?

PCI后損傷血管再內皮化的機制與治療研究進展

2024-05-09 14:58劉玉瑩楊斌
心血管病學進展 2024年3期
關鍵詞:血管內皮生長因子

劉玉瑩 楊斌

【摘要】晚期支架內血栓形成是經皮冠狀動脈介入治療(PCI)后主要的并發癥,嚴重影響了冠狀動脈粥樣硬化性心臟病患者的預后,帶來不可逆轉的危害。PCI后損傷血管再內皮化可減少晚期支架內血栓的形成,再內皮化的機制主要包括內皮細胞黏附和增殖的調控、平滑肌細胞黏附和增殖的調控、血小板黏附聚集和活化以及纖維蛋白原的吸附。對冠狀動脈粥樣硬化性心臟病患者血管損傷再內皮化機制的研究,可為損傷后血管重塑提供新的思路和治療靶點,有利于提升PCI患者的預后?,F就PCI后損傷血管再內皮化的相關機制和治療進行綜述。

【關鍵詞】經皮冠狀動脈介入治療;晚期支架內血栓形成;血管內皮生長因子;RNA結合蛋白;藥物洗脫支架

【DOI】10.16806/j.cnki.issn.1004-3934.2024.03.013

Mechanism and Therapy of Reendothelialization of Injured Vessels After Percutaneous Coronary Intervention

LIU Yuying,YANG Bin

(The Affiliated Hospital of Qingdao University,Qingdao 266000,Shandong,China)

【Abstract】Late stent thrombosis is a major complication of percutaneous coronary intervention (PCI) therapy,which seriously affects the prognosis of patients with atherosclerotic cardiovascular disease and causes irreversible harm.Reendothelialization of damaged vessels after PCI therapy is available to reduce late stent thrombosis.The mechanisms of reendothelialization mainly include the adhesion and proliferation of endothelial cell,the adhesion and proliferation of smooth muscle cell,the adhesive aggregation and activation of platelet,and the absorption of fibrinogen.The study on the mechanism of reendothelialization of vascular injury in patients with atherosclerotic cardiovascular disease provides new views and therapeutic targets for vascular remodeling after injury,which is conducive to improving the prognosis of patients undergoing PCI.This article reviews the relevant mechanism and therapy of reendothelialization of injured vessels after PCI.

【Keywords】Percutaneous coronary intervention;Late stent thrombosis;Vascular endothelial growth factor;RNA binding protein;Drug eluting stent

經皮冠狀動脈介入治療(percutaneous coronary intervention,PCI)是一種重建狹窄或閉塞冠狀動脈血管的方法,因其簡單有效的手術方式經常被用于冠狀動脈粥樣硬化性心臟病的治療,顯著降低了冠狀動脈粥樣硬化性心臟病的致病率和死亡率[1]。然而,PCI后出現的一系列并發癥嚴重影響了患者的預后,其中最主要的并發癥是支架植入30 d后發生的晚期支架內血栓形成(late stent thrombosis,LST)[2-3]。LST的主要病理機制是以不完全再內皮化和纖維蛋白持續存在為特征的動脈延遲愈合,支架缺乏內膜覆蓋和洗脫支架的不均勻愈合都會增加血栓形成的風險[4-5]。支架本身的性質如支架貼壁不良、支架的鋼梁過粗和支架的持久耐用性差會導致損傷血管再內皮化延遲,影響患者的預后[6-7]。除了這些外源性因素,一些內源性機制也影響支架植入患者的血管損傷再內皮化進程。如圖1所示,血管再內皮化的4種內源性調控機制包括內皮細胞(endothelial cell,EC) 黏附和增殖的調控、平滑肌細胞(smooth muscle cell,SMC) 黏附和增殖的調控、血小板的黏附聚集和活化以及纖維蛋白原的吸附[8-9]?;趽p傷血管再內皮化的機制,一些新型藥物洗脫支架(drug eluting stents,DES)被發展和改進,極大地改善了PCI患者的預后。

1 損傷血管的再內皮化機制

1.1 EC的黏附和增殖

EC的完整性和功能活動在PCI后預防血栓中發揮重要作用,支架植入引起EC嚴重抑制,導致損傷血管的再內皮化延遲。這一過程主要由血管內皮生長因子(vascular endothelial growth factor,VEGF)介導[10-11],而RNA結合蛋白(RNA binding protein,RBP)在調節VEGF的生物合成、轉運和翻譯中發揮關鍵作用。

