?

轉錄組和代謝組聯合分析桑葚發育過程中可溶性糖和有機酸代謝的變化

2024-04-30 07:51張若彤李蒙齊一鳴王曉萍孫志超
果樹學報 2024年4期
關鍵詞:可溶性糖轉錄組桑葚

張若彤 李蒙 齊一鳴 王曉萍 孫志超

摘? ? 要:【目的】探究桑葚發育過程中可溶性糖和有機酸代謝及轉錄表達水平,揭示桑葚品質形成的分子機制?!痉椒ā恳郧喙冢╓1)、轉色期(W2)、成熟期(W3)白色桑葚為試驗材料,分別測定3個階段可溶性糖和有機酸含量及轉錄組變化,并基于轉錄組與代謝組聯合分析揭示調控可溶性糖和有機酸代謝的分子機制?!窘Y果】共檢測到64種代謝物,其中有機酸52種、可溶性糖12種。分析發現,蔗糖、葡萄糖和D-果糖為桑葚中主要可溶性糖類物質,蘋果酸、檸檬酸和琥珀酸為桑葚中主要有機酸類物質。轉錄組測序共獲得58.65 Gb Clean Data,差異基因分析發現W3 vs W1組獲得的差異基因數量最多為9098個。而KEGG富集分析表明,W2 vs W1和W3 vs W2組中差異基因富集到與糖酸代謝相關的通路,主要為淀粉和蔗糖代謝及三羧酸循環通路,在W2 vs W1組中有52個上調的差異基因富集到淀粉和蔗糖代謝,27個上調的差異基因富集到檸檬酸循環,在W3 vs W2組中有27個上調的差異基因富集到淀粉和蔗糖代謝。代謝組和轉錄組關聯分析表明,NINV、HK、CS、ACO、MDH和ICDH是桑葚糖酸積累的關鍵調控基因。熒光定量分析(qRT-PCR)表明,關鍵調控基因在不同發育時期表達上調,與轉錄組中表達趨勢一致?!窘Y論】基因NINV、HK、CS、ACO、MDH和ICDH在桑葚成熟中可溶性糖和有機酸的合成與代謝中具有重要調控作用,初步揭示了桑葚口感變化的生物學基礎。

關鍵詞:桑葚;代謝組;轉錄組;可溶性糖;有機酸

中圖分類號:S663.2 文獻標志碼:A 文章編號:1009-9980(2024)04-0690-13

Transcriptome and metabolome combined analysis metabolism change of soluble sugars and organic acids in mulberry fruit during development stages

ZHANG Ruotong, LI Meng, QI Yiming, WANG Xiaoping, SUN Zhichao*

(Institute of Sericulture, Chengde Medical University, Chengde 067000, Hebei, China)

