?

窮根究底,“增解”何來?

2024-03-08 12:38福建省泉州市第七中學362000賴呈杰林景芳
中學數學研究(江西) 2024年3期
關鍵詞:正數對角余弦定理

福建省泉州市第七中學 (362000) 賴呈杰 林景芳

在解三角形問題中,根據條件建立方程計算線段長度或角度時經常會產生“增解”問題.本文筆者以2023年全國新高考Ⅰ卷17為例,明晰“增解”來源,理清“舍根”方法,并提出避免產生“增解”的幾種策略,希望對讀者有所幫助.

1 問題起源

(2023年全國新高考Ⅰ卷17)已知在△ABC中,A+B=3C,2sin(A-C)=sinB.

(1)求sinA;(2)設AB=5,求AB邊上的高.

分析:第(1)小題考查三角恒等變換求三角函數值,第(2)小題可通過等面積法求AB邊上的高.即將問題轉化為“三角形中,已知兩個內角與一條邊,求其他邊長”.即求b.

圖1

可以發現,以上三種思路均采用余弦定理,思路2卻產生了增解.原因在哪里?如何舍去增解?已知“兩邊一對角”情形下,選擇哪個角使用余弦定理最佳?

2 為何有增解

2.1 “增解”的幾何解釋

圖2

2.2 “增解”的代數說明

已知a,c和角C,對角C使用余弦定理,并將其整理為關于b的一元二次方程b2-2abcosC+a2-c2=0(*).判別式Δ=(2acosC)2-4(a2-c2),化簡得Δ=4(c2-a2sin2C)=4(c+asinC)(c-asinC),則①若方程(*)有兩個不等的正數解,則該三角形有兩解;②若方程(*)有一個正數解,則該三角形有一解;③若方程(*)無解或只有負數解,則該三角形無解.

限于篇幅,僅證明①.

3 如何舍去增解

在△ABC中,由正弦定理可知,a>b>c?A>B>C,可以通過對角的大小比較得到邊的大小關系.對于思路2中產生的增解,有以下常用方法舍去.

4 避免產生增解的策略

策略1 對較大角使用余弦定理

策略2 運用射影定理

策略3 運用正弦定理

解三角問題中,只要甄別好條件,運用余弦定理來辨析三角形解的個數也是可行的.由此,可幫助學生面對此類試題時做好決策,做到胸有成竹,事半功倍!

猜你喜歡
正數對角余弦定理
余弦定理的證明及其應用
聚焦正、余弦定理的變式在高考中的應用
正余弦定理的若干證明與思考
“正數和負數”檢測題
擬對角擴張Cuntz半群的某些性質
正余弦定理在生活中的運用
正余弦定理在生活中的運用
絕對值的作用
學好乘方四注意
非奇異塊α1對角占優矩陣新的實用簡捷判據
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合