1.1.1 人類抗原R

人類抗原R(human antigen R,HuR)能通過結合位于3非翻譯區(3untranslated region,3UTR)調控VEGF的表達,刺激血管生成[12]。HuR能抑制內皮型一氧化氮合酶的表達并穩定細胞間黏附分子-1和血管細胞黏附分子-1來促進內皮活化,進而實現血管再內皮化[13]。

1.1.2 胰島素樣生長因子ⅡmRNA結合蛋白3

胰島素樣生長因子ⅡmRNA結合蛋白(insulin like growth factor Ⅱ mRNA binding protein,IMP)3是IMP家族的一種新型RBP,在EC的生長和遷移中發揮關鍵作用[14]。IMP3可通過調節胰島素樣生長因子結合蛋白激活下游PI3K/MAPK信號通路來促進VEGF的表達,有利于損傷血管的再內皮化[15]。

1.1.3 上游移碼蛋白1

上游移碼蛋白1(up-frameshift protein 1,UPF1)作為一種VEGF的RBP,UPF1是無義介導的mRNA降解途徑的關鍵蛋白,拮抗VEGF轉錄本的翻譯[16]。UPF1與SMG-1-UPF1-eRF1-eRF3復合體結合,導致UPF1磷酸化,驅動VEGF下調,導致血管損傷的再內皮化進程的抑制[17]。

1.1.4 多聚尿嘧啶結合蛋白1

多聚尿嘧啶結合蛋白1[poly(U)-binding protein 1,Pub1]是VEGF的一種細胞聚腺苷酸化RBP,在血管損傷的再內皮化中發揮重要作用。Pub1通過與EC轉錄本的5非翻譯區中穩定作用元件結合,并阻止了含有上游開放閱讀框的VEGF降解,實現了VEGF的穩定和更新,促進了血管損傷的再內皮化。

1.1.5 三四脯氨酸

三四脯氨酸( tristetraprolin,TTP) 是一種早期反應蛋白,在VEGF的mRNA降解中起到關鍵作用,主要通過招募外泌體PM-Scl75和Rrp4到VEGF的mRNA來誘導VEGF衰變,抑制損傷血管的再內皮化[18]。此外,TTP通過TZF結構域與VEGF mRNA中的3UTR實現最佳結合,阻止VEGF mRNA的翻譯并降低其穩定性,減少VEGF的生成,阻礙再內皮化進程[19]。

1.1.6 多聚腺苷酸結合蛋白相互作用蛋白2

多聚腺苷酸結合蛋白相互作用蛋白2[poly (A)-binding protein-interacting protein 2,Paip2]可結合VEGF中3UTR的特定區域,延長了VEGF中3UTR的半衰期,進而穩定VEGF,導致VEGF表達增加。此外,Paip2作為一種VEGF mRNA表達的調控因子,還能與HuR相互作用,協同穩定VEGF mRNA??傊?,Paip2可通過多種通道穩定VEGF的表達,促進損傷血管的再內皮化。

1.2 SMC的黏附和增殖

SMC的增殖和表型改變是新生內膜增生最重要的病理機制。支架植入后,內膜被損壞,許多細胞因子和生長因子合成和釋放。PCI后損傷血管的細胞內環境也發生了改變,影響了細胞內的信號轉導,這些信號會控制血管SMC的增殖、遷移,最終會導致新生內膜增生。

1.2.1 平滑肌祖細胞

平滑肌祖細胞(smooth muscle progenitor cell,SMPC)一般由血管祖細胞分化而來,TGF-β1/TGF-β受體Ⅱ-ALK5/Smad2信號通路介導血管祖細胞向SMPC表型轉變[20]。隨后,SMPC特異性標志物的上調會導致細胞骨架重排和收縮表型的出現,大量積累的SMPC在PCI后血管機械性損傷的LST中起著關鍵作用。而血管損傷后炎癥的發生可刺激SMPC發生動員,向SMC分化。SMC參與新生內膜形成,引起血管再內皮化延遲。

1.2.2 粒細胞集落刺激因子

粒細胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF) 可促進細胞活力,通過影響血管生成調控PCI后損傷血管的再內皮化[21]。由于G-CSF能在蛋白激酶p44/42 MAPK、Akt和S6激酶信號轉導下促進SMC的激活和遷移,所以G-CSF在治療PCI后LST中并未起到很好的療效[22]。因此,G-CSF抑制了損傷血管的再內皮化,阻礙了損傷血管的修復。