Abstract: 【Objective】 Through the systematic study of the metabolism and molecular mechanism of sugar and organic acids, the mechanism of fruit taste formation was well revealed. In this study, we investigated the metabolism of soluble sugar and organic acid and transcriptome expression levels during the development of mulberry (Morus alba) in order to reveal the molecular mechanism of fruit quality formation of mulberry. 【Methods】 White mulberry fruits were used as experimental materials at greening stage (W1), transforming stage (W2) and ripening stage (W3) . The content and transcriptome of the soluble sugar and organic acid at three stages were determined separately, and the molecular mechanism of regulation of the soluble sugar and organic acid metabolism were analyzed based on the combination of transcriptome and metabolome. By exploring the key differential genes regulating the synthesis and metabolism of the soluble sugar and organic acid during mulberry ripening, the metabolic network was proposed to elucidate the influence of fruit development on the metabolism of the soluble sugar and organic acid. The UPLC-MS/ MS targeted metabolomics method was used to detect the changes of metabolites at 3 developmental stages, and the Cluster analysis was performed on the obtained different substances. The expression of the differential genes was analyzed by qRT-PCR and the obtained differential genes were further analyzed through KEGG (Kyoto encyclopedia of genes and genomes) pathway enrichment analysis. 【Results】 A total of 64 metabolites were detected, including 52 organic acids and 12 soluble sugars. According to the cluster analysis of different substances, the results showed that there were obvious changes in sugar and acid metabolism during the mulberry fruit development. Through the data analysis, it was found that the sucrose, glucose and D-fructose were the main soluble sugars in mulberry fruits, and their contents continued to increase during the development of mulberry fruits, and reached a peak at W3. The malic acid, citric acid and succinic acid were the main organic acids in mulberry fruits. According to the assembly analysis of the transcriptome sequencing data of the mulberry samples at different developmental stages, a total of 58.65 Gb was obtained. The differential gene analysis of gene expression at different developmental stages showed that W3 vs W1 group had the largest number of differential genes, reaching 9098. The Venn map was drawn for the 3 different genes in comparison combinations, among them 762 genes were expressed in common. The W3 vs W1 group contained the largest number of the unique differential genes, with 2836 differential genes. The second group was W2 vs W1 with 499 unique differential genes, and the least group was W3 vs W2 with 195 unique differential genes. The results showed that transcription and translation of a large number of genes were activated at the beginning of fruit development, while transcription and translation of some genes were inhibited at maturity. The KEGG enrichment analysis showed that the differential genes in W2 vs W1 and W3 vs W2 groups were enriched into carbohydrate-related metabolic pathways, which were mainly starch and sucrose metabolism and tricarboxylic acid cycle pathways. In the W2 vs W1 group, 52 upregulated differential genes were enriched in the starch and sucrose metabolism, and 27 upregulated differential genes were enriched in the citric acid cycle. In the W3 vs W2 group, 27 upregulated differential genes were enriched for the starch and sucrose metabolism. Combined with the differential gene identification, correlation analysis and common KEGG pathway analysis of the differential genes and differential metabolites related to soluble sugar and organic acid metabolism were carried out, there were significant differences in the expression of some candidate genes related to the soluble sugar and organic acid metabolism in mulberry. In this study, four differentially expressed SUSY genes were detected, and their expression levels were high in the early stage of fruit development, but significantly decreased with fruit development; three differentially expressed NINV genes were detected, and their expression increased with the development of fruit. Two differentially expressed FRK genes were identified, which were highly expressed at the early stage of fruit development; one differentially expressed HK gene was identified, and its expression gradually increased with the fruit development. In addition, this study also found that the expression of the two MDH genes increased during fruit ripening, and the expression of the MDH was significantly correlated with malic acid content. These results indicated that these genes play a significant role in the regulation of mulberry maturation. The metabolome and transcriptome association analysis showed that the NINV, HK, CS, ACO, MDH and ICDH were the key regulatory genes of saccharic acid accumulation in mulberry. The qRT-PCR analysis showed that the expression of key regulatory genes was up-regulated at different developmental stages, which was consistent with the expression trend in the transcriptome. The TCA cycle was promoted in the ripening process of mulberry fruits, and then affected the change of the organic acid content, and the change of the organic acid content ultimately affected the taste difference of the fruits. 【Conclusion】 The NINV, HK, CS, ACO, MDH and ICDH would play important regulatory roles in the synthesis and metabolism of the soluble sugars and organic acids during mulberry maturation, which initially revealed the biological basis of mulberry taste change. The rich metabolites and differential genes identified will not only provide a lot of information for high-quality genetic improvement of mulberry, but also provide valuable reference for other mulberry crops.

Key words: Mulberry; Metabolome; Transcriptome; Soluble sugars; Organic acids

桑樹是??疲∕oraceae)桑屬(Morus)多年生木本植物,廣泛分布在亞洲亞熱帶區域(包括韓國、日本、中國和印度)、北美和非洲,中國是世界桑樹種類最多的國家[1-2]。桑葚為桑樹的果實,其具有較高的營養價值,部分桑葚品種被用作傳統的中草藥。桑葚中富含黃酮、有機酸、酚酸、糖醇、氨基酸和多羥基生物堿等多種生物活性化合物,與沙棘、懸鉤子一起被譽為“第三代水果”[3-4]。近年來國內外廣泛關注基于桑葚代謝組學的相關研究,桑葚中含有大量的營養物質,包括可溶性糖、氨基酸、有機酸含量等理化指標,且這些理化指標對桑葚的代謝途徑產生重要影響,進而影響桑葚的生長發育全過程[5]。而目前關于桑葚可溶性糖和有機酸代謝分子機制的研究卻少有報道。

甜度是水果感官質量評估中的一個重要特征,由果實的代謝物組成決定,例如糖和有機酸[6]。在大多數水果中,蔗糖是決定果實品質的主要成分[7-8]。在甜瓜果實研究中發現,蔗糖積累是甜瓜果實中一個受發育調控的過程,經歷了果實生長早期到蔗糖積累階段的代謝轉變,其中涉及十幾種酶促反應[9]。此外,糖與有機酸的比例對果實品質有顯著影響[10]。一般來說,果實中有機酸的代謝是一個復雜的生理過程,有機酸的含量是由酸合成與降解的平衡決定的[11]。迄今為止,利用轉錄組測序、基因組和功能分析對水果中蔗糖和有機酸積累進行了大量研究,其中大多數研究只關注少數酶的活性[12-14]。因此,對糖和有機酸的代謝和分子機制的系統研究將很好地揭示果實口感形成的機制。

