?

海洋浮游微食物網生物在海洋顆粒形成和沉降中的作用*

2018-01-10 01:03李海波張武昌
海洋科學集刊 2017年0期
關鍵詞:纖毛蟲攝食海水

趙 苑 趙 麗 董 逸 李海波 張武昌 肖 天

海洋浮游微食物網生物在海洋顆粒形成和沉降中的作用*

趙 苑1, 2趙 麗1, 2董 逸1, 2李海波1, 2張武昌1, 2①肖 天1, 2

(1. 中國科學院海洋生態與環境科學重點實驗室 中國科學院海洋研究所, 青島 266071; 2. 青島海洋科學與技術國家實驗室 海洋生態與環境科學功能實驗室, 青島 266071)

海洋中存在著大量的顆粒, 包括大型聚合顆粒(即海雪, 粒徑>500mm)、小型聚合顆粒(1~500mm)和亞微米顆粒粒徑(<1mm)等。顆粒在海水中營造了不同于純海水的小生境, 其中生活著與自然海水中不同的生物。異養細菌、藍細菌、真核藻類、鞭毛蟲、纖毛蟲等微食物網生物可以黏附在海洋顆粒上, 或生活在顆粒內部, 其豐度高于周圍水體中的自由生活生物, 這可能是由于顆粒提供了更適宜生長的營養環境。本文綜述了海洋浮游微食物網生物在海洋顆粒形成和沉降中的作用。微食物網生物在顆粒物的形成過程中起到很重要的作用, 它們可以直接促進顆粒形成, 也可以彼此結合成顆粒, 或微型浮游動物排糞形成顆粒。微食物網生物還可以對顆粒進行轉化, 影響顆粒的大小、沉降速度、或對顆粒及其黏附生物進行攝食。微食物網生物由于本身較小, 沉降較慢, 但這些生物和顆粒的結合使得微食物網生物在碳通量中發揮重要的作用。

微食物網; 海洋顆粒; 沉降; 碳通量

海水中除了生物之外, 還有一些顆粒是沒有生命的碎屑(detritus), 包括有機碎屑和無機碎屑。在海洋浮游生態學研究中, 如果沒有特別指出, 顆粒(particles)是指有機碎屑??茖W家最初認為海水中的顆粒來自動物的糞便和浮游生物的尸體碎片, 它們最終都會溶解到海水中, 隨水深的增加顆粒會減少(Riley, 1963)。20世紀50年代, 日本科學家在日本北部海域的深海發現大量雪花狀漂浮物, 并將它們命名為海雪(marine snow)(Suzuki and Kato, 1953)。在深海中存在海雪這一現象, 與浮游生物糞便等隨水深減少的現象不一致, 使人們意識到除了生物糞便和尸體碎片外, 還有其他的顆粒存在。

在20世紀90年代, 隨著新技術和染料的應用, 人們發現了不同粒徑和染色特性的顆粒。Isao等(1990)使用顆粒計數器(elzone monitor particle counter 80 XY)發現了粒級為0.3~1.3μm的亞微米顆粒(sub-micrometer- sized particles); Alldredge等(1993)發現了粒級為從3μm到>100μm的透明胞外聚合顆粒物(transparent exopolymer particles, TEP); Long和Azam(1996)發現了考馬斯亮藍染色顆粒(Coomassie blue-stained particles, CSP); Mostajir等(1995)發現了4¢,6-二脒基-2-苯基吲哚(4¢,6-diamidino-2-phenylindole, DAPI)染色顆粒(DAPI yellow particles, DYP)。由于不能重復染色, 目前還不能確定一個顆粒是否同時是TEP, CSP和DYP。這些新發現的顆粒被統稱為新顆粒(new particles)(Azamet al., 1993; Simon et al., 2002), 過去了解的顆粒(如生物尸體、糞便、海雪等)則被稱為傳統顆粒(classical particles)。由于新顆粒大多為透明狀, 也被稱為海洋中的“暗物質”(dark matter) (Azam, 1998)。