1.2.3 核因子κB

核因子κB(nuclear factor-κB,NF-κB)作為一種蛋白質家族,能上調內皮素-1,促進細胞外基質(extracellular matrix,ECM)合成,加速SMC增殖[23]。

NF-κB家族,尤其是p65和p50在血管增殖性疾病的發病機制中發揮著重要作用,EC和巨噬細胞中的p65和p50可在血管損傷時被誘導。此外,NF-κB可促進SMC表型轉變,不利于損傷血管的修復[24]。

1.3 血小板的黏附聚集和活化

血小板在血管損傷后可被激活,釋放趨化因子,誘導和招募單核細胞遷移,導致巨噬細胞的浸潤,引起支架植入后炎癥和LST的發生。隨后,活化的血小板刺激了SMC的增殖和ECM的分泌,誘發LST出現[25]??傊?,血小板通過調控其黏附、聚集和活化,在PCI患者內皮損傷后再內皮化和血管重塑中發揮重要作用。

1.3.1 CD11b/CD18

冠狀動脈支架植入可引起血小板和中性粒細胞表面的糖蛋白CD11b/CD18 (巨噬細胞分化抗原-1)的激活和上調,通過介導白細胞黏附于纖維蛋白原引起LST的發生。此外,CD11b/CD18的上調會引起中性粒細胞活化與可溶性細胞間黏附分子-1表達增加,引起新生內膜增厚,進而導致再內皮化延遲。

1.3.2 基質金屬蛋白酶

基質金屬蛋白酶(matrix metalloproteinase,MMP) 釋放可溶的Kit-配體刺激內皮細胞增生,通過產生的生物活性ECM片段和調節基質與非基質的降解,對血管損傷的再內皮化起著關鍵作用[26]。MMP-9可介導G-CSF與趨化因子的協同動員,抑制損傷血管的再內皮化[27]。此外,MMP-7還能通過裂解血小板反應蛋白-1抑制血管損傷后EC的恢復,引起再內皮化延遲[28]。

1.4 纖維蛋白原的吸附

纖維蛋白原是一種參與血液凝固的蛋白質,非常容易被氧化,導致完整性和穩定性受到破壞。纖維蛋白原的吸附受到膽紅素和纖維連接蛋白的調控,影響血小板的活化,進而影響損傷血管的再內皮化[29]。

1.4.1 膽紅素

膽紅素對纖維蛋白原具有抗氧化作用,可防止其羰基化和聚集[30]。纖維蛋白原的結合位點對膽紅素不是立體特異性的,并且能容納兩個膽紅素構象體,提高了抗氧化性能[31]??傊?,纖維蛋白原和膽紅素在生理濃度下相互作用,保證了纖維蛋白原的完整性,促進損傷血管的再內皮化。

1.4.2 纖維連接蛋白

纖維連接蛋白是ECM中的一種主要成分,由兩個單體在其C端由二硫鍵連接而成。它能吸附或連接到生物材料的表面,促進EC的附著、擴散和分化。此外,纖維連接蛋白的生成會受到血漿聚合物膜等物質的調節,影響纖維蛋白原的吸附,進而實現對血管內皮化的調控[32]。

2 新型藥物洗脫支架治療

為了減少PCI后LST的發生,更好地改善預后,近年來一些新型DES被發展起來。根據再內皮化延遲的機制,通過覆蓋在支架表面的藥物來促進EC黏附和增殖,抑制SMC黏附和增殖,防止血小板黏附聚集和減少纖維蛋白原的吸附,從而加速損傷血管的再內皮化[33-35]。

沒食子酸功能化作為一種增強再內皮化的策略,涂覆在支架表面不僅能增強EC黏附、增殖和遷移,還能抑制SMC黏附和增殖[36-37]。肝素是一種由糖醛酸和葡萄糖胺組成的高度硫酸化的糖胺聚糖,常作為抗凝藥物用于防止金屬支架上血栓形成。肝素的抗凝作用機制是通過與抗凝血酶Ⅲ反應而發生,抗凝血酶Ⅲ可使凝血酶及其他與血栓有關的蛋白酶失活[38-39]。一些研究[40]表明,肝素修飾的底物可增強EC的黏附、增殖和遷移,抑制SMC的生長和增殖,還能降低纖維蛋白原吸附和血小板黏附。巖藻多糖是從褐藻中提取的硫酸多糖,具有與肝素相似的抗凝作用。低分子量巖藻多糖可減少SMC的增殖,從而防止新生內膜增生,促進內皮修復[41]。