近年來,基于功能“組學”方法的綜合分析為識別生命系統中的基因網絡及其調控機制提供了一種有效手段[15-16]。特別是轉錄組和代謝組的結合分析已被廣泛用于確定植物果實中糖和有機酸積累的信號通路和機制。如利用轉錄組分析結合靶向代謝組學研究了兩個杧果品種的差異糖積累機制,發現蔗糖和D-葡萄糖的合成伴隨著淀粉的降解,直接導致了果實的高糖積累[17]。然而,對桑葚果實中糖和有機酸調控的關鍵基因網絡的全面研究還很缺乏。因此,為深入研究桑葚果實中糖和有機酸關鍵調控基因網絡,筆者在本研究中以白色桑葚為研究對象,通過整合轉錄組學和代謝組學分析,挖掘桑葚成熟過程中調控可溶性糖和有機酸合成與代謝的關鍵差異基因,進而探明代謝網絡,闡明果實發育對可溶性糖和有機酸代謝的影響。

1 材料和方法

1.1 試驗材料

選擇河北省承德市承德醫學院蠶業研究所桑園為試驗區,選取大小、生長勢基本一致,氣候條件和栽培管理基本相同的7年生穩定結果的白色果實的珍珠白品種為試驗材料,依據果實發育的顏色進行取樣,對不同果實分別在授粉后(DAP)10 d(青果期)、30 d(轉色期)、50 d(成熟期)3個時期進行取樣,取樣均在桑樹外圍進行,選5株樹進行取樣,每株樹每時期各取10個整果,3次重復,樣品名分別為W1(W11,W12,W13);W2(W21,W22,W23);W3(W31,W32,W33),用液氮冷凍后放入?80 ℃超低溫冰箱備用。

1.2 可溶性糖及有機酸含量檢測及分析

將樣品真空冷凍干燥后,利用研磨儀研磨(30 Hz,1.5 min)至粉末狀;稱取20 mg的樣品粉末,加入500 μL提取液(V甲醇∶V異丙醇∶V水=3∶3∶2),渦旋3 min,冰水中超聲30 min。4 ℃,14 000 r·min-1 離心3 min,吸取50 μL上清液,加入20 μL質量濃度為100 μg·mL-1的核糖醇內標溶液,氮吹并凍干機凍干。加入100 μL甲氧銨鹽吡啶(15 mg·mL-1),37 ℃孵育2 h,隨后加入BSTFA 100 μL,37 ℃孵育30 min,得到衍生化溶液。取50 μL的衍生化溶液,用正己烷稀釋至1 mL,保存于棕色進樣瓶中,用于氣相色譜串聯質譜(GC-MS)分析[18-19]。VIP>1且p<0.05的代謝物被認為是差異代謝物。

1.3 RNA提取及轉錄組測序

使用TRIzol(Invitrogen,CA,USA)法對樣品的總RNA進行分離和純化。使用Bioanalyzer 2100(Agilent,CA,USA)對RNA的完整性進行檢測,選擇RNA完整性數(RIN)≥7的樣品進行后續分析。使用oligo(dT)磁珠[Dynabeads Oligo(dT),貨號25-61005,Thermo Fisher,USA]通過兩輪的純化對其中帶有PolyA(多聚腺苷酸)的mRNA進行特異性捕獲。將捕獲到的mRNA在高溫條件下利用鎂離子打斷試劑盒(NEBNext? Magnesium RNA Fragmentation Module,貨號E6150S,USA)進行片段化,94 ℃ 5~7 min。將片段化的RNA在逆轉錄酶(Invitrogen SuperScript? Ⅱ Reverse Transcriptase,貨號1896649,CA,USA)的作用下合成cDNA。然后使用E. coli DNA polymeraseⅠ(NEB,貨號m0209,USA)與RNase H(NEB,貨號m0297,USA)進行二鏈合成,將這些DNA與RNA的復合雙鏈轉化成DNA雙鏈,同時在二鏈中摻入dUTP Solution(Thermo Fisher,貨號R0133,CA,USA),將雙鏈DNA的末端補齊為平末端。再在其兩端各加上一個A堿基,使其能夠與末端帶有T堿基的接頭進行連接,再利用磁珠對其片段大小進行篩選和純化。以UDG酶(NEB,貨號m0280,MA,US)消化二鏈,再通過PCR預變性95 ℃保持3 min,98 ℃變性總計8個循環每次15 s,退火到60 ℃保持15 s,72 ℃下延伸30 s,延伸72 ℃保留5 min,使其形成片段大小為(300 ± 50) bp的文庫。最后,使用Illumina Novaseq? 6000(LC Bio Technology CO.,Ltd. Hangzhou,China),按照標準操作對其進行雙端測序,測序模式為PE150。原始讀取首先使用Trimmomatic進行質量控制處理,以獲得干凈的讀取。使用HISAT2將干凈的reads比對到桑樹基因組[20]?;虮磉_水平由每千堿基每轉錄本每百萬映射讀數(FPKM)的片段數反映。使用Cufflinks計算每個基因的FPKM值,使用HTSeqcount計算每個基因的讀取計數。使用R包DESeq2[21]對樣本之間進行差異顯著性分析,采用p<0.05、|log2FC|≥1的閾值確定差異表達基因,并對其進行GO和KEGG(Kyoto encyclopedia of genes and genomes)富集分析。