海雪和新顆粒都是高分子聚合物(polymer)聚合而成的顆粒物, 其表面有細菌繁殖, 并黏附了無機顆粒和浮游生物, 因此被統稱為有機聚合顆粒(organic aggregates), 或簡稱為聚合顆粒(aggregates)(Simonet al., 2002)。這些聚合物與糞便顆粒和動物尸體有明顯區別: 糞便顆粒和動物尸體有明顯的邊界, 細菌等不能進入, 過濾到濾膜上后, 能夠保持其內的液體, 從而保持原來的形態; 而聚合顆粒中的高分子聚合物形成不同體積、不同孔徑、不同結構的框架, 海水充斥其中, 細菌等生物可以進入, 一旦過濾到濾膜上, 聚合顆粒中的海水流出, 框架就會塌縮, 不能保持原來的形態, 因此聚合顆粒也可被視為一種膠狀物(gel)(Verdugoet al., 2004)。

根據是否能夠被濾膜截留, 海洋中的有機碳可以分為溶解有機碳(dissolved organic matter, DOC)和顆粒有機碳(particulate organic carbon, POC)。DOC又可以劃分為溶解組分(free DOC, <1nm)和膠質組分(assembled DOC, 1~1000nm)(Benneret al., 1992), 海洋水體中的DOC保持可逆的組裝/分散平衡, 生成膠狀顆粒(self-assembled microgels, SAGs), 這些SAGs是海洋DOC和POC之間的橋梁(Verdugoet al., 2004; Verdugo, 2012)。

按照粒徑, 聚合顆粒分為大型聚合顆粒(macroaggregate)、小型聚合顆粒(microaggregate)和亞微米顆粒(submicron particle) (圖1)(Simonet al., 2002)。大型聚合顆粒粒徑>500mm, 主要是海雪; 小型聚合顆粒粒徑為1~500mm, 包括TEP、CSP和DYP; 亞微米顆粒粒徑<1mm。顆粒粒級越小, 豐度就越大(Yamasakiet al., 1998), 這些顆粒粒徑從小到大形成了顆粒的連續譜(Zetsche and Ploug, 2015)。

海洋中的微生境是一個連續存在的譜, 顆粒之外的海水是這個譜的一端, 而聚合顆粒中的空間是這個譜的另一端。顆粒在海水中營造了不同于純海水的小生境, 里面生活著與自然海水中不同的生物。對顆粒黏附生物研究主要關注的問題有三個: (1)顆粒黏附生物和自由生生物在海水中所占的比例; (2)顆粒黏附生物和自由生生物在各自小生境中的豐度比較; (3)顆粒黏附生物和自由生生物類群組成和生理功能的不同。近年來, 學者們從不同角度對異養細菌、藍細菌、真核藻類、鞭毛蟲、纖毛蟲等顆粒黏附生物進行了深入研究, 本文將簡要介紹以上這些微食物網生物在顆粒形成和沉降作用中的重要作用。

1 海洋顆粒有機碳中的微食物網生物比例

海洋中的POC的測量方法是用濾膜過濾海水, 測定截留在濾膜上的有機碳即為POC。在膜過濾的過程中, 海洋微食物網生物(如異養細菌、藍細菌、真核藻類和鞭毛蟲等)也被過濾到濾膜上, 因此, 顆粒有機碳中包括無生命的碎屑(detritus)和浮游生物。

圖1 海洋主要顆粒及溶解有機成分粒徑譜(引自Simonet al., 2002)

由于微食物網生物個體微小, 無法將生物和碎屑分離開來, 因此估計顆粒有機碳中生物所占的比例難度較大。Pomeroy(1980)估算顆粒有機碳中碎屑, 認為生物的比例約為10∶1, 這一比例被后人引用(Kirchmanet al., 1993; Verityet al., 2000), 但是一直沒有人認真測定過這個數值。通過計數馬尾藻海(Sargasso Sea)表層至175m水層的水體內微食物網各個類群的豐度, 利用體積和生物量轉換系數將生物轉換成生物量, 估算結果表明微食物網生物占POC的比例在3~4月為55%, 在8月為24%(Caronet al., 1995; Romanet al., 1995)。