透明質酸是一種帶負電荷的非硫酸化多糖,通過與細胞表面受體相互作用,在細胞附著和信號轉導中發揮作用[42-43]。此外,在不銹鋼支架上涂覆透明質酸可減少血小板的黏附和聚集。多巴胺偶聯透明質酸涂覆支架也能抑制血小板的黏附和活化,維持內皮細胞的活力和增殖,表現出最低的纖維蛋白原吸附。NO可舒張血管,抑制血小板的聚集和SMC的增殖,在維持血管內環境穩態中發揮重要作用。許多研究[44-45]已證明,支架周圍缺乏NO是血栓形成和再內皮化延遲的重要原因。因此,一些NO釋放支架被發展起來用于改善臨床上的LST。

為了獲得有利于促進內皮細胞黏附和增殖的微環境,促進損傷血管的再內皮化,多種具有不同性質的生物分子共同涂覆在支架表面,形成了多功能涂層[46]。如肝素和纖維連接蛋白復合物共同固定在鈦底物上形成的涂層,能減少血小板的黏附聚集,降低纖維蛋白原的吸附[47-48]。此外,在多功能微環境中使用肝素/多聚賴氨酸、VEGF對鈦底物進行功能化,已被證明能抑制血栓形成,促進損傷血管的再內皮化[49]。

3 小結

血管損傷再內皮化的機制主要包括VEGF對EC黏附和增殖的調控、SMC黏附和增殖的調控、血小板的黏附聚集和活化以及纖維蛋白原的吸附。改善動脈粥樣硬化患者再內皮化的新型DES為促進血管生成提供了新的治療策略。未來應致力于具體的治療措施來促進損傷血管的再內皮化和修復,抑制不良的內膜增生,減少甚至消除PCI后LST的發生,進一步提高支架治療的安全性,改善患者的預后。

參考文獻

[1]Ahadi F,Azadi M,Biglari M,et al.Evaluation of coronary stents:a review of types,materials,processing techniques,design,and problems[J].Heliyon,2023,9(2):e13575.

[2]Otto S,Díaz VAJ,Weilenmann D,et al.Crystalline sirolimus-coated balloon (cSCB) angioplasty in an all-comers,patient population with stable and unstable coronary artery disease including chronic total occlusions:rationale,methodology and design of the SCORE trial[J].BMC Cardiovasc Disord,2023,23(1):176.

[3]Butala NM,Yeh RW.Improvements in coronary stent design translate to better real-world outcomes[J].JACC Asia,2021,1(3):357-359.

[4]Park DS,Jeong MH,Jin YJ,et al.Preclinical evaluation of an everolimus-eluting bioresorbable vascular scaffold via a long-term rabbit iliac artery model[J].Tissue Eng Regener Med,2023,20(2):239-249.

[5]Vidovich MI.Three decades of SVG PCI:a short history of nearly everything[J].JACC Case Rep,2023,10:101744.

[6]Bedair TM,Cho Y,Joung YK,et al.Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface[J].Colloids Surf B Biointerfaces,2014,122:808-817.

[7]Zhang Y,Wu Z,Wang S,et al.Clinical outcome of paclitaxel-coated balloon angioplasty versus drug-eluting stent implantation for the treatment of coronary drug-eluting stent in-stent chronic total occlusion[J].Cardiovasc Drugs Ther,2023,37(6):1155-1166.

[8]Kawagoe Y,Otsuka F,Onozuka D,et al.Early vascular responses to abluminal biodegradable polymer-coated versus circumferential durable polymer-coated newer-generation drug-eluting stents in humans:a pathological study[J].EuroIntervention,2023,18(15):1284-1294.

[9]Bedair TM,Elnaggar MA,Joung YK,et al.Recent advances to accelerate re-endothelialization for vascular stents[J].J Tissue Eng,2017,8:2041731417731546.

[10]Kawarada O,Otsuka F,Miki K,et al.Heterogeneous vascular response after implantation of bare nitinol self-expanding stents in the swine femoropopliteal artery[J].Cardiovasc Interv Ther,2023,38(2):210-222.

[11]Zhu YX,Liang L,Parasa R,et al.Early vascular healing after neXt-generation drug-eluting stent implantation in Patients with non-ST Elevation acute Coronary syndrome based on optical coherence Tomography guidance and evaluation (EXPECT):study protocol for a randomized controlled trial[J].Front Cardiovasc Med,2023,10:1003546.