1.4 糖合成相關基因qRT-PCR分析

使用大連寶生物工程有限公司生產的TaKaRa MiniBEST Universal RNA Extraction Kit試劑盒提取桑樹10、30、50 DAP果實總RNA,反轉錄使用大連寶生物工程有限公司生產的PrimeScript? RT reagent Kit試劑盒合成cDNA,qRT-PCR使用大連寶生物工程有限公司生產的SYBR Premix Ex TaqTM Ⅱ。以桑樹Ribosomal protein L15為內參基因(表1)。qRT-PCR反應體系組成:SYBR Premix Ex TaqTM Ⅱ 5 μL,cDNA 0.5 μL,正向引物0.4 μL,反向引物0.4 μL,加水至10 μL。反應程序:95 ℃預變性30 s;95 ℃變性5 s,60 ℃退火20 s,72 ℃延伸40 s,共40個循環。PCR擴增反應在CF×96 TM Real-Time PCR Detection System(Applied Biosystems,Forter City,CA,美國)儀器上進行,每樣品3次生物學重復,3次技術重復,反應結束后應用2-△△Ct算法進行分析。

1.5 數據分析

使用SPSS 27.0軟件進行統計分析,使用單因素方差分析計算樣品之間的差異顯著性,在0.05水平進行Duncans檢驗(p≤0.05),數據表示為平均值± SD(標準差),每個樣本3個獨立重復。相關性分析采用皮爾遜方法,用SPSS 27.0軟件進行。

2 結果與分析

2.1 代謝物分析與代謝物差異積累

為了解桑葚發育過程中糖和有機酸成分含量的變化,采用GC-MS方法檢測3個發育期代謝物成分含量的變化。研究共檢測到64種代謝物,其中有機酸52種、可溶性糖12種(表2)。通過差異代謝物質分析發現,在W2 vs W1、W3 vs W2和W3 vs W1中,差異代謝物上調和下調的數量分別為9和4個、12和9個、15和13個(圖1-A)。Venn圖顯示,所有組有6種相同的差異代謝物,W2 vs W1僅有1個特有的差異代謝物,為肉桂酸(圖1-B),W3 vs W2沒有發現特有的差異代謝物,W3 vs W1中檢測到莽草酸、3,4-二羥基苯乙酸、5-羥基吲哚-3-乙酸。通過數據分析發現,蔗糖、葡萄糖和D-果糖為桑葚中主要可溶性糖類物質,其含量在桑葚發育過程中持續增加,并在W3達到峰值。蘋果酸、檸檬酸和琥珀酸為桑葚中主要有機酸類物質,蘋果酸和琥珀酸的含量在桑葚果實成熟過程中呈先上升后下降的趨勢,而檸檬酸的積累呈現持續上升趨勢,說明這3種可溶性糖和有機酸為影響桑葚口感的主要糖和酸類物質(表2)。

2.2 轉錄組測序

不同處理發育時期桑葚樣品轉錄組測序數據的組裝分析見表3,共獲得58.65 Gb有效數據。各樣本有效讀數在39 037 544~48 942 774之間,Q20均為99.99%;Q30在97.79%~98.39%之間。分別將各樣品有效度數與桑樹參考基因比對,比對效率為95.95%~96.99%,表明測序獲得數據可靠,可用于后續分析。

2.3 基因差異表達分析

對不同發育階段基因表達以p<0.05、|log2FC|≥1作為篩選標準進行差異基因分析,在W2 vs W1、W3 vs W2和W3 vs W1的比較中,分別鑒定出6063個差異基因,其中2082個上調,3981個下調;1923個差異基因,其中793個上調,1130個下調;9098個差異基因,其中2915個上調,6183個下調(圖2-A)。對3個比較組合差異基因繪制韋恩圖,其中共有的表達基因有762個,而特有差異基因W3 vs W1組最多,為2836個;其次W2 vs W1組,為499個;最少的是W3 vs W2組,為195個(圖2-B)。由此可以推斷,在果實發育初期(S2)大量的基因轉錄和翻譯可能被激活,而在成熟期基因的轉錄和翻譯可能被抑制。