有些研究沒有估計所有微食物網生物的比例, 而是估計一部分微食物網生物的比例, 有研究估算大洋中細菌有機碳(bacterial organic carbon, BOC)占POC的比例為43%~ 70% (Choand Azam, 1988); 在北太平洋ALOHA站表層0~80m, 細菌(自養和異養)及細菌碎屑在總POC中的比例為20%~30% (Kawasakiet al., 2011); 在百慕大的BATS站位表層65m水體中, 浮游植物和異養生物在總POC中的比例分別為32%和15% (Gundersenet al., 2001)。

2 微食物網生物促進海洋顆粒的形成

2.1 細菌促進聚合顆粒形成

20世紀50~60年代, 科學家對聚合物顆粒產生的原因開始進行研究。實驗證明, 在用濾膜過濾的海水中充氣產生氣泡, 就會產生聚合物, 即DOC在界面(固體表面、氣泡、海洋表面)通過物理、化學作用生成聚合物顆粒(Barber, 1966)。隨著研究的深入, 人們發現海洋微食物網生物在DOC轉變為聚合物顆粒的過程中非常重要。在實驗模擬中, 只有活的微生物存在的條件下大型聚合顆粒才能生成; 如果用氯化汞固定海水, 或者用過濾的方法去除細菌, DOC不能產生聚合物顆粒(Biddanda, 1985)。假交替單胞菌屬()的細菌可以促進小聚合顆粒(直徑0.01cm)聚集生成大聚合物顆粒(直徑0.1~1cm)(Yamadaet al., 2016)。

細菌可以通過三種途徑促進聚合顆粒的形成: (1)DOC高分子聚合物可以通過物理作用和化學作用自組織成小型聚合物, 這些小型聚合物處于聚合-解聚的動態平衡中, 而細菌產生的雙親胞外物質(amphiphilic exopolymer substances, EPS)在低濃度下即可誘導高分子聚合物的聚合作用, 從而幫助水體中的DOC形成小型聚合物(Ding et al., 2008); (2)細菌生長釋放的胞外高分子聚合物中有細胞膜的組分, 黏度較高, 有利于形成聚合顆粒(Stodereggerand Herndl, 1998, 1999), 當加入細菌抑制劑后, 海水中形成的TEP濃度則很低(Sugimotoet al., 2007); (3)細菌刺激藻類分泌胞外高分子聚合物。針對威氏海鏈藻()的實驗研究表明, 黏附在硅藻上的細菌能刺激硅藻分泌胞外高分子聚合物, 從而形成聚合顆粒(G?rdeset al., 2011, 2012)。

2.2 微型浮游動物產生顆粒

微型浮游動物產生的糞便排出體外后可直接成為海洋顆粒。在自然海水中可以觀察到一些小型(<150μm)糞便顆粒, 例如在赤道東太平洋水體中存在粒級為3~50μm的糞便顆粒, Gowing和Silver(1985)將其稱為“迷你糞球”(Minipellets)。在南大洋羅斯海(Ross Sea)也觀察到這類迷你糞球, 其直徑為20~100μm, 它們中有些有自發熒光, 有些則沒有(Gowinget al.2001)。N?thig和Von Bodungen(1989)在南極威德爾海發現了一些球形、橢球形和三角錐形的糞便顆粒, 粒級為30~150μm, Pasternak等(2000)在亞北極區Baisfjorden海域發現的迷你糞球的直徑平均為80μm, 并懷疑它們的來源之一可能是浮游動物的糞便顆粒, 由于迷你糞球的直徑相對原生動物來說太大, 推測它們可能是由橈足類幼體產生的。

通過培養實驗, 有學者發現幾種微型浮游動物排出的糞便顆粒也屬于迷你糞球的粒徑范圍。砂殼纖毛蟲sp. 和無殼纖毛蟲sp.產生的糞便顆粒的大小和它們的甲藻餌料(16μm′22μm)相近,sp.的糞便顆粒約為19μm′32μm,sp.產生的糞便顆粒約為18μm′24μm, 并包含1個或多個餌料細胞的殘留(Stoecker, 1984)。鞭毛蟲的糞便顆粒的大小為0.2~1μm(Pelegriet al., 1999)。

