素合成。如PbIDD3和PbIDD5被推斷參與了梨果實木質素代謝和次生細胞壁的形成[29]。TCP(teosinte branched1,cycloidea,and proliferating cell factor family)蛋白是植物特有的轉錄因子,參與調節次生細胞壁的形成和程序性細胞死亡[35]。根據碭山酥梨不同發育階段表達模式分析,表明PbTCP14和PbTCP15與果實木質素的積累模式和石細胞含量趨勢一致,這兩個轉錄因子可能參與了梨果實石細胞形成過程中次生細胞壁的增厚[30]。

除轉錄因子調控外,許多小分子RNA(microRNA,miRNA)能夠參與調節次生細胞壁合成過程中的木質化。PbrmiR397a已被證明通過轉錄后調控PbrLAC抑制漆酶基因表達,從而調控梨果實木質素沉積,最終降低果實石細胞含量;研究還發現了PbrmiR397a啟動子區域與石細胞含量相關的重要SNP位點,為開發分子檢測標記和輔助育種奠定了基礎[31]。Zhang等[32]通過全基因組關聯研究,鑒定出一個與梨石細胞發育相關的新基因PbrSTONE,通過梨果實的瞬時轉化和擬南芥的穩定轉化驗證,發現PbrSTONE可以調控梨果實石細胞和木質素的形成,并明確了其與木質素合成通路中關鍵基因PbrC3H存在互作關系,從而協同調控石細胞組分木質素的合成機制。

3 調控梨果實木質素合成的信號途徑

梨果實木質素的合成調控是一個復雜的生物學過程,不僅直接受酶基因的影響,調節基因所編碼的轉錄因子也可通過激活或抑制結構基因的表達,間接調控木質素的積累水平。同時與激素、糖、鈣、光質等信號途徑和環境因素密切相關(表3)[36-48]。

3.1 激素

3.1.1 生長素 生長素上調小RNA(small auxin-up RNA,SAUR)是生長素快速響應的基因,促進形成層活性,導致富含木質素的維管組織發育,進而調控木質素的積累[49]。碭山酥梨中共鑒定出116個SAUR基因,篩選出PbrSAUR13和PbrSAUR52兩個關鍵基因。通過對39 d碭山酥梨果實的瞬時轉化和草莓的穩定轉化體系,發現PbrSAUR52主要促進石細胞和木質素的合成積累,而PbrSAUR13抑制石細胞和木質素的合成積累[36]。近期研究發現,外施200 μmol·L-1萘乙酸(NAA)可降低梨果實石細胞的含量,同時降低轉錄調節因子PbrNSC的表達量。PbrNSC能夠直接結合生長素響應因子PbrARF13,過表達PbrARF13可顯著降低梨果實中的石細胞含量;而利用病毒誘導的基因沉默(VIGS)抑制PbrARF13的表達,表型則相反。從而明確了PbrARF13可直接與PbrNSC的啟動子結合并抑制其表達,降低石細胞含量。此外,通過石細胞形成相關基因的共表達網絡分析,PbrNSC被確定為PbrMYB132的上游調控因子,PbrMYB132能夠與纖維素合成酶基因(PbrCESA4b/7a/8a)和木質素合成基因(PbrLAC5)的啟動子結合,激活其表達,促進纖維素和木質素的合成。由此,PbrARF13-PbrNSC-PbrMYB132調控級聯能夠響應生長素信號,調控梨果實石細胞中纖維素和木質素的生物合成[37]。

3.1.2 其他激素 脫落酸(abscisic acid,ABA)、茉莉酸甲酯(methyl jasmonate,MeJA)和水楊酸(salicylic acid,SA)等外源激素可通過影響木質素生物合成途徑關鍵基因表達和轉錄因子,顯著抑制梨果肉石細胞的木質化。Li等[7]在PbPALs家族成員的上游調控序列中發現了多個響應激素的元件,其中PbPAL1只含有ABA反應元件(ABA response element,ABRE),PbPAL3含有ABA響應元件ABRE、MeJA響應元件(MeJA response element,JARE)和SA響應元件(SA response,TCA),并且在PbPAL1和PbPAL3上游2000 bp啟動子序列中發現了AC元件,故推測ABA、SA和MeJA可以通過調節PbPAL1和PbPAL3基因表達,進而影響梨果實石細胞的形成。

PbKNOX啟動子含有TCA、CGTCA基序和ABRE等激素響應元件,SA通過誘導microRNA的表達可以調節梨果實木質素合成和石細胞發育[31]。由此推斷,SA、ABA和MeJA可能直接或間接調節PbKNOXs的表達,從而影響石細胞的形成。大多數PbRBOH啟動子含有大量與激素相關的元件,研究表明3種激素(SA、ABA和MeJA)處理梨果實后,大多數PbRBOHs在短時間內被轉錄誘導,對PbRBOHs的表達有顯著影響。值得注意的是,10種PbRBOH啟動子中并未發現SA應答元件。然而,在SA處理的果實中,PbRBOHI的表達水平仍然發生了變化。這可能是各種植物激素之間相互作用、相互誘導的結果[50]。

此外,研究發現ABA處理后梨果實中PbC4Hs的表達量先升高后降低,而MeJA處理后PbC4Hs的表達水平顯著升高。經SA處理后,梨果實中PbC4H1和PbC4H2表達水平升高,PbC4H3表達水平下降[8]。因此,適當的生長素和細胞分裂素配比可以抑制木質素的合成。這些結果為梨果生產提供了重要的指導,可以通過噴施外源激素來調節梨果實木質素代謝的強度,從而不同程度地抑制石細胞的形成,改善果實品質。