2.4 差異基因KEGG富集分析

為進一步分析差異表達基因在桑葚發育過程中的作用,分別對3個比較組中的差異基因進行KEGG通路富集分析,在W2 vs W1和W3 vs W2組中差異基因富集到與糖酸代謝相關的通路,主要為淀粉和蔗糖代謝(starch and sucrose metabolism)和檸檬酸循環(TCA cycle)(圖3)。其中,在W2 vs W1組中有52個上調的差異基因富集到淀粉和蔗糖代謝,27個上調的差異基因富集到檸檬酸循環,在W3 vs W2組中有27個上調的差異基因富集到淀粉和蔗糖代謝。此外,在W2 vs W1組和W3 vs W1中,差異基因數量富集較多的代謝通路還包括核糖體(ribosome)、激素信號轉導(plant hormone signal transduction)、MAPK信號通路-植物(MAPK signaling pathway-plant)(圖3-A、B)。在W3 vs W2組中,差異基因富集數量較多的代謝通路主要有黃酮類生物化合物的合成(flavonoid biosynthesis)31個,半乳糖代謝(galactose metabolism)28個、植物晝夜節律(circadian rhythm-plant)25個(圖3-C),由此可以推斷桑葚在S2階段大量基因表達被激活,合成桑葚成熟的代謝物質。

2.5 代謝物與差異表達基因關聯分析

采用Pearsons計算淀粉和蔗糖代謝及檸檬酸循環中差異表達基因與糖酸主要代謝物之間的相關性。在糖代謝物與差異基因相關性分析中共確定43個與蔗糖、葡萄糖、果糖成正相關的差異表達基因,基因與代謝物均隨果實發育表達呈現不斷積累的模式(圖4-A)。在有機酸代謝與合成中共鑒定到24個與蘋果酸、檸檬酸、琥珀酸顯著相關的差異表達基因,其中負相關基因有8個,正相關的有16個基因(圖4-B)。上述關鍵代謝物和差異表達基因可能是桑葚成熟過程中主要的物質和基因。

2.6 桑葚中可溶性糖和有機酸合成途徑分析

結合差異基因鑒定、相關性分析,表明與可溶性糖和有機酸代謝相關的一些候選基因在桑葚中表達存在顯著差異(圖5)。NINV和SUSY可將蔗糖轉化為果糖和葡萄糖,檢測到4個差異表達的SUSY基因(LOC21391172,LOC21407811,

LOC21386815,LOC21402491),其中2個(LOC21386815,LOC21402491)在果實發育初期表達水平很高,而隨著果實發育表達水平呈現大幅度下降的趨勢;檢測到3個差異表達的NINV基因(LOC21386769,LOC21401851,LOC21401285),其中2個(LOC21401851,LOC21401285)隨著果實的發育表達呈現上升的趨勢。葡萄糖和果糖可被HK和FRK磷酸化為葡萄糖-6磷酸(G6P)和果糖-6-磷酸(F6P)。鑒定到2個差異表達的FRK(LOC21409854,LOC21406385)在果實發育初期高表達;鑒定到1個差異表達的HK(LOC21408947)基因,其表達隨著果實發育表達逐漸升高(圖5)。三羧酸(TCA)循環中草酰乙酸經CS催化直接合成檸檬酸,檸檬酸被ACO降解為異檸檬酸,異檸檬酸被ICDH轉運生成2-戊羥二酸。CS(LOC21399865)和ICDH(LOC21407110,LOC21391200,LOC21390016)基因在果實發育過程中表達量大幅升高,說明桑葚中檸檬酸代謝增強并受這些基因調控。MDH與果實中蘋果酸的生物合成和降解有關。2個MDH基因(LOC21399030,LOC21401654)在果實成熟過程中表達量增加,而且MDH的表達與蘋果酸含量顯著相關。以上結果表明,這些基因在桑葚成熟過程中發揮著顯著的調控作用。

2.7 差異基因qRT-PCR表達分析

對篩選獲得的可溶性糖和有機酸代謝中關鍵調控基因NINV(LOC21401851)、HK(LOC21408947)、CS(LOC21399865)、ACO(LOC21409265)、MDH(LOC21399030)和ICDH(LOC21391200)進行qRT-PCR表達,并與各基因在不同發育時期的轉錄本表達比較。6個基因的表達水平與轉錄組數據一致(圖6),表明6個基因在桑葚成熟過程中發揮關鍵調控作用。

