?

肌因子介導肌肉與器官相互作用的研究進展

2023-04-08 18:09劉洋張玉超劉元濤
青島大學學報(醫學版) 2023年6期
關鍵詞:代謝骨骼綜述

劉洋 張玉超 劉元濤

[摘要]

骨骼肌是一個活躍的內分泌器官,可以產生和分泌數百種肌因子。肌因子在血液中參與介導了代謝調節、炎癥發生等過程,使得肌肉與其他器官之間可以相互作用。本文主要對肌因子介導肌肉與其他器官相互作用的相關研究進展進行綜述。

[關鍵詞] 細胞因子類;肌,骨骼;代謝;炎癥;綜述

[中圖分類號] R336;R322.74

[文獻標志碼] A

[文章編號] 2096-5532(2023)06-0945-04

doi:10.11712/jms.2096-5532.2023.59.201

[網絡出版] https://link.cnki.net/urlid/37.1517.R.20240104.1606.002;2024-01-05 20:04:09

ESEARCH PROGRESS OF MUSCLE-ORGAN INTERACTION MEDIATED BY MYOKINES

LIU Yang, ZHANG Yuchao, LIU Yuantao

(Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266011, China)

; [ABSTRACT]Skeletal muscle is an active endocrine organ that can produce and secrete hundreds of myokines. Myokines are involved in the mediation of metabolic regulation, inflammation, and other processes in the blood, so that muscles can interact with other organs. This paper aims to review the relevant progress of myokines in the interaction of muscle with other organs.

[KEY WORDS]cytokines; muscle, skeletal; metabolism; inflammation; review

運動可以降低一系列疾病的發生風險,是各種慢性疾病的一線治療方法[1-2]。既往研究發現,骨骼肌可以產生并釋放白細胞介素-6(IL-6),從此確立了骨骼肌是一種內分泌器官[3]。由肌肉纖維產生、表達和釋放并以自分泌、旁分泌或內分泌方式發揮作用的細胞因子和其他多肽類物質,稱為肌因子[4]。后續實驗證明骨骼肌是一個活躍的內分泌器官,能產生和分泌數百種肌因子。骨骼肌分泌的肌因子以自分泌、旁分泌或內分泌的方式發揮作用。肌因子被釋放到血液中,除在肌肉內部發揮作用外,還使得肌肉與大腦、脂肪組織、骨骼、肝臟、腸道、胰腺、血管床和皮膚等器官之間可以相互作用[5-7],介導代謝調節、炎癥、血管和肌肉生成等過程[8-11]。本文主要對肌因子介導肌肉與其他器官相互作用的相關研究進展進行綜述。

1 肌肉內部的肌因子

研究發現,一些肌因子在骨骼肌內部發揮作用,參與肌肉生成的調節[12]。肌肉生長抑制素是第一個被發現符合上述肌因子定義的細胞因子[13]。肌生長抑制素是轉化生長因子-β(TGF-β)超家族的成員,并以自分泌方式負調控肌肉生成[13]。核心蛋白聚糖作為肌生長抑制素的拮抗劑,是一種受運動調節的肌因子[14]。運動使得血液中的核心蛋白聚糖水平增加[14],但卻使肌肉和循環中的肌肉生長抑制素水平降低[15-16]。肌肉細胞及相關衛星細胞產生的IL-6以旁分泌的形式刺激肌肉增殖,相反,IL-6的遺傳缺失會抑制肌肉的生長[17]。

人體循環中的IL-6低水平與身體活動不足有關[18]。在經過訓練的人類肌肉中,IL-6受體表達升高[19],提示可通過訓練增加肌肉對IL-6的敏感性。肌肉中的IL-6可以影響葡萄糖攝取和脂肪氧化。研究表明,IL-6可增加基礎葡萄糖攝取和葡萄糖轉運蛋白(GLUT-4)的轉位[20]。同時,在體外和健康人體中IL-6還可增加胰島素刺激的葡萄糖攝取。

2 肌因子對大腦的作用

近年來的研究表明,肌肉與大腦之間確實存在內分泌循環,其中部分是由肌因子信號介導的。其他介質可能包括各種代謝物[21]、非編碼RNA[22]等。運動對海馬體的影響比大腦其他部位更大。對嚙齒動物和人類的研究證實,運動可以增加海馬體的體積和大腦血供[23]。腦源性神經營養因子(BDNF)是海馬體的生長因子,參與細胞生長和學習[24],在調節運動對海馬體的影響方面起主導作用[25]。此前,BDNF已被證明與運動誘導的認知功能改善有關聯[26-27]。人有氧運動訓練3個月后,健康者的海馬體體積增加12%,精神分裂癥病人增加16%[28]。