3.2 糖

木質素的代謝過程主要包括木質素單體的生物合成、運輸和聚合。木質素單體合成過程中通常會發生糖基化修飾,糖基化可以提升木質素單體的溶解度和穩定性,有利于木質素單體的運輸和儲存[51]。從木質素單體到木質素單體糖苷的轉化需要尿苷二磷酸糖基轉移酶(uridine diphosphate glycosyltransferase,UGT)的參與。PbUGT72AJ2基因參與木質素單體糖基化[38],重組蛋白PbUGT72AJ2-pGEX4T-1能夠催化梨果實中木質素單體轉化為木質素單體糖苷。Wang等[39]研究了PbUGT72A2轉錄在梨果實中的定位,并分析了PbUGT72AJ2的酶促反應動力。通過梨果實瞬時轉化驗證,在梨果實中過表達PbUGT72AJ2,木質素和石細胞含量幾乎沒有變化,而沉默該基因則顯著增加木質素和石細胞含量。由此,PbUGT72AJ2通過催化木質素單體的葡萄糖偶聯介導糖基化,影響下游基因的表達以及木質素單體的含量,從而影響梨果實木質素沉積和石細胞發育。

木質素單體糖苷被運送到細胞壁的特定部位,之后木質素開始去糖基化,在β-葡萄糖苷酶的作用下水解為木質素單木質素醇,最終形成木質素[51]。β-葡萄糖苷酶(β-glucosidases,BGLU)去糖基化功能在木質素單體轉運中起著重要作用。Wang等[40]篩選到3個可能參與木質素合成的候選基因PbBGLU1、PbBGLU15和PbBGLU16,其中PbBGLU1和PbBGLU16轉錄主要位于梨果實木質素沉積區和石細胞區,過表達PbBGLU1和PbBGLU16后,梨果實中木質素和石細胞含量顯著增加,而沉默PbBGLU1和PbBGLU16后,與對照組之間木質素和石細胞的含量沒有顯著差異。

葡萄糖作為木質素生物合成的重要碳源,其代謝與苯丙烷代謝途徑密切相關。外源葡萄糖可以激活葡萄糖信號通路并調節其下游代謝活動,通過上調苯丙烷通路相關基因(PbPAL、PbHCT、PbCOMT、PbPRX)的表達誘導苯丙烷化合物的產生[52]。Jiao等[41]研究發現,碭山酥梨果實發育早期果糖-6-磷酸-1-磷酸轉移酶(fructose-6-phosphate-1-phosphoric acid,PFP)基因的表達模式與木質素含量的變化趨勢一致,通過驗證,PbPFP正調控梨果實木質素生物合成。此外還觀察到葡萄糖信號與激素信號之間的廣泛串擾,特別是與ABA、GA和SA信號的串接。Pbr016851.1、Pbr002006.1和Pbr035515.1作為AtMYB52的同源基因,在葡萄糖處理的愈傷組織中表達上調,說明葡萄糖反應性轉錄因子的調控在葡萄糖介導木質素生物合成中發揮著重要作用。因此,研究葡萄糖反應轉錄因子如何感知葡萄糖信號并調控下游苯丙烷通路基因是非常有前景和意義的。

3.3 鈣

鈣離子(Ca2+)作為細胞內信號轉導的第二信使,在調節細胞壁形成、木質素合成和活性氧代謝等方面發揮著重要的生理作用[53],這暗示木質素代謝和石細胞的形成與鈣有關。

外源鈣通過促進鈣信號轉導和上調轉錄因子調控木質素生物合成,從而增加梨果實中石細胞含量[54]。研究發現,0.1%的硝酸鈣能夠減少木質素含量,0.5%的硝酸鈣處理后,梨愈傷組織中木質素含量和次生代謝物的積累顯著增加,愈傷組織呈現褐色和暗沉。同時研究證明,大量差異表達基因(differentially expressed genes,DEGs)的次級代謝途徑基因(CML、CAM、CDPK、CBL和CIPK)和轉錄因子可提供外源鈣調控網絡,引起代謝途徑的改變,導致梨愈傷組織中木質素的積累。其中類鈣調蛋白(calmodulin-like protein,CML)作為Ca2+的主要感受器,可通過調節下游靶蛋白的活性來調節多種細胞功能[55]。根據轉錄組數據結合qRT-PCR分析發現,PbrCML表達狀況與鈣處理后的愈傷組織變化趨勢一致,過表達PbCML3可以促進梨果實中木質素代謝,顯著增加其石細胞含量,驗證發現PbCML3基因極可能作為轉運蛋白參與調控某些轉錄因子從而間接調控木質素的生物合成[42],但CML對木質素含量的具體調控機制有待進一步研究。果面噴施5% CaCl2可以降低新高梨果實中PRX的活性,從而抑制果實木質素的合成[56]。外施CaCl2可顯著抑制黃金梨中PAL、CAD和PRX的活性,且PpCAD1和PpCAD2基因的表達下調,影響石細胞形成[57]。

Dof(DNA Binding With One Zinc Finger)轉錄因子在木質素沉積中是一個正向調節因子[58]。研究發現,CaCl2處理南果梨果實后,其內源Ca2+水平升高,PuDof2.5表達量下降。PuDof2.5作為轉錄激活因子,與木質素生物合成基因PuPRX42-like啟動子結合并抑制其轉錄;因此,PRX活性降低,木質素的生物合成受到抑制,石細胞含量和密度降低。而過表達PuDof2.5可上調PuPRX42-like表達水平,增強PRX酶活性,顯著加速木質素積累和石細胞形成[43]。梨果實發育早期葉面噴施2%的CaCl2,不僅可以提高果實貯藏期間Ca/N和Ca/K的比值,而且可以降低梨果實的硬度和木質素含量,抑制“鐵頭病”的發生[59]。