在南極海冰中的甲藻產生的糞便顆??梢约墼诤1? 這些糞便顆粒呈球形或橢球形, 平均直徑為30μm(Bucket al., 1990)。在美國華盛頓州Dabob灣的一次硅藻水華過程中, 從布設的沉積物捕獲器中可觀察到甲藻的糞便顆粒, 其尺寸為83μm′69μm, 甲藻糞便對所有糞便(來自甲藻、橈足類、磷蝦和海鞘)的貢獻為29%(Buckand Newton, 1995)。通過分析現場的迷你糞球的豐度與微型浮游動物豐度的相關性, 可以證明這些迷你糞球是微型浮游動物產生的(Beaumontet al., 2002; Bucket al., 2005)。

2.3 微型浮游動物攝食的水流導致顆粒融合

黏附在顆粒上的微型浮游動物攝食產生水流, 使得海水中顆粒之間的接觸機會增加, 從而促使小顆粒融合形成更大的顆粒。附著在乳膠熒光微球上的纖毛蟲可以促使水中的亞微米顆粒(submicron particles, SMP, 0.3~1μm)更快、更高效地生成微懸浮顆粒(micro-suspended particles, 5~20μm)。實驗表明, 與物理過程導致的亞微米顆粒融合生成微懸浮顆粒的過程相比, 生物過程的效率更高。在近岸高生產力的水體中, 由于存在更豐富的附著生鞭毛蟲和亞微米顆粒, 生物過程是導致微懸浮顆粒生成的關鍵機制(Fukudaand Koike, 2000, 2004)。

3 顆粒上的微食物網生物

3.1 顆粒上的細菌

在表面熒光顯微鏡計數細菌的方法發明之后, 科學家就發現海水中的細菌有的自由生活, 有的黏附在顆粒上。用孔徑為0.22μm的濾膜過濾海水, DAPI染色后在熒光顯微鏡下計數, 觀察到在顆粒上的細菌即為黏附細菌(attached bacteria), 而在濾膜上的細菌為自由生細菌(free bacteria)(Goulder, 1976)。由于計數顆粒上的細菌時, 只能計數沒有被濾膜覆蓋的一面, 所以只能以顆粒兩面的細菌有相同的數目為假設。Goulder還使用3μm孔徑的濾膜過濾獲得過濾海水(screened sample), 沒有過濾的海水被稱為全海水(whole water sample), 再使用0.22μm的濾膜過濾和DAPI染色法觀察, 計數全海水中和過濾海水中黏附細菌和自由生細菌的豐度, 結果發現過濾海水中幾乎沒有黏附細菌, 即黏附細菌都在大于3μm的顆粒上, 而過濾海水中的細菌豐度會比全海水中稍高, 可能是因為在計數全海水時, 顆粒覆蓋處的自由生細菌沒有被計數造成的(Goulder, 1977)。用離心的方法也可以獲得沒有顆粒的海水, 同樣發現無顆粒海水中的自由生細菌濃度比全海水中要高(Bentand Goulder, 1981)。細菌能探測到化學物質的濃度梯度, 并以每秒鐘幾百微米(體長的幾百倍)的速度被吸引到顆粒上來, 海水中細菌豐度的數量級只有106indi./mL, 而顆粒上細菌豐度可達109indi./mL(Ki?rboe and Jackson, 2001)。

顆粒黏附細菌一般比自由生細菌大, 也比自由生細菌有較高的活性。但是顆粒細菌和自由生細菌的名稱只是為了區別它們的生活環境, 從類群上看, 顆粒黏附細菌和自由生細菌之間經常交換, 即顆粒上的細菌進入到水體中, 而水體中的細菌黏附到顆粒上。有些細菌可能進化出了復雜的生活方式, 既能夠在顆粒上生活, 也能在水體上生活(Grossart, 2010)。顆粒黏附細菌在總細菌中的比例與顆粒物的多少、水流沖刷、顆粒物沉積和浮游動物的攝食情況有關??偟膩碇v, 淡水、河口和鹽沼中顆粒黏附細菌所占的比例較大; 近岸和大洋海域顆粒黏附細菌所占的比例較低, 而自由生細菌所占的比例為90%以上(Unanueet al., 1992)。