[12]Chang SH,Hla T.Post-transcriptional gene regulation by HuR and microRNAs in angiogenesis[J].Curr Opin Hematol,2014,21(3):235-240.

[13]Uren PJ,Burns SC,Ruan J,et al.Genomic analyses of the RNA-binding protein Hu antigen R (HuR) identify a complex network of target genes and novel characteristics of its binding sites[J].Biol Chem,2011,286(43):37063-37066.

[14]Zhu K,Gao T,Wang Z,et al.RNA N6-methyladenosine reader IGF2BP3 interacts with MYCN and facilitates neuroblastoma cell proliferation[J].Cell Death Discov,2023,9(1):151.

[15]Zheng X,Li S,Yu J,et al.N6-methyladenosine reader IGF2BP3 as a prognostic Biomarker contribute to malignant progression of glioma[J].Transl Cancer Res,2023,12(4):992-1005.

[16]He J,Ma X.Interaction between LncRNA and UPF1 in tumors[J].Front Genet,2021,12:624905.

[17]Palo A,Patel SA,Sahoo B,et al.FRG1 is a direct transcriptional regulator of nonsense-mediated mRNA decay genes[J].Genomics,2023,115(1):110539.

[18]Banerjee R,van Tubergen EA,Scanlon CS,et al.The G protein-coupled receptor GALR2 promotes angiogenesis in head and neck cancer[J].Mol Cancer Ther,2014,13(5):1323-1333.

[19]Zhang D,Zhou Z,Yang R,et al.Tristetraprolin,a potential safeguard against carcinoma:role in the tumor microenvironment[J].Front Oncol,2021,11:632189.

[20]Merkulova-Rainon T,Broquères-You D,Kubis N,et al.Towards the therapeutic use of vascular smooth muscle progenitor cells[J].Cardiovasc Res,2012,95(2):205-214.

[21]Liu Z,Zhang G,Chen J,et al.G-CSF promotes the viability and angiogenesis of injured liver via direct effects on the liver cells[J].Mol Biol Rep,2022,49(9):8715-8725.

[22]Ziauddin SM,Nakashima M,Watanabe H,et al.Biological characteristics and pulp regeneration potential of stem cells from canine deciduous teeth compared with those of permanent teeth[J].Stem Cell Res Ther,2022,13(1):439.

[23]Aggarwal V,Tuli HS,Varol A,et al.Role of reactive oxygen species in cancer progression:molecular mechanisms and recent advancements[J].Biomolecules,2019,9(11):735.

[24]Yoshida T,Yamashita M,Horimai C,et al.Smooth muscle-selective inhibition of nuclear factor-κB attenuates smooth muscle phenotypic switching and neointima formation following vascular injury[J].J Am Heart Assoc,2013,2(3):e000230.

[25]Rohani MG,Parks WC.Matrix remodeling by MMPs during wound repair[J].Matrix Biol,2015,44-46:113-121.

[26]Quintero-Fabin S,Arreola R,Becerril-Villanueva E,et al.Role of matrix metalloproteinases in angiogenesis and cancer[J].Front Oncol,2019,9:1370.

[27]Scheau C,Badarau IA,Costache R,et al.The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma[J].Anal Cell Pathol(Amst),2019,2019:9423907.

[28]Kessler T,Zhang L,Liu Z,et al.ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1[J].Circulation,2015,131(13):1191.

[29]Gligorijevic′ N,ukalovic′ V,Penezic′ A,et al.Characterisation of the binding of dihydro-alpha-lipoic acid to fibrinogen and the effects on fibrinogen oxidation and fibrin formation[J].Int J Biol Macromol,2020,147:319-325.

[30]Longhi G,Ghidinelli S,Abbate S,et al.Insights into the structures of bilirubin and biliverdin from vibrational and electronic circular dichroism:history and perspectives[J].Molecules,2023,28(6):2564.

[31]Gligorijevic′ N,Minic′ S,Robajac′ D,et al.Characterisation and the effects of bilirubin binding to human fibrinogen[J].Int J Biol Macromol,2019,128:74-79.

[32]Buddhadasa M,Lerouge S,Girard P.Plasma polymer films to regulate fibrinogen adsorption:effect of pressure and competition with human serum albumin[J].Plasma Process Polym,2018,15(9):e1800040.