3.4 活性氧

活性氧(reactive oxygen species,ROS)作為信號分子在植物細胞木質化過程中發揮著不可或缺的作用。ROS迸發主要由呼吸爆發氧化酶(respiratory burst oxidase homologue,RBOH,又稱NADPH氧化酶)產生,參與梨果實石細胞的木質化過程[60]。前人研究表明,PbRBOHA、PbRBOHB和PbRBOHD在梨果實中轉錄本豐度較高,其中PbRBOHA和PbRBOHD的表達趨勢與梨果實石細胞含量一致,且亞細胞定位顯示PbRBOHA和PbRBOHD分布在質膜上,結合超氧化物含量的變化和時空表達分析,推定PbRBOHA和PbRBOHD參與了石細胞形成過程中ROS代謝活動[46]。梨果實中的木質素單體由PbUGT72AJ1、PbUGT72AJ2和PbUGT72AK1催化形成木質素糖苷,然后通過膜轉運到細胞壁沉積,在PbDIR4的催化下形成木質素低聚物。最后,POD和LAC利用RBOH(PbRBOHA和PbRBOHD)和SOD產生的ROS和O2催化木質素聚合物鏈的伸長[16]。

隨著研究的深入,人們發現RBOH亞型PuRBOHF在梨果實石細胞次生壁形成中起重要作用。Wang等[47]利用共聚焦顯微鏡和透射電鏡觀察發現ROS與細胞壁木質化之間的空間一致性。此外,石細胞木質化可被RBOH抑制劑二苯基氯化碘鹽(diphenyleneiodonium chloride,DPI)所抑制,在生理水平上證明了RBOH介導的ROS對梨果木質素生物合成的關鍵作用。PuRBOHF過表達的梨果實和愈傷組織的木質素含量顯著高于對照,而PuRBOHF沉默則抑制了木質素的積累。在此基礎上,PuRBOHF可被PuMYB169激活,并通過產生ROS調控木質素合成相關結構基因(PuPOD2、PuLAC2)的轉錄。這是首次揭示PuRBOHF基因參與梨果實木質素代謝的分子機制。

Li等[48]研究了11種PbSODs在梨不同發育時期、不同品種和不同激素處理下的表達模式,發現PbCSD3的轉錄水平與木質素含量變化一致,其表達量在成熟期先升高后降低,結合時空表達結果表明,PbCSD3是梨果實石細胞木質化過程中活性氧代謝的候選基因。研究證明,石細胞形成是一個活性氧誘導的程序性細胞死亡(programmed cell death,PCD)的過程,石細胞分化時期、ROS的積累與PCD重疊[61]。高表達的細胞死亡相關基因和蛋白(AED3-like、MC1-like、ACD11-like)表達模式與ROS相關基因一致,其早期表達更豐富,后期下調[62]。

3.5 光質

光質對木質素沉積具有重要影響,作為木質素生物合成途徑中的第一個限速酶,PAL受藍光、紫外線和遠紅光調控[63]。藍光對梨果實木質化具有正向調控作用,有研究表明其主要通過調控MYB、NAC等轉錄因子發揮作用。在藍光處理下PbMYB103在不同梨果實發育時期、不同梨品種呈現高表達,PbMYB103可能是響應藍光的轉錄因子[44]。

隱花色素(cryptochromes,CRYs)介導的藍光信號已被證明參與了次生細胞壁增厚與光周期調控開花[64-65]。Wang等[44]研究發現藍光增強了梨愈傷組織中4CL1、4CL2、COMT、CES、LAC7等木質素合成相關基因的表達,促進了木質素的積累。此外,在白梨中鑒定出4種藍光受體CRY,分別為PbCRY1a、PbCRY1b、PbCRY2a和PbCRY2b,其中PbCRY1a、PbCRY1b與AtCRY1密切相關。同時證實了PbCRY1a作為木質素沉積的上游信號,通過激活基于NAC-MYB的轉錄因子調節下游基因的表達促進石細胞木質化。由此,CRY介導的藍光信號在梨果實細胞壁木質化過程中起重要作用,并通過調控下游基因促進梨果實石細胞的形成。

迄今為止,關于光調控梨果實中木質素生物合成作用的研究主要集中在生理方面,如不同顏色果袋對果實品質的影響。研究表明光質可以通過影響PAL、C4H、4CL等光誘導酶調控木質素的生物合成,綠色透光果袋抑制PbNAC83a的表達,促進PbNAC83f和PbNAC91a的表達。橙色透光果袋促進PbNAC83a、PbNAC83f和PbNAC91a的表達。PbNAC83a表達量受光質影響與木質素含量的變化趨勢一致,其基因表達可能是受紅光促進、藍光抑制[66]。近期研究發現,TCP基因和COBRA基因參與了次生細胞壁的形成,其中PbTCP10,PbCOBL1、3、12、13、14在果實中高表達,其啟動子的順式作用元件含有光響應元件,參與了光周期調控,進而調節石細胞的形成[30,45]。此外,光響應元件如Box4、GATA-motif、GT1-motif也存在于RBOH啟動子中,說明套袋處理改變梨果實木質素和石細胞含量可能與RBOH的轉錄有關[50]。Wang等[67]研究發現無紡布套袋梨果實,通過下調苯丙烷生物合成相關DEGs抑制茌梨梨果皮木質素合成,進而減小果實皮孔直徑,并推斷果皮木質素含量可能與套袋透光性、光合速率及波長有關,而造成這些影響的具體機制需要進一步探索。