細菌具體黏附在哪些顆粒上, 也是人們關心的一個重要問題。證據表明SMP上面沒有細菌(Leppard, 1992; Wellsand Goldberg, 1993; Schuster and Herndl, 1995)。小型聚合顆粒中, 只在TEP上發現有細菌黏附。TEP的粒級較小, 其形成的內部空間有限, 因此細菌僅能夠黏附在TEP的表面。黏附在TEP表面的細菌的豐度(indi./mm2)與TEP的球體直徑(mm)的關系表示為=a·-b, 其中a和b是常數, 已有研究中a和b以及細菌豐度的數值見表1。TEP越小, 細菌的密度越高, 可能由于: (1)TEP越小, 存在的時間就越長, 因而有更多的時間讓細菌黏附; (2)個體小的TEP密度較大, 有較多的營養物質供養細菌。不同海區TEP上的細菌豐度相差10倍, 例如等效球直徑(equivalent spherical diameter,ESD)為5mm的TEP的細菌密度可以從0.08到0.7indi./mm2不等。海水中TEP上黏附的細菌的總豐度占水體細菌的比例為0.5%~25%, 最大可達89%(Passow, 2002)。此外, 大型聚合顆粒(海雪)上的黏附細菌豐度(Alldredgeet al., 1986; Turleyand Mackie, 1994; Silveret al., 1998)、多樣性(Grossartet al., 2006)也有研究, 海雪上的黏附細菌豐度通常為每個顆粒105~ 108cells, 其豐度比自由細菌高出1~2個數量級, 菌體大小也超過自由細菌, 這可能是由于顆粒提供了更適宜細菌生長的營養環境(Simonet al., 2002)。

3.2 顆粒上的藍細菌

已有研究在聚合顆粒上觀察到大量的藍細菌(Silverand Alldredge, 1981; Silveret al., 1986; Lochte and Turley, 1988; Thielet al., 1989; Waiteet al, 2000)。其中在大西洋東北海區4500m水深處采集的聚合顆粒上, 聚球藻屬藍細菌()豐度為8′106~20′106indi./mL, 大大高于表層海水(5′105indi./mL)和4500m海水(3′102indi./mL)中的數值(Lochteand Turley, 1988; Thielet al., 1989)。在新西蘭東部海區120m水深處采集的聚合顆粒上, 聚球藻藍細菌豐度為8′108~20′108indi./mL, 在550m水深聚合顆粒上聚球藻藍細菌為7.5′106indi./mL, 比水體中豐度高出3~5個數量級, 在下降過程中聚合顆粒上藍細菌豐度的降低可能是由于原生動物的攝食所導致(Waiteet al, 2000)。

表1 已有研究報道的TEP上細菌的豐度 (Passow, 2002)

因為微微型自養浮游生物(picophytoplan-kton)個體微小, 其單個個體沉降速度很低(Pedrós-Alióet al., 1989), 因此只有形成顆粒才能大量沉降。微微型自養浮游生物形成顆粒的途徑有兩個, 第一是被攝食后形成糞便, 第二是被有機顆粒黏著合并到有機顆粒上。Waite等(2000)利用激光共聚焦顯微鏡研究聚球藻屬藍細菌在聚合顆粒中的分布, 發現藍細菌分布在顆粒的內部, 說明其主要是通過被攝食而進入到聚合顆粒中, 而不是通過顆粒黏著合并的途徑。攝食藍細菌并生成糞便顆粒的攝食者主要有4類, 包括樽海鞘(Salp)、尾海鞘(Appendiculariae)、海樽(Doliolid)和翼足類(Pteropod)等(Fortieret al., 1994)。