在運動過程中,人類骨骼肌中也可以產生BDNF,但目前并未發現肌肉來源的BDNF釋放到血液中,即并未發現BDNF可以直接進入循環介導肌肉與大腦的相互作用[29]。然而,有研究表明,組織蛋白酶-B和鳶尾素可以通過血腦屏障,提高BDNF水平。組織蛋白酶-B是一種新發現的肌因子,MOON等[30]研究發現,運動導致循環中組織蛋白酶-B水平升高,從而促進海馬體中BDNF表達。跑步導致小鼠

肌肉中組織蛋白酶-B基因的表達增加,運動4個月后小鼠血漿中組織蛋白酶基因的表達增加。但組織蛋白酶-B是否參與人類運動后的認知功能的增強尚不明確。鳶尾素也是一種新近發現的肌因子,WRANN等[24]研究報道,鳶尾素參與身體活動對大腦的中介作用。當鳶尾素過表達時會導致BDNF增加,而Ⅲ型纖連蛋白域蛋白5(FNDC5)的下調則會導致BDNF減少。但鳶尾素是否參與肌肉與大腦的內分泌循環有一定爭議[31-32]。

IL-6通常與代謝綜合征有關,IL-6水平升高常伴隨肥胖和2型糖尿病的發生[33]。然而,IL-6對代謝活動也有有益影響,缺乏IL-6的小鼠體質量增加,并出現全身胰島素抵抗[34]。ELLIINGSGAARD等[35]研究顯示,在肥胖狀態下IL-6觸發胰腺α細胞增殖,并刺激胰高血糖素樣肽-1(GLP-1)產生,進而產生胰島素分泌。IL-6的積極作用還包括增強胰島素刺激的葡萄糖攝取和脂肪氧化,也可通過延遲胃排空從而影響餐后血糖。TIMPER等[36]研究發現,給小鼠中樞應用IL-6,可以抑制小鼠食欲并改善葡萄糖耐量。然而,外周應用更高濃度的IL-6顯著減少了食物攝入量。這一發現表明,全身高濃度的IL-6可以通過血腦屏障對食欲產生影響。因此,通過運動誘導產生IL-6可能抑制食欲。

3 肌因子對脂肪的作用

運動誘導骨骼肌產生的IL-6可參與調節脂質代謝。另外,IL-6作用于脂肪組織還可以增加瘦素分泌和增加飽腹感[37]。最近的研究表明,一些肌因子可能同時具有誘導白色脂肪組織棕色化的能力。PEDERSEN等[38]研究發現,IL-6可以通過調控AMP激活蛋白激酶(AMPK)信號通路增強脂肪分解和脂肪氧化。

白色脂肪棕色化能明顯促進機體能量的消耗,同時改善機體糖脂代謝[39]。因此,這可能成為針對肥胖癥及其相關代謝異常疾病治療的新靶點。肌肉表達過氧化物酶體增殖物激活受體γ共激活因子-1(PGC-1)刺激FNDC5的表達增加,FNDC5是一種膜蛋白,它可被裂解為鳶尾素[40]。鳶尾素作用于白色脂肪細胞,進而刺激解偶聯蛋白(UCP1)表達和白色脂肪棕色化[41]。在小鼠和人類的運動中,血液中鳶尾素水平的輕度增加會導致小鼠的能量消耗增加,而運動或食物攝入量沒有變化[41]。盡管肌肉釋放鳶尾素可誘導白色脂肪棕色化,但運動是否可以導致鳶尾素水平增加還存在爭議。IL-6同樣可誘導白色脂肪組織棕色化,例如,給小鼠腹腔注射1周IL-6,小鼠腹股溝白色脂肪組織中UCP1 mRNA水平明顯增加[42]。

4 肌因子對骨骼的作用

肌肉和骨骼在生長發育過程中密切相關,肌肉減少癥會導致骨質疏松癥[43]。骨骼肌通過分泌肌因子調節骨代謝,這些肌因子分別包括IL-6、肌肉生長抑制素、胰島素樣生長因子-1(IGF-1)等。IL-6從促進成骨細胞分化[44]和破骨細胞生成[45]兩方面影響骨代謝。在轉基因小鼠實驗中,肌肉生長抑制素可以干擾破骨細胞形成,抑制肌肉生長抑制素通