4 花粉直感

不同品種授粉后,梨樹花粉能直接影響當年內母本果實品質,果實硬度、可溶性固形物含量、可滴定酸含量和石細胞數量等與木質素含量相關的性狀,也表現出明顯的花粉直感現象[68]。Yan等[69]以鴨梨和圓黃對碭山酥梨授粉,果實石細胞含量表現出顯著的花粉直感現象,以鴨梨授粉的果實石細胞團的數量和聚合度較高,細胞壁的致密性更強,但兩者授粉的梨果實石細胞團形成過程是一致的,說明梨果實的父本花粉直感現象表現具有階段性。此外,一些初級代謝物和木質素合成中間代謝物也參與了花粉調控木質素代謝和石細胞形成,使用OPIS-DA模型分析授粉后47 d和64 d的碭山酥梨果實的初級代謝物和木質素合成中間代謝物,發現授粉通過影響糖、氨基酸、脂肪酸和香豆酸含量調控梨果實木質素合成[70]。由此可推斷,花粉影響了梨果實中苯丙氨酸的合成,進而調控了木質素的合成。不同授粉品種對梨果實發育過程中果肉、種子內源激素含量及相關酶活性都具有重要影響[71]。

microRNA通過糖酸代謝和激素信號傳導等途徑廣泛參與梨果實發育和果實品質的調控,其中microRNA受花粉直感現象的影響,參與調控梨果實木質素代謝和石細胞形成[72]。已有研究報道,不同授粉品種顯著影響梨果實木質素代謝相關基因和蛋白質的表達,例如授粉影響果實漆酶基因microRNA的表達[73],過氧化物酶47(PER47)、β-葡萄糖苷酶(BGLU15)以及漆酶4(LAC4)的表達[74],間接調控木質素沉積,最終影響梨果實石細胞的形成,但花粉直感以何種方式調節microRNA表達進而影響果實石細胞形成需進一步探索。

5 總結與展望

梨果實木質素生物合成的調控過程復雜,涉及多層面、多因子的協同作用。目前,MYB、bZIP、NAC及KNOX類轉錄因子都參與了梨果實木質素生物合成的調控,Trihelix[75]、LIM[76]和LTF1[77]類轉錄因子同樣在木質素合成調控中起到了關鍵作用。單獨研究某個或少數幾個轉錄因子不足以揭示木質素生物合成的巨大調控網絡,基于NAC-MYB的基因調控網絡(NAC-MYB-GRN)模型被廣泛認為是支撐木質素生物合成的基礎[78],并且已被證明參與梨石細胞的木質化過程。另外,研究發現,PbMYB308-PbMYB61-PbLAC1模塊參與梨石細胞中木質素的生物合成[23];PbrARF13-PbrNSC-PbrMYB132級聯能夠響應生長素信號,調控梨果實石細胞中的纖維素和木質素生物合成[37],其他復合調控家族參與木質素合成的報道較少。

當前對梨果實木質素合成的單一信號途徑的調控研究較多,多信號調控的交叉調控網絡的研究較少。激素、糖、鈣和活性氧等是影響木質素合成的重要信號調控因子。此外,可能存在其他信號因子參與調控梨果實木質素的生物合成,譬如短肽信號[79]、受體激酶[80]、泛素化和其他響應對木質素的沉積等。這些信號因子是否存在時空特異性與相互影響,對梨果實木質素生物合成的調控作用及分子機制,仍有待進一步闡明。據報道,區域生態、樹形等外部因素及梨樹的脫萼生物學功能與木質素沉積也具有相關性[81]。隨著DNA/RNA甲基化測序、MicroRNA測序和CHIP-Seq等前沿技術的引入,以及多組學聯合應用和CRISPR-Cas9技術的不斷優化[82],得以構建完整的木質素合成調控網絡來闡明調控梨果實中木質素生物合成的分子機制,實現梨果實木質素合成和石細胞形成的精準調控,提高梨果實品質。

參考文獻 References:

[1] CAO Y P,HAN Y H,LI D H,LIN Y,CAI Y P. Systematic analysis of the 4-coumarate:Coenzyme a ligase (4CL) related genes and expression profiling during fruit development in the Chinese pear[J]. Genes,2016,7(10):89.

[2] 徐鈺清,田路明,曹玉芬,董星光,張瑩,霍宏亮,齊丹,徐家玉,劉超. 梨果肉質地及香氣研究進展[J]. 果樹學報,2023,40(4):757-770.

XU Yuqing,TIAN Luming,CAO Yufen,DONG Xingguang,ZHANG Ying,HUO Hongliang,QI Dan,XU Jiayu,LIU Chao. Research progress in flesh texture and aroma of pears[J]. Journal of Fruit Science,2023,40(4):757-770.

[3] 王紅寶,朱潔,王丹陽,陶書田. 梨果肉石細胞含量分析[J]. 江蘇農業科學,2018,46(3):173-176.

WANG Hongbao,ZHU Jie,WANG Danyang,TAO Shutian. Analysis of flesh stone cell content in pear fruit[J]. Jiangsu Agricultural Sciences,2018,46(3):173-176.

[4] JIN Q,YAN C C,QIU J X,ZHANG N,LIN Y,CAI Y P. Structural characterization and deposition of stone cell lignin in Dangshan Su pear[J]. Scientia Horticulturae,2013,155:123-130.

[5] LI M T,CHENG C X,ZHANG X F,ZHOU S P,LI L X,YANG S L. Overexpression of pear (Pyrus pyrifolia) CAD2 in tomato affects lignin content[J]. Molecules,2019,24(14):2595.

[6] ZHANG J Y,LI J M,XUE C,WANG R Z,ZHANG M Y,QI K J,FAN J,HU H J,ZHANG S L,WU J. The variation of stone cell content in 236 germplasms of sand pear (Pyrus pyrifolia) and identification of related candidate genes[J]. Horticultural Plant Journal,2021,7(2):108-116.

[7] LI G H,WANG H,CHENG X,SU X Q,ZHAO Y,JIANG T S,JIN Q,LIN Y,CAI Y P. Comparative genomic analysis of the PAL genes in five Rosaceae species and functional identification of Chinese white pear[J]. PeerJ,2019,7:e8064.

[8] LI G H,LIU X,ZHANG Y,MUHAMMAD A,HAN W L,LI D H,CHENG X,CAI Y P. Cloning and functional characterization of two cinnamate 4-hydroxylase genes from Pyrus bretschneideri[J]. Plant Physiology and Biochemistry,2020,156:135-145.

[9] MA C,ZHANG H P,LI J M,TAO S T,QIAO X,KORBAN S S,ZHANG S L,WU J. Genome-wide analysis and characterization of molecular evolution of the HCT gene family in pear (Pyrus bretschneideri)[J]. Plant Systematics and Evolution,2017,303(1):71-90.