3.3 顆粒上的原生動物

1975年, Paerl(1975)首次報道了海洋顆粒上存在原生動物。隨后Caron等(1982)對顆粒上原生動物的類群和豐度展開研究, 在馬尾藻海0~25m捕獲的顆粒中, 鞭毛蟲的豐度(3~70000cells/mL)是周圍海水的1~4倍, 變形蟲和纖毛蟲的豐度為3~23cells/mL, 也高于周圍海水。

在加利福尼亞東邊界流中, 從沉積物捕獲器采集到的顆粒上發現了纖毛蟲, 纖毛蟲可以隨著下沉的顆粒沉降到2000m, 顆粒上纖毛蟲的生物量遠大于細菌的生物量。在真光層以下, 纖毛蟲在顆粒上的豐度減少程度很低。在不同的深度有不同的類群, 表明纖毛蟲并不是從表面沉降下來的, 而是本地種(Silveret al., 1984)。學者認為原生動物會探測并尋找下沉的顆粒, 然后在顆粒上附著, 在跟隨顆粒下沉的同時也在顆粒上攝食和繁殖。當顆粒沉降出它們的生境時, 它們會離開顆粒, 并上升到自己生境的上層。在上升的過程中, 它們可能會搭上上升顆粒的便車(Smithet al., 1989; Toggweiler, 1989)。

變形蟲的攝食主要依靠偽足的吞噬作用, 所以它們必須附著在物體表面運動和攝食, 在近岸海區, 90%以上的變形蟲是附著在顆粒上的(Rogerson et al., 2003)。在<200μm和>200μm的顆粒上, 變形蟲的豐度變化范圍都很大, 二者豐度之間并沒有顯著的差異(Anderson, 2015)。

Artolozaga等(1997)利用自然海水在實驗室內制造海雪, 觀察原生動物在海雪上的附著和繁殖過程。海雪形成后4天, 異養鞭毛蟲開始附著繁殖, 再過1天, 纖毛蟲才開始繁殖。鞭毛蟲的主要類群是和, 纖毛蟲的主要類群是、和(Artolozagaet al., 1997)。

進一步的研究發現, 顆粒造成了海洋小生境的多樣化, 可以分為顆粒外水體、顆粒表面和顆粒內部。有些原生動物僅在顆粒外水體, 可以認為是真正自由游泳型, 例如變形蟲、鞭毛蟲sp.、纖毛蟲、等; 有的原生動物傾向于在顆粒表面生活, 常見類群有鞭毛蟲sp.和, 它們從不在顆粒內部和外部水體出現; 有的原生動物類群雖然傾向于在顆粒表面生活, 但是偶爾也會出現在顆粒內部(如鞭毛蟲、、纖毛蟲、)或水體中(如鞭毛蟲sp.、、sp.和纖毛蟲)(Artolozagaet al., 2000)。

4 微食物網生物對顆粒的轉化

4.1 細菌改造顆粒

除了幫助產生顆粒, 細菌還可以對顆粒進行改造, 將顆粒有機物質轉化成溶解物質, 將大顆粒分解成小顆粒。傳統認識中, 黏附細菌在將顆粒降解成溶解有機碳、減少有機質的沉降通量中起主要作用, 但Cho和Azam(1988)發現自由生細菌才是顆粒降解的主要作用者, 它們消耗了沉降顆粒中的有機物, 把大的顆粒轉化成小顆粒。細菌只能利用溶解態的有機碳, 因此, 顆粒中的物質首先要轉化成溶解有機碳才能被細菌利用。細菌產生大量的胞外酶, 將顆粒中的多糖和蛋白等降解為溶解的小分子物質, 從而將可以沉降的顆粒轉化為不沉降的溶解有機物。其中黏附細菌只使用了釋放的溶解有機碳的一小部分, 大部分的溶解有機碳釋放到水體中被自由生細菌利用(Ki?rboe and Jackson, 2001)。