路可導致骨量增加[46]。肌肉來源的IGF-1可以作用于表達相應受體的成骨細胞,從而促進骨形成[47]。

5 肌因子對肝臟的作用

運動中常伴隨肝糖原分解,內源性葡萄糖產生的介質包括胰高血糖素與胰島素、腎上腺素和去甲腎上腺素。此外,肌肉同樣產生肌因子以促進體內葡萄糖快速增加,肌肉來源的IL-6在人類運動中刺激肝臟葡萄糖輸出[48]。PEPPLER等[49]發現,IL-6可增強蛋白激酶B(AKT)信號通路,從而降低小鼠肝臟中糖異生基因表達,表明肥胖狀態下IL-6對維持葡萄糖和胰島素的穩態有積極作用。運動是非乙醇性脂肪性肝病的一線治療方法,有氧運動和抗阻力運動都能減輕非乙醇性脂肪性肝病的肝臟脂肪變性。研究發現,非乙醇性脂肪性肝病病人血清鳶尾素水平低于健康個體[50],而抗阻力運動可升高循環中鳶尾素水平[51]。

6 肌因子對腫瘤的作用

流行病學研究表明,體育活動可以降低至少13種不同類型癌癥的發生風險[52]。在前列腺癌、結直腸癌和乳癌病人中,進行體育鍛煉的人相對于不鍛煉者生存率更高[53]。許多癌癥伴有慢性低度系統性炎癥,這種炎癥可能會加速腫瘤進展。因此,體育鍛煉可能是通過抗炎作用而發揮抗腫瘤作用。自然殺傷細胞(NK細胞)可被腎上腺素動員,阻斷β腎上腺素能信號減弱了訓練依賴性腫瘤抑制。PEDERSEN等[54]發現,運動的小鼠腫瘤體積和發病率都顯著降低。運動可引起腎上腺素分泌增多,而腎上腺素特異性向腫瘤招募IL-6敏感性NK細胞,從而影響腫瘤生長,而阻斷IL-6信號通路使訓練誘導的腫瘤內NK細胞浸潤和活化減少,從而促進腫瘤生長。因此,IL-6可能在介導抗癌過程中發揮作用。有證據表明,富含半胱氨酸的酸性分泌蛋白(SPARC)、鳶尾素等肌因子在抑制乳癌和結腸癌中發揮作用,其具體機制尚未明確。

7 結語

缺乏體育運動與大量的慢性疾病發生相關,包括2型糖尿病、心血管疾病、癌癥、癡呆癥和骨質疏松癥等[53]。其機制可能與缺乏某種肌因子有關。但目前運動改善慢性疾病癥狀的具體機制還尚未明確,有待進一步的研究和探討。對運動相關肌因子的研究可能為慢性病病人的生活方式提供指導,為慢性疾病的防治提供新的思路。

[參考文獻]

[1]CURFMAN G D. The health benefits of exercise. A critical reappraisal[J].? The New England Journal of Medicine, 1993,328(8):574-576.

[2]PEDERSEN B K, SALTIN B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases[J].? Scandinavian Journal of Medicine & Science in Sports,

2015,25:1-72.

[3]STEENSBERG A, VAN HALL G, OSADA T, et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6[J].? The Journal of Physiology, 2000,529(Pt 1):237-242.

[4]WHITSETT M, VANWAGNER L B. Physical activity as a treatment of non-alcoholic fatty liver disease: a systematic review[J].? World Journal of Hepatology, 2015,7(16):2041-2052.

[5]KELLEY G A, KELLEY K S. Efficacy of aerobic exercise on coronary heart disease risk factors[J].? Preventive Cardiology, 2008,11(2):71-75.

[6]HALLSWORTH K, THOMA C, HOLLINGSWORTH K G, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver di-

sease: a randomized controlled trial[J].? Clinical Science (London, England:1979), 2015,129(12):1097-1105.

[7]FEALY C E, HAUS J M, SOLOMON T P, et al. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease[J].? Journal of Applied Physiology (Bethesda, Md:1985), 2012,113(1):1-6.

[8]HARTWIG S, RASCHKE S, KNEBEL B, et al. Secretome profiling of primary human skeletal muscle cells[J].? Biochimica et Biophysica Acta, 2014,1844(5):1011-1017.