[33]Ariyaratne TV,Ademi Z,Huq M,et al.The real-world cost-effectiveness of coronary artery bypass surgery versus stenting in high-risk patients:propensity score-matched analysis of a single-centre experience[J].Appl Health Econ Health Policy,2018,16(5):661-674.

[34]Lee P,Brennan AL,Stub D,et al.Estimating the economic impacts of percutaneous coronary intervention in Australia:a registry-based cost burden study[J].BMJ Open,2021,11(12):e053305.

[35]Rykowska I,Nowak I,Nowak R.Drug-eluting stents and balloons—Materials,structure designs,and coating techniques:a review[J].Molecules,2020,25(20):4624.

[36]Jensen LO,Christiansen EH.Are drug-eluting stents safer than bare-metal stents?[J].Lancet,2019,393(10190):2472-2474.

[37]Piccolo R,Bonaa KH,Efthimiou O,et al.Drug-eluting or bare-metal stents for percutaneous coronary intervention:a systematic review and individual patient data meta-analysis of randomised clinical trials[J].Lancet,2019,393(10190):2503-2510.

[38]Yamamoto K,Sato T,Salem H,et al.Mechanisms and treatment outcomes of ostial right coronary artery in-stent restenosis[J].EuroIntervention,2023,19(5):e383-e393.

[39]Kim BY,Moon H,Kim SS,et al.Outcomes of percutaneous coronary intervention in elderly patients with rheumatoid arthritis:a nationwide population-based cohort study[J].Healthcare(Basel),2023,11(10):1381.

[40]Gherasie FA,Valentin C,Busnatu SS.Is there an advantage of ultrathin-strut drug-eluting stents over second- and third-generation drug-eluting stents?[J].J Pers Med,2023,13(5):753.

[41]Rigatelli G,Zuin M,Vassilev D,et al.Risk of dislodgement of ultrathin drug eluting stents versus thick drug eluting stents[J].Am J Cardiol,2020,125(11):1619-1623.

[42]Wang G,Zhao Q,Chen Q,et al.Comparison of drug-eluting balloon with repeat drug-eluting stent for recurrent drug-eluting stent in-stent restenosis[J].Coron Artery Dis,2019,30(7):473-480.

[43]Kaul U,Bhatia V.The trade-off of a long drug-eluting stent[J].EuroIntervention,2021,16(16):1297-1298.

[44]Zhang B,Qin Y,Wang Y.A nitric oxide-eluting and REDV peptide-conjugated coating promotes vascular healing[J].Biomaterials,2022,284:121478.

[45]Binder RK,Lüscher TF.Duration of dual antiplatelet therapy after coronary artery stenting:where is the sweet spot between ischaemia and bleeding?[J].Eur Heart J,2015,36(20):1207-1211.

[46]Yang L,Li L,Wu H,et al.Catechol-mediated and copper-incorporated multilayer coating:an endothelium-mimetic approach for blood-contacting devices[J].J Control Release,2020,321:59-70.

[47]Krger N,Kopp A,Staudt M,et al.Hemocompatibility of plasma electrolytic oxidation (PEO) coated Mg-RE and Mg-Zn-Ca alloys for vascular scaffold applications[J].Mater Sci Eng C Mater Biol Appl,2018,92:819-826.

[48]Hong Q,Zhou H,Cheng Y,et al.Synthesis of star 6-arm polyethylene glycol-heparin copolymer to construct anticorrosive and biocompatible coating on magnesium alloy surface[J].Front Bioeng Biotechnol,2022,10:853487.

[49]Liu Y,Zhang J,Wang J,et al.Tailoring of the dopamine coated surface with VEGF loaded heparin/poly-L-lysine particles for anticoagulation and accelerate in situ endothelialization[J].J Biomed Mater Res A,2015,103(6):2024-2034.

收稿日期:2023-08-02

通信作者:楊斌,E-mail:yangbin200612736@163.com

猜你喜歡
血管內皮生長因子
褪黑素通過HIF—1α/VEGF信號通路減輕急性腎損傷的研究
β—catenin和VEGF在基底細胞癌中的表達及其相關性
熱痹康湯對膠原誘導性關節炎大鼠滑膜血管內皮生長因子的影響
急性冠脈綜合征患者血漿periostin蛋白水平與VEGF、ET—1及hs—CRP的相關性探討
丁苯酞對急性腦梗死患者血清VEGF影響及臨床療效觀察
苦瓜等對鏈脲佐菌素誘導糖尿病模型小鼠血糖血脂影響的比較
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合