[10] XU J H,TAO X Y,XIE Z H,GONG X,QI K J,ZHANG S L,SHIRATAKE K,TAO S T. PbCSE1 promotes lignification during stone cell development in pear (Pyrus bretschneideri) fruit[J]. Scientific Reports,2021,11:9450.

[11] 張盼盼. “二十世紀” 梨果銹形成過程中木質素合成及調控基因的挖掘與表達分析[D]. 揚州:揚州大學,2018.

ZHANG Panpan. Mining and expression analysis of regulatory genes and lignin biosynthesis during pear fruit rust formation in “Nijisseiki”[D]. Yangzhou:Yangzhou University,2018.

[12] CHENG X,XIONG Y,LI D H,CHENG J,CAO Y P,YAN C C,JIN Q,SUN N,CAI Y P,LIN Y. Bioinformatic and expression analysis of the OMT gene family in Pyrus bretschneideri cv. Dangshan Su[J]. Genetics and Molecular Research,2016,15(3):gmr. 15038664.

[13] CHENG X,LI M L,LI D H,ZHANG J Y,JIN Q,SHENG L L,CAI Y P,LIN Y. Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (Pyrus bretschneideri) fruit[J]. Biology Open,2017,6(11):1602-1613.

[14] SU X Q,ZHAO Y,WANG H,LI G H,CHENG X,JIN Q,CAI Y P. Transcriptomic analysis of early fruit development in Chinese white pear (Pyrus bretschneideri Rehd.) and functional identification of PbCCR1 in lignin biosynthesis[J]. BMC Plant Biology,2019,19(1):417.

[15] QI K J,SONG X F,YUAN Y Z,BAO J P,GONG X,HUANG X S,KHANIZADEH S,ZHANG S L,TAO S T. CAD genes:Genome-wide identification,evolution,and their contribution to lignin biosynthesis in pear (Pyrus bretschneideri)[J]. Plants,2021,10(7):1444.

[16] CHENG X,LI G H,MA C H,ABDULLAH M,ZHANG J Y,ZHAO H,JIN Q,CAI Y P,LIN Y. Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis[J]. PLoS One,2019,14(2):e0210892.

[17] YANG S L,ZHANG X N,LU G L,WANG C R,WANG R. Regulation of gibberellin on gene expressions related with the lignin biosynthesis in ‘Wangkumbae pear (Pyrus pyrifolia Nakai) fruit[J]. Plant Growth Regulation,2015,76(2):127-134.

[18] MA R F,LIU Q Z,XIAO Y,ZHANG L,LI Q,YIN J,CHEN W S. The phenylalanine ammonia-lyase gene family in Isatis indigotica Fort.:Molecular cloning,characterization,and expression analysis[J]. Chinese Journal of Natural Medicines,2016,14(11):801-812.

[19] CHENG X,ZHANG J Y,WANG H,CHEN T Z,LI G H,YAN C C,JIN Q,LIN Y,CAI Y P. Effects of metaxenia on stone cell formation in pear (Pyrus bretschneideri) based on transcriptomic analysis and functional characterization of the lignin-related gene PbC4H2[J]. Forests,2020,11(1):53.

[20] XUE Y S,SHAN Y F,YAO J L,WANG R Z,XU S Z,LIU D L,YE Z C,LIN J,LI X G,XUE C,WU J. The transcription factor PbrMYB24 regulates lignin and cellulose biosynthesis in stone cells of pear fruits[J]. Plant Physiology,2023,192(3):1997-2014.

[21] XUE C,YAO J L,XUE Y S,SU G Q,WANG L,LIN L K,ALLAN A C,ZHANG S L,WU J. PbrMYB169 positively regulates lignification of stone cells in pear fruit[J]. Journal of Experimental Botany,2019,70(6):1801-1814.

[22] 宋林艷. 梨花青苷和木質素合成調控相關SG4-R2R3-MYB基因的篩選及其功能解析[D]. 楊凌:西北農林科技大學,2021.

SONG Linyan. Identification and characterization of the SG4-R2R3-MYB genes that related with anthocyanin and lignin biosynthesis and regulation in pear[D]. Yangling:Northwest A & F University,2021.

[23] ZHU Y S,WANG Y C,JIANG H Y,LIU W J,ZHANG S H,HOU X K,ZHANG S S,WANG N,ZHANG R,ZHANG Z Y,CHEN X S. Transcriptome analysis reveals that PbMYB61 and PbMYB308 are involved in the regulation of lignin biosynthesis in pear fruit stone cells[J]. The Plant Journal,2023,116(1):217-233.

[24] CAO Y P,MENG D D,LI X X,WANG L H,CAI Y P,JIANG L. A Chinese white pear (Pyrus bretschneideri) BZR gene PbBZR1 act as a transcriptional repressor of lignin biosynthetic genes in fruits[J]. Frontiers in Plant Science,2020,11:1087.

[25] WANG R Z,XUE Y S,FAN J,YAO J L,QIN M F,LIN T,LIAN Q,ZHANG M Y,LI X L,LI J M,SUN M Y,SONG B B,ZHANG J Y,ZHAO K J,CHEN X,HU H J,FEI Z J,XUE C,WU J. A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit[J]. Genome Biology,2021,22(1):313.

[26] GONG X,QI K J,CHEN J L,ZHAO L Y,XIE Z H,YAN X,KHANIZADEH S,ZHANG S L,TAO S T. Multi-omics analyses reveal stone cell distribution pattern in pear fruit[J]. The Plant Journal,2023,113(3):626-642.

[27] CHENG X,LI M L,ABDULLAH M,LI G H,ZHANG J Y,MANZOOR M A,WANG H,JIN Q,JIANG T S,CAI Y P,LI D H,LIN Y. In silico genome-wide analysis of the pear (Pyrus bretschneideri) KNOX family and the functional characterization of PbKNOX1,an Arabidopsis BREVIPEDICELLUS orthologue gene,involved in cell wall and lignin biosynthesis[J]. Frontiers in Genetics,2019,10:632.