[9]ECKARDT K, GRGENS S W, RASCHKE S, et al. Myo-

kines in insulin resistance and type 2 diabetes[J].? Diabetologia, 2014,57(6):1087-1099.

[10]EVERS-VAN GOGH I J, ALEX S, STIENSTRA R, et al. Electric pulse stimulation of myotubes as an in vitro exercise model: cell-mediated and non-cell-mediated effects[J].? Scientific Reports, 2015,5:10944.

[11]YOON J H, KIM J, SONG P, et al. Secretomics for skeletal muscle cells: a discovery of novel regulators[J]? Advances in Biological Regulation, 2012,52(2):340-350.

[12]LEE J H, JUN H S. Role of myokines in regulating skeletal muscle mass and function[J].? Frontiers in Physiology, 2019,10:42.

[13]MCPHERRON A C, LAWLER A M, LEE S J. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member[J].? Nature, 1997,387(6628):83-90.

[14]KANZLEITER T, RATH M, GRGENS S W, et al. The myokine decorin is regulated by contraction and involved in muscle hypertrophy[J].? Biochemical and Biophysical Research Communications, 2014,450(2):1089-1094.

[15]SAREMI A, GHARAKHANLOO R, SHARGHI S, et al. Effects of oral creatine and resistance training on serum myostatin and GASP-1[J].? Molecular and Cellular Endocrinology, 2010,317(1-2):25-30.

[16]HITTEL D S, AXELSON M, SARNA N, et al. Myostatin decreases with aerobic exercise and associates with insulin resistance[J].? Medicine and Science in Sports and Exercise, 2010,42(11):2023-2029.

[17]SERRANO A L, BAEZA-RAJA B, PERDIGUERO E, et al. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy[J].? Cell Metabolism, 2008,7(1):33-44.

[18]FISCHER C P. Interleukin-6 in acute exercise and training: what is the biological relevance?[J].? Exercise Immunology Review, 2006,12:6-33.

[19]KELLER C, STEENSBERG A, HANSEN A K, et al. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle[J].? Journal of Applied Physiology (Bethesda, Md:1985), 2005,99(6):2075-2079.

[20]CAREY A L, STEINBERG G R, MACAULAY S L, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase[J].? Diabetes, 2006,55(10):2688-2697.

[21]RAI M, DEMONTIS F. Systemic nutrient and stress signaling via myokines and myometabolites[J].? Annual Review of Phy-

siology, 2016,78:85-107.

[22]MAKAROVA J A, MALTSEVA D V, GALATENKO V V, et al. Exercise immunology meets MiRNAs[J].? Exercise Immunology Review, 2014,20:135-164.

[23]ERICKSON K I, VOSS M W, PRAKASH R S, et al. Exercise training increases size of hippocampus and improves me-

mory[J].? Proceedings of the National Academy of Sciences of the United States of America, 2011,108(7):3017-3022.

[24]WRANN C, WHITE J, SALOGIANNNIS J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J].? Cell Metabolism, 2013,18(5):649-659.

[25]LOPRINZI P D, FRITH E. A brief primer on the mediational role of BDNF in the exercise-memory link[J].? Clinical Physio-

logy and Functional Imaging, 2019,39(1):9-14.

[26]VAYNMAN S, YING Z, GOMEZ-PINILLA F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J].? The European Journal of Neuroscience, 2004,20(10):2580-2590.

[27]VAYNMAN S, YING Z, GMEZ-PINILLA F. Exercise induces BDNF and synapsin Ⅰ to specific hippocampal subfields[J].? Journal of Neuroscience Research, 2004,76(3):356-362.

[28]PAJONK F G, WOBROCK T, GRUBER O, et al. Hip-

pocampal plasticity in response to exercise in schizophrenia[J].? Archives of General Psychiatry, 2010,67(2):133-143.

[29]MATTHEWS V B, ASTRM M B, CHAN M H, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase[J].? Diabetologia, 2009,52(7):1409-1418.

[30]MOON H Y, BECKE A, BERRON D, et al. Running-induced systemic cathepsin B secretion is associated with memory function[J].? Cell Metabolism, 2016,24(2):332-340.

[31]ALBRECHT E, NORHEIM F, THIEDE B, et al. Irisin-a myth rather than an exercise-inducible myokine[J].? Scientific Reports, 2015,5:8889.

[32]WRANN C D. FNDC5/irisin-their role in the nervous system and as a mediator for beneficial effects of exercise on the brain[J].? Brain Plasticity, 2015,1(1):55-61.