3 討 論

可溶性糖和有機酸含量是衡量果實品質和口感的重要指標。因此,揭示桑葚果實可溶性糖積累和有機酸代謝的分子機制具有重要意義。不同組學技術的結合深入地解析了枇杷、西瓜、杧果等成熟果實中糖積累和有機酸代謝的機制[11,17,22]。蔗糖幾乎是低糖和高糖積累植物中總糖含量變化的全部因子[23]。筆者在本研究中共測定12種可溶性糖,通過分析僅發現蔗糖、葡萄糖和D-果糖含量差異顯著,在桑葚發育過程中含量明顯增加,并在W3達到峰值。在果實成熟的中后期,這3種糖的快速積累可能決定了桑葚的甜度。同樣,在其他果實的研究中也觀察到了類似的糖積累模式[24,14]。有機酸在水果營養中起著至關重要的作用,其含量取決于酸合成和降解之間的平衡[14]。中等濃度的有機酸可以增強水果的味道,但高酸含量往往會降低水果的品質。檸檬酸和蘋果酸是甜瓜果實中的主要有機酸[25]。在桑葚中檢測到豐富的蘋果酸、檸檬酸和琥珀酸,蘋果酸和琥珀酸的含量在桑葚果實成熟過程中呈先上升后下降的趨勢,而檸檬酸的積累呈現持續上升趨勢。這說明蘋果酸、檸檬酸和琥珀酸為桑葚的主要酸,蘋果酸和琥珀酸合成和降解之間的平衡影響著果實的口感。在筆者課題組的研究中4-氨基丁酸和莽草酸等有機酸隨著果實的發育積累量呈現降低的趨勢,馬來酸在果實成熟前期未檢測到積累,而在成熟時檢測到其大量的積累。綜上所述,豐富多樣的糖和有機酸是隨著桑葚的成熟呈現不同程度的積累與降解,這些變化影響著果實最終的口味。

蔗糖由葉片(源組織)的光合作用產生,隨后轉運到果實(匯組織)并儲存在果實中[26]。蔗糖的這種遠距離轉運是由蔗糖轉運蛋白和SWEET外排蛋白控制的,而SWEET在功能上具有底物偏好蔗糖、葡萄糖或果糖[27-28]的特點。蔗糖進入到水果細胞可以通過NINV轉化為果糖和葡萄糖,SUSY也可以催化蔗糖轉化為果糖和D-葡萄糖[29]。檢測到2個SUSY(LOC21386815,LOC21402491)在果實發育初期中表達水平很高,而隨著果實發育表達水平呈現大幅度下降;NINV基因則隨著果實的發育表達呈現上升的趨勢。結果表明桑葚中蔗糖轉化為葡萄糖和果糖主要受NINV基因調控。葡萄糖和果糖被HK和FRK磷酸化為葡萄糖- 6磷酸(G6P)和果糖-6-磷酸(F6P)[30]。筆者在本研究發現,所鑒定到差異表達的2個FRK在果實發育初期高表達;而僅鑒定到1個差異表達的HK基因,且其表達隨著果實發育逐漸升高,這表明桑葚中通過促進HK基因的表達,將葡萄糖轉化為糖酵解等下游過程的中間化合物(圖4)。在對甜瓜的研究中發現高甜度和低甜度的兩個品種中,高甜度品種中抑制糖轉化為中間化合物的基因HK和FK的表達[22]。

TCA循環在能量代謝、糖異生、脂肪生成和氨基酸合成中發揮重要作用。草酰乙酸經CS催化直接合成檸檬酸,然后檸檬酸被ACO降解為異檸檬酸,然后異檸檬酸被ICDH轉運生成2-戊羥二酸[11]。本研究發現,CS和ICDH基因在果實發育過程中表達量大幅升高,說明桑葚中檸檬酸代謝增強并受這些基因調控。MDH與果實中蘋果酸的生物合成和降解有關[30]。本研究中發現兩個MDH基因在果實成熟過程中表達量增加,而且MDH的表達量與蘋果酸含量顯著相關,表明它們是蘋果酸代謝的關鍵參與者。綜上所述,桑葚果實在成熟過程中TCA循環得到了促進,影響了有機酸含量,最終影響了果實的口感差異。