[28] CAO Y P,HAN Y H,MENG D D,ABDULLAH M,LI D H,JIN Q,LIN Y,CAI Y P. Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development[J]. Functional & Integrative Genomics,2018,18(5):519-531.

[29] SU X Q,MENG T K,ZHAO Y,LI G H,CHENG X,ABDULLAH M,SUN X,CAI Y P,LIN Y. Comparative genomic analysis of the IDD genes in five Rosaceae species and expression analysis in Chinese white pear (Pyrus bretschneideri)[J]. PeerJ,2019,7:e6628.

[30] ZHAO Y,SU X Q,WANG X Y,WANG M N,CHI X J,MANZOOR M A,LI G H,CAI Y P. Comparative genomic analysis of TCP genes in six rosaceae species and expression pattern analysis in Pyrus bretschneideri[J]. Frontiers in Genetics,2021,12:669959.

[31] XUE C,YAO J L,QIN M F,ZHANG M Y,ALLAN A C,WANG D F,WU J. PbrmiR397a regulates lignification during stone cell development in pear fruit[J]. Plant Biotechnology Journal,2019,17(1):103-117.

[32] ZHANG M Y,XUE C,HU H J,LI J M,XUE Y S,WANG R Z,FAN J,ZOU C,TAO S T,QIN M F,BAI B,LI X L,GU C,WU S,CHEN X,YANG G Y,LIU Y Y,SUN M Y,FEI Z J,ZHANG S L,WU J. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear[J]. Nature Communications,2021,12:1144.

[33] CAO Y P,HAN Y H,LI D H,LIN Y,CAI Y P. MYB transcription factors in Chinese pear (Pyrus bretschneideri Rehd.):Genome-wide identification,classification,and expression profiling during fruit development[J]. Frontiers in Plant Science,2016,7:577.

[34] LI X L,XUE C,LI J M,QIAO X,LI L T,YU L A,HUANG Y H,WU J. Genome-wide identification,evolution and functional divergence of MYB transcription factors in Chinese white pear (Pyrus bretschneideri)[J]. Plant and Cell Physiology,2016,57(4):824-847.

[35] CAO J F,ZHAO B,HUANG C C,CHEN Z W,ZHAO T,LIU H R,HU G J,SHANGGUAN X X,SHAN C M,WANG L J,ZHANG T Z,WENDEL J F,GUAN X Y,CHEN X Y. The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber[J]. Molecular Plant,2020,13(7):1063-1077.

[36] WANG M N,MANZOOR M A,WANG X Y,FENG X F,ZHAO Y,HE J L,CAI Y P. Comparative genomic analysis of SAUR gene family,cloning and functional characterization of two genes (PbrSAUR13 and PbrSAUR52) in Pyrus bretschneideri[J]. International Journal of Molecular Sciences,2022,23(13):7054.

[37] XU S Z,SUN M Y,YAO J L,LIU X X,XUE Y S,YANG G Y,ZHU R X,JIANG W T,WANG R Z,XUE C,MAO Z Q,WU J. Auxin inhibits lignin and cellulose biosynthesis in stone cells of pear fruit via the PbrARF13-PbrNSC-PbrMYB132 transcriptional regulatory cascade[J]. Plant Biotechnology Journal,2023,21(7):1408-1425.

[38] CHENG X,MUHAMMAD A,LI G H,ZHANG J Y,CHENG J,QIU J X,JIANG T S,JIN Q,CAI Y P,LIN Y. Family-1 UDP glycosyltransferases in pear (Pyrus bretschneideri):Molecular identification,phylogenomic characterization and expression profiling during stone cell formation[J]. Molecular Biology Reports,2019,46(2):2153-2175.

[39] WANG H,FENG X F,ZHANG Y J,WEI D Y,ZHANG Y,JIN Q,CAI Y P. PbUGT72AJ2-mediated glycosylation plays an important role in lignin formation and stone cell development in pears (Pyrus bretschneideri)[J]. International Journal of Molecular Sciences,2022,23(14):7893.

[40] WANG H,ZHANG Y J,FENG X F,PENG F L,MAZOOR M A,ZHANG Y,ZHAO Y,HAN W L,LU J J,CAO Y P,CAI Y P. Analysis of the β-glucosidase family reveals genes involved in the lignification of stone cells in Chinese white pear (Pyrus bretschneideri Rehd.)[J]. Frontiers in Plant Science,2022,13:852001.

[41] JIAO Y R,GONG X,QI K J,XIE Z H,WANG Y L,YUAN K L,PAN Q,ZHANG S L,SHIRATAKE K,KHANIZADEH S,TAO S T. Transcriptome analysis provides new ideas for studying the regulation of glucose-induced lignin biosynthesis in pear calli[J]. BMC Plant Biology,2022,22(1):310.

[42] TAO X Y,LIU M,YUAN Y Z,LIU R N,QI K J,XIE Z H,BAO J P,ZHANG S L,SHIRATAKE K,TAO S T. Transcriptome provides potential insights into how calcium affects the formation of stone cell in Pyrus[J]. BMC Genomics,2021,22(1):831.

[43] ZHANG H,GAO S Y,WANG T Y,XU M Y,LI X Y,DU G D. Ca2+ mediates transcription factor PuDof2.5 and suppresses stone cell production in pear fruits[J]. Frontiers in Plant Science,2022,13:976977.

[44] WANG Q,GONG X,XIE Z H,QI K J,YUAN K L,JIAO Y R,PAN Q,ZHANG S L,SHIRATAKE K,TAO S T. Cryptochrome-mediated blue-light signal contributes to lignin biosynthesis in stone cells in pear fruit[J]. Plant Science,2022,318:111211.