[33]PEDERSEN B K, FEBBRAIO M A. Muscles, exercise and obesity: skeletal muscle as a secretory organ[J].? Nature Reviews Endocrinology, 2012,8(8):457-465.

[34]MATTHEWS V B, ALLEN T L, RISIS S, et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance[J].? Diabetologia, 2010,53(11):2431-2441.

[35]ELLINGSGAARD H, HAUSELMANN I, SCHULER B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells[J].? Nature Medicine, 2011,17(11):1481-1489.

[36]TIMPER K, DENSON J L, STECULORUM S M, et al. IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling[J].? Cell Reports, 2017,19(2):267-280.

[37]WUEEST S, KONRAD D. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release[J].? Adipocyte, 2018,7(3):226-228.

[38]PEDERSEN B K, FEBBRAIO M A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6[J].? Physiological Reviews, 2008,88(4):1379-1406

[39]王相清,朱慧娟,龔鳳英.白色脂肪細胞棕色化:肥胖癥及其相關代謝性疾病治療的新靶點[J]. 醫學綜述, 2013,19(10):1729-1732.

[40]SUNDARRAJAN L, UNNIAPPAN S. Small interfering RNA mediated knockdown of irisin suppresses food intake and mo-

dulates appetite regulatory peptides in zebrafish[J]. General and Comparative Endocrinology, 2017,252:200-208.

[41]BOSTRM P, WU J, JEDRYCHOWSKI M P, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J].? Nature, 2012,481(7382):463-468.

.

[42]KNUDSEN J G, MURHOLM M, CAREY A L, et al. Role of IL-6 in exercise training-and cold-induced UCP1 expression in subcutaneous white adipose tissue[J].? PLoS One, 2014,9(1): e84910.

[43]VERSCHUEREN S, GIELEN E, ONEILL T W, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men[J].? Osteoporosis International, 2013,24(1):87-98.

[44]YANG X, RICCIARDI B F, HERNANDEZ-SORIA A, et al. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice[J].? Bone, 2007,41(6):928-936.

[45]BENEDETTI F D, RUCCI N, DEL FATTORE A, et al. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system[J].? Arthritis and Rheumatism, 2006,54(11):3551-3563.

[46]DANKBAR B, FENNEN M, BRUNERT D, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice[J].? Nature Medicine, 2015,21(9):1085-1090.

[47]PERRINI S, LAVIOLA L, CARREIRA M C, et al. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis[J].? The Journal of Endocrinology, 2010,205(3):201-210.

[48]FEBBRAIO M A, HISCOCK N, SACCHETTI M, et al. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction[J].? Diabetes, 2004,53(7):1643-1648.

[49]PEPPLER W T, TOWNSEND L K, MEERS G M, et al. Acute administration of IL-6 improves indices of hepatic glucose and insulin homeostasis in lean and obese mice[J].? American Journal of Physiology Gastrointestinal and Liver Physiology, 2019,316(1): G166-G178.

[50]POLYZOS S A, KOUNTOURAS J, ANASTASILAKIS A D, et al. Irisin in patients with nonalcoholic fatty liver disease[J].? Metabolism: Clinical and Experimental, 2014,63(2):207-217.

[51]KIM H J, LEE H J, SO B, et al. Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study[J].? Physiological Research, 2016,65(2):271-279.

[52]HOJMAN P, GEHL J, CHRISTENSEN J F, et al. Molecular mechanisms linking exercise to cancer prevention and treatment[J].? Cell Metabolism, 2018,27(1):10-21.

[53]PEDERSEN B K. The physiology of optimizing health with a focus on exercise as medicine[J].? Annual Review of Physiology, 2019,81:607-627.

[54]PEDERSEN L, IDORN M, OLOFSSON G H, et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution[J].? Cell Metabolism, 2016,23(3):554-562.

(本文編輯 牛兆山)

猜你喜歡
代謝骨骼綜述
做家務的女性骨骼更強壯
三減三健全民行動——健康骨骼
SEBS改性瀝青綜述
NBA新賽季綜述
骨骼和肌肉
色素上皮衍生因子與胰島素抵抗的相關性
玉女煎治療消渴胃熱熾盛證的研究進展
護理干預對多囊卵巢綜合征患者體重和代謝的影響
JOURNAL OF FUNCTIONAL POLYMERS
辟谷的實質及其在減肥中的意義
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合