4 結 論

研究共檢測到64種代謝物,其中有機酸52種、可溶性糖12種。數據分析發現,蔗糖、葡萄糖和D-果糖為桑葚中主要可溶性糖類物質,蘋果酸、檸檬酸和琥珀酸為桑葚中主要有機酸類物質。轉錄組分析共獲得58.65 Gb Clean Data,W3 vs W1組獲得的差異基因數量最多,高達9098個。KEGG富集分析表明,W2 vs W1和W3 vs W2組中差異基因富集到與糖酸相關代謝通路,主要為淀粉和蔗糖代謝和三羧酸循環通路,在W2 vs W1組中有52個上調的差異基因富集到淀粉和蔗糖代謝,27個上調的差異基因富集到檸檬酸循環,在W3 vs W2組中有27個上調的差異基因富集到淀粉和蔗糖代謝。代謝組和轉錄組關聯分析表明,NINV、HK、CS、ACO、MDH和ICDH是桑葚糖酸積累的關鍵調控基因。筆者在本研究中鑒定出的豐富代謝物和差異基因不僅為桑葚的優質遺傳改良提供大量信息,而且也為其他漿果類作物的有關研究提供有價值的參考。

參考文獻 References:

[1] KIM I,LEE J. Variations in anthocyanin profiles and antioxidant activity of 12 genotypes of mulberry (Morus spp.) fruits and their changes during processing[J]. Antioxidants,2020,9(3):242.

[2] SHREELAKSHMI S V,NAZARETH M S,KUMAR S S,GIRIDHAR P,HARISH PRASHANTH K V,SHETTY N P. Physicochemical composition and characterization of bioactive compounds of mulberry (Morus indica L.) fruit during ontogeny[J]. Plant Foods for Human Nutrition,2021,76(3):304-310.

[3] 劉晴晴,李勇,張明霞,余向陽,楊晨曄,武國華. 紫色桑葚和白色桑葚總酚含量、抗氧化能力及代謝指紋圖譜差異分析[J]. 江蘇農業學報,2022,38(3):813-820.

LIU Qingqing,LI Yong,ZHANG Mingxia,YU Xiangyang,YANG Chenye,WU Guohua. Differences in total phenol content,antioxidant activity and metabolic fingerprint between purple mulberry and white mulberry[J]. Jiangsu Journal of Agricultural Sciences,2022,38(3):813-820.

[4] LIN C Y,LAY H L. Characteristics of fruit growth,component analysis and antioxidant activity of mulberry (Morus spp.)[J]. Scientia Horticulturae,2013,162:285-292.

[5] LEE Y,HWANG K T. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening[J]. Scientia Horticulturae,2017,217:189-196.

[6] MA M Z,YANG X T,YING X G,SHI C,JIA Z X,JIA B C. Applications of gas sensing in food quality detection:A review[J]. Foods,2023,12(21):3966.

[7] SALADI? M,CA?IZARES J,PHILLIPS M A,RODRIGUEZ-CONCEPCION M,LARRIGAUDI?RE C,GIBON Y,STITT M,LUNN J E,GARCIA-MAS J. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties[J]. BMC Genomics,2015,16(1):440.

[8] LI Z Y,WANG J B,FU Y L,JING Y L,HUANG B L,CHEN Y,WANG Q L,WANG X B,MENG C Y,YANG Q Q,XU L. The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids[J]. BMC Biology,2022,20(1):186.

[9] DAI N,COHEN S,PORTNOY V,TZURI G,HAREL-BEJA R,POMPAN-LOTAN M,CARMI N,ZHANG G F,DIBER A,POLLOCK S,KARCHI H,YESELSON Y,PETREIKOV M,SHEN S,SAHAR U,HOVAV R,LEWINSOHN E,TADMOR Y,GRANOT D,OPHIR R,SHERMAN A,FEI Z J,GIOVANNONI J,BURGER Y,KATZIR N,SCHAFFER A A. Metabolism of soluble sugars in developing melon fruit:A global transcriptional view of the metabolic transition to sucrose accumulation[J]. Plant Molecular Biology,2011,76(1):1-18.

[10] SU L Y,ZHANG T,WU M,ZHONG Y,CHENG Z M. Transcriptome and metabolome reveal sugar and organic acid accumulation in Rosa roxburghii fruit[J]. Plants,2023,12(17):3036.

[11] MAYUONI-KIRSHINBAUM L,PORAT R. The flavor of pomegranate fruit:A review[J]. Journal of the Science of Food and Agriculture,2014,94(1):21-27.

[12] OBANDO-ULLOA J M,EDUARDO I,MONFORTE A J,FERN?NDEZ-TRUJILLO J P. Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines[J]. Scientia Horticulturae,2009,121(4):425-433.

[13] NU?EZ-PALENIUS H G,GOMEZ-LIM M,OCHOA-ALEJO N,GRUMET R,LESTER G,CANTLIFFE D J. Melon fruits:Genetic diversity,physiology,and biotechnology features[J]. Critical Reviews in Biotechnology,2008,28(1):13-55.

[14] ZHANG H,WANG H S,YI H P,ZHAI W Q,WANG G Z,FU Q S. Transcriptome profiling of Cucumis melo fruit development and ripening[J]. Horticulture Research,2016,3:16014.