[45] ZHAO Y,SU X Q,WANG X Y,WANG M N,FENG X F,AAMIR MANZOOR M,CAI Y P. Comparative genomic analysis of the COBRA genes in six Rosaceae species and expression analysis in Chinese white pear (Pyrus bretschneideri)[J]. PeerJ,2022,10:e13723.

[46] CHENG X,LI G H,MANZOOR M A,WANG H,ABDULLAH M,SU X Q,ZHANG J Y,JIANG T S,JIN Q,CAI Y P,LIN Y. In silico genome-wide analysis of respiratory burst oxidase homolog (RBOH) family genes in five fruit-producing trees,and potential functional analysis on lignification of stone cells in Chinese white pear[J]. Cells,2019,8(6):520.

[47] WANG X Q,LIU S Q,SUN H L,LIU C Y,LI X Y,LIU Y,LYU D G,DU G D. Production of reactive oxygen species by PuRBOHF is critical for stone cell development in pear fruit[J]. Horticulture Research,2021,8:249.

[48] LI G H,HU F,ZHANG Y,ZHAO Y,WANG H,CHEN T Z,CHENG X,CAI Y P. Comparative genomic analysis of superoxide dismutase (SOD) genes in three Rosaceae species and expression analysis in Pyrus bretschneideri[J]. Physiology and Molecular Biology of Plants,2021,27(1):39-52.

[49] ZHANG L M,KAMITAKAHARA H,SASAKI R,OIKAWA A,SAITO K,MURAYAMA H,OHSAKO T,ITAI A. Effect of exogenous GA4 + 7 and BA + CPPU treatments on fruit lignin and primary metabolites in Japanese pear “Gold Nijisseiki”[J]. Scientia Horticulturae,2020,272:109593.

[50] TAO S T,WANG D Y,JIN C,SUN W,LIU X,ZHANG S L,GAO F Y,KHANIZADEH S. Cinnamate-4-hydroxylase gene is involved in the step of lignin biosynthesis in Chinese white pear[J]. Journal of the American Society for Horticultural Science,2015,140(6):573-579.

[51] LIU C J. Deciphering the enigma of lignification:Precursor transport,oxidation,and the topochemistry of lignin assembly[J]. Molecular Plant,2012,5(2):304-317.

[52] LIU J,HUANG Q H,KANG P Z,LIANG L,CHEN J J. Lignin accumulation in three pumelo cultivars in association with sucrose and energy depletion[J]. Biomolecules,2019,9(11):701.

[53] MICHAILIDIS M,KARAGIANNIS E,TANOU G,KARAMANOLI K,LAZARIDOU A,MATSI T,MOLASSIOTIS A. Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology[J]. Plant Physiology and Biochemistry,2017,116:68-79.

[54] ZHAO D Q,TANG Y H,XIA X,SUN J,MENG J S,SHANG J L,TAO J. Integration of transcriptome,proteome,and metabolome provides insights into how calcium enhances the mechanical strength of herbaceous peony inflorescence stems[J]. Cells,2019,8(2):102.

[55] LIN W D,LIAO Y Y,YANG T J W,PAN C Y,BUCKHOUT T J,SCHMIDT W. Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling[J]. Plant Physiology,2011,155(3):1383-1402.

[56] LEE S H,CHOI J H,KIM W S,PARK Y S,GEMMA H. Effects of calcium chloride spray on peroxidase activity and stone cell development in pear fruit (Pyrus pyrifolia ‘Niitaka)[J]. Journal of the Japanese Society for Horticultural Science,2007,76(3):191-196.

[57] LU G L,LI Z J,ZHANG X F,WANG R,YANG S L. Expression analysis of lignin-associated genes in hard end pear (Pyrus pyrifolia Whangkeumbae) and its response to calcium chloride treatment conditions[J]. Journal of Plant Growth Regulation,2015,34(2):251-262.

[58] RAMACHANDRAN V,TOBIMATSU Y,MASAOMI Y,SANO R,UMEZAWA T,DEMURA T,OHTANI M. Plant-specific Dof transcription factors VASCULAR-RELATED DOF1 and VASCULAR-RELATED DOF2 regulate vascular cell differentiation and lignin biosynthesis in Arabidopsis[J]. Plant Molecular Biology,2020,104(3):263-281.

[59] WANG Y L,ZHANG X F,WANG Y Z,YANG S L,QU H Y. The changes of intracellular calcium concentration and distribution in the hard end pear (Pyrus pyrifolia cv. ‘Whangkeumbae) fruit[J]. Cell Calcium,2018,71:15-23.

[60] BERTHET S,DEMONT-CAULET N,POLLET B,BIDZINSKI P,C?ZARD L,LE BRIS P,BORREGA N,HERV? J,BLONDET E,BALZERGUE S,LAPIERRE C,JOUANIN L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. The Plant Cell,2011,23(3):1124-1137.

[61] 艾沙江·買買提,張校立,梅闖,馬凱,閆鵬,韓立群,王繼勛. ‘庫爾勒香梨果實發育過程中石細胞形成與細胞凋亡的關系研究[J]. 果樹學報,2020,37(1):59-67.

Aisajiang·Mamat,ZHANG Xiaoli,MEI Chuang,MA Kai,YAN Peng,HAN Liqun,WANG Jixun. Study on the relationship between the stone cell formation and apoptosis during the fruit development of ‘Kuerlexiangli pear[J]. Journal of Fruit Science,2020,37(1):59-67.

[62] MAMAT A,TUSONG K,XU J,YAN P,MEI C,WANG J X. Integrated transcriptomic and proteomic analysis reveals the complex molecular mechanisms underlying stone cell formation in Korla pear[J]. Scientific Reports,2021,11(1):7688.

[63] SRIVASTAVA S,VISHWAKARMA R K,ARAFAT Y A,GUPTA S K,KHAN B M. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala[J]. Physiology and Molecular Biology of Plants,2015,21(2):197-205.

[64] ZHANG Q,XIE Z,ZHANG R,XU P,LIU H T,YANG H Q,DOBLIN M S,BACIC A,LI L G. Blue light regulates secondary cell wall thickening via MYC2/MYC4 activation of the NST1-directed transcriptional network in Arabidopsis[J]. The Plant Cell,2018,30(10):2512-2528.

[65] LIU H T,LIU B,ZHAO C X,PEPPER M,LIN C T. The action mechanisms of plant cryptochromes[J]. Trends in Plant Science,2011,16(12):684-691.

[66] 張齊彥. PbNAC83a、PbNAC83f和PbNAC91a調控梨果實木質素合成機制研究[D]. 南京:南京農業大學,2019.

ZHANG Qiyan. The regulating mechanism of PbNAC83a,PbNAC83f and PbNAC91a about lignin synthesis on pear fruits[D]. Nanjing:Nanjing Agricultural University,2019.

[67] WANG Y L,ZHANG X F,WANG R,BAI Y X,LIU C L,YUAN Y B,YANG Y J,YANG S L. Differential gene expression analysis of ‘Chili (Pyrus bretschneideri) fruit pericarp with two types of bagging treatments[J]. Horticulture Research,2017,4:17005.

[68] ROSIANSKI Y,FREIMAN Z E,COCHAVI S M,YABLOVITZ Z,KEREM Z,FLAISHMAN M A. Advanced analysis of developmental and ripening characteristics of pollinated common-type fig (Ficus carica L.)[J]. Scientia Horticulturae,2016,198:98-106.

[69] YAN C C,ZHANG N,XU C,JIN Q,QI Y J,CAI Y P. Effects on stone cell development and lignin deposition in pears by different pollinators[J]. Frontiers in Plant Science,2023,14:1093661.

[70] LI S M,SU X Q,ABDULLAH M,SUN Y M,LI G H,CHENG X,LIN Y,CAI Y P,JIN Q. Effects of different pollens on primary metabolism and lignin biosynthesis in pear[J]. International Journal of Molecular Sciences,2018,19(8):2273.

[71] LI X T,BAO J P. Effects of different pollination combinations on stone cells,lignin,and related enzyme activities in fragrant pear fruit[J]. HortScience,2022,57(5):652-656.

[72] WU J,WANG D F,LIU Y F,WANG L,QIAO X,ZHANG S L. Identification of miRNAs involved in pear fruit development and quality[J]. BMC Genomics,2014,15(1):953.

[73] CHENG X,YAN C C,ZHANG J Y,MA C H,LI S M,JIN Q,ZHANG N,CAO Y P,LIN Y,CAI Y P. The effect of different pollination on the expression of Dangshan Su pear microRNA[J]. BioMed Research International,2017,2017:2794040.

[74] LI S M,SU X Q,JIN Q,LI G H,SUN Y M,ABDULLAH M,CAI Y P,LIN Y. iTRAQ-based identification of proteins related to lignin synthesis in the pear pollinated with pollen from different varieties[J]. Molecules,2018,23(3):548.

[75] GAO H Y,HUANG R,LIU J,GAO Z M,ZHAO H S,LI X P. Genome-wide identification of Trihelix genes in moso bamboo (Phyllostachys edulis) and their expression in response to abiotic stress[J]. Journal of Plant Growth Regulation,2019,38(3):1127-1140.

[76] CHENG X,LI G H,MUHAMMAD A,ZHANG J Y,JIANG T S,JIN Q,ZHAO H,CAI Y P,LIN Y. Molecular identification,phylogenomic characterization and expression patterns analysis of the LIM (LIN-11,Isl1 and MEC-3 domains) gene family in pear (Pyrus bretschneideri) reveal its potential role in lignin metabolism[J]. Gene,2019,686:237-249.

[77] GUI J S,LUO L F,ZHONG Y,SUN J Y,UMEZAWA T,LI L G. Phosphorylation of LTF1,an MYB transcription factor in Populus,acts as a sensory switch regulating lignin biosynthesis in wood cells[J]. Molecular Plant,2019,12(10):1325-1337.

[78] OHTANI M,DEMURA T. The quest for transcriptional hubs of lignin biosynthesis:Beyond the NAC-MYB-gene regulatory network model[J]. Current Opinion in Biotechnology,2019,56:82-87.

[79] JOHNSSON C,JIN X,XUE W Y,DUBREUIL C,LEZHNEVA L,FISCHER U. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors[J]. Physiologia Plantarum,2019,165(4):673-689.

[80] LIU C,YU H S,VOXEUR A,RAO X L,DIXON R A. FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls[J]. Science Advances,2023,9(10):eadf7714.

[81] 汪曉謙,商葉,劉維成,劉暢,杜國棟,呂德國. 生長調節劑及鈣、硼肥對南果梨萼片脫落、果實品質及木質素代謝的影響[J]. 沈陽農業大學學報,2019,50(4):399-405.

WANG Xiaoqian,SHANG Ye,LIU Weicheng,LIU Chang,DU Guodong,L? Deguo. Effect of growth regulators,Ca and B fertilizers on calyx abscission,fruit quality,and lignin metabolism in Nanguo Pear[J]. Journal of Shenyang Agricultural University,2019,50(4):399-405.

[82] CHEN Y T,MAO W W,LIU T,FENG Q Q,LI L,LI B B. Genome editing as a versatile tool to improve horticultural crop qualities[J]. Horticultural Plant Journal,2020,6(6):372-384.

猜你喜歡
木質素
高導電多孔木質素基碳纖維可用于鋰離子電池開發
◎維美德為Mercer Rosenthal公司交付木質素提取生產線
木質素在制備子午線輪胎中的應用
木質素增強生物塑料的研究進展
木質素清潔高效分離研究進展
溫和酸催化解聚木質素磺酸鹽產物的分離與分析
一種改性木質素基分散劑及其制備工藝
木質素與熱塑性塑料共混的研究現狀及其發展趨勢
一種新型酚化木質素胺乳化劑的合成及其性能
ABS/木質素復合材料動態流變行為的研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合