[15] XING A S,WANG X Y,NAZIR M F,ZHANG X M,WANG X X,YANG R,CHEN B J,FU G Y,WANG J J,GE H,PENG Z,JIA Y H,HE S P,DU X M. Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton (Gossypium arboreum L.)[J]. BMC Plant Biology,2022,22(1):416.

[16] WANG R,REN C X,DONG S,CHEN C,XIAN B,WU Q H,WANG J,PEI J,CHEN J. Integrated metabolomics and transcriptome analysis of flavonoid biosynthesis in safflower (Carthamus tinctorius L.) with different colors[J]. Frontiers in Plant Science,2021,12:712038.

[17] LI L,WU H X,MA X W,XU W T,LIANG Q Z,ZHAN R L,WANG S B. Transcriptional mechanism of differential sugar accumulation in pulp of two contrasting mango (Mangifera indica L.) cultivars[J]. Genomics,2020,112(6):4505-4515.

[18] MEDEIROS P M,SIMONEIT B R T. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry[J]. Journal of Chromatography. A,2007,1141(2):271-278.

[19] SUN S H,WANG H,XIE J P,SU Y. Simultaneous determination of rhamnose,xylitol,arabitol,fructose,glucose,inositol,sucrose,maltose in jujube (Zizyphus jujube Mill.) extract:Comparison of HPLC-ELSD,LC-ESI-MS/MS and GC-MS[J]. Chemistry Central Journal,2016,10:25.

[20] HE N J,ZHANG C,…,XIANG Z H. Draft genome sequence of the mulberry tree Morus notabilis[J]. Nature Communications,2013,4:2445.

[21] PERTEA M,PERTEA G M,ANTONESCU C M,CHANG T C,MENDELL J T,SALZBERG S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology,2015,33:290-295.

[22] ZOU S C,WU J C,SHAHID M Q,HE Y H,LIN S Q,LIU Z H,YANG X H. Identification of key taste components in loquat using widely targeted metabolomics[J]. Food Chemistry,2020,323:126822.

[23] CHENG H,KONG W P,TANG T X,REN K L,ZHANG K L,WEI H X,LIN T. Identification of key gene networks controlling soluble sugar and organic acid metabolism during oriental melon fruit development by integrated analysis of metabolic and transcriptomic analyses[J]. Frontiers in Plant Science,2022,13:830517.

[24] SCHEMBERGER M O,STROKA M A,REIS L,DE SOUZA LOS K K,DE ARAUJO G A T,SFEIR M Z T,GALV?O C W,ETTO R M,BAPTIST?O A R G,AYUB R A. Transcriptome profiling of non-climacteric ‘Yellow melon during ripening:Insights on sugar metabolism[J]. BMC Genomics,2020,21(1):262.

[25] ATKINSON R G,GUNASEELAN K,WANG M Y,LUO L K,WANG T C,NORLING C L,JOHNSTON S L,MADDUMAGE R,SCHR?DER R,SCHAFFER R J. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line[J]. Journal of Experimental Botany,2011,62(11):3821-3835.

[26] CHEN L Q,CHEUNG L S,FENG L,TANNER W,FROMMER W B. Transport of sugars[J]. Annual Review of Biochemistry,2015,84:865-894.

[27] CHEN L Q,QU X Q,HOU B H,SOSSO D,OSORIO S,FERNIE A R,FROMMER W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science,2012,335(6065):207-211.

[28] JIANG R,WU L F,ZENG J M,SHAH K,ZHANG R,HU G B,QIN Y H,ZHANG Z K. Identification of HuSWEET family in pitaya (Hylocereus undatus) and key roles of HuSWEET12a and HuSWEET13d in sugar accumulation[J]. International Journal of Molecular Sciences,2023,24(16):12882.

[29] KOCH K. Sucrose metabolism:Regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biology,2004,7(3):235-246.

[30] ETIENNE A,G?NARD M,LOBIT P,MBEGUI?-A-MB?GUI? D,BUGAUD C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells[J]. Journal of Experimental Botany,2013,64(6):1451-1469.

猜你喜歡
可溶性糖轉錄組桑葚
桑葚
用桑葚干解酒,靠譜嗎
摘桑葚
基于轉錄組測序的山茱萸次生代謝生物合成相關基因的挖掘
金釵石斛轉錄組SSR位點信息分析
人參屬藥用植物轉錄組研究進展
低溫脅迫對不同豇豆品種抗寒性生理特性的影響
不同AM真菌對桔梗幼苗生長特性的影響
又一年桑葚熟了
鎳、銅對海帶生長及生理指標的影響
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合