細菌還可以影響顆粒的沉降速度。聚合顆粒被細菌黏附后, 細菌在顆粒表面和內部繁殖, 消耗顆粒物質使得顆粒變小, 細菌也可以通過分泌黏性物質, 填充顆粒內部的空隙, 促進顆粒變大。隨著細菌利用顆粒物質, 顆粒的骨架逐漸被細菌細胞替代, 顆粒的沉降速度也受到影響。細菌使得顆粒多孔, 從而降低了顆粒的下沉速度(Yamada et al., 2013)。

4.2 微型浮游動物攝食顆粒

為了研究微型浮游動物能否攝食碎屑顆粒, 人們進行了實驗室內的喂食實驗。將硅藻、綠藻、橈足類和大型藻類的樣品制造成不同粒級的碎屑, 并用熒光染料5-(4,6-二氯三嗪基)氨基熒光素[5-(4,6-dichlorotriazin-2-yl) aminofluorescein, DTAF]染色, 將熒光染色的碎屑喂食纖毛蟲, 使用熒光顯微鏡觀察到了纖毛蟲體內的熒光, 進而可以確定纖毛蟲攝食了碎屑顆粒(Posch and Arndt, 1996)。在實驗室中用淡水鞭毛蟲和纖毛蟲攝食滅菌的碎屑顆粒, 所被攝食的碎屑顆粒的粒徑與細菌的粒徑范圍相同, 實驗發現碎屑顆粒能被微型浮游動物攝食, 其支撐的生長率與細菌為餌料所支撐的生長率相同, 這說明微型浮游動物可以攝食碎屑并滿足其一定的營養需求(Scherwasset al., 2005)。

4.3 微型浮游動物攝食顆粒上的細菌

Fenchel等在20世紀70~80年代首次提出微型浮游動物可能攝食黏附細菌(Fenchel and J?rgensen, 1977; Fenchel, 1986), 此后人們開展了多項實驗(Albrightet al., 1987; Caron, 1987; Artolozagaet al., 2002; Ki?rboeet al., 2003, 2004; Tanget al., 2006), 證明微型浮游動物確實會攝食顆粒上的細菌。

Albright等(1987)向海藻酸鈣微球上噴灑海藻酸等化學物質, 使其具備黏性, 將這些微球放入細菌培養液中, 這樣細菌就在微球上生長, 將這些黏附了細菌的微球用熒光染料DTAF染色并投喂給纖毛蟲, 并使用熒光顯微鏡觀察纖毛蟲體內食物泡中的細菌及熒光信號, 發現纖毛蟲可以攝食黏附細菌, 對自由細菌和黏附細菌的偏好性隨纖毛蟲的種類而不同(Albrightet al., 1987)。

Caron(1987)則將幾丁質磨碎制成20~ 40μm的碎屑顆粒, 與細菌混合在一起用搖床培養6天后, 有一些細菌黏附在幾丁質上成為黏附細菌。向這些培養液加入不同的鞭毛蟲進行實驗, 根據培養液中自由生細菌和黏附細菌的豐度的變化研究攝食情況, 發現有的鞭毛蟲喜歡攝食黏附細菌, 有的偏好自由生細菌, 其偏好性與鞭毛蟲的種類有關。

Artolozaga等(2002)將熒光標記細菌(fluorescently labeled bacteria, FLB)放入自然海水在滾筒(rolling tanks)中培養, FLB被包裹在大型聚合物顆粒中, 用以進行原生動物攝食實驗。實驗發現原生動物能夠攝食黏附在顆粒上的細菌, 但其攝食率與海水中細菌的攝食率大體相當。該結果表明雖然顆粒上的細菌豐度很大, 但是由于原生動物需要花費額外努力將細菌從顆粒上分離下來, 所以無法達到高攝食率。盡管如此, 顆粒上的原生動物的豐度卻比海水中高出2~4個數量級, 說明原生動物在顆粒上生活有其他的獲益, 這些獲益可能包括: (1)因為顆粒上的細菌豐度大大高于海水中的豐度, 所以即便原生動物從顆粒上分離細菌需要花費能量, 但是在海水中它們需要花費更多能量來尋找細菌, 兩者對比, 在顆粒上攝食可能更為有利; (2)因為顆粒上的細菌非?;钴S, 它們分解出超出自己使用量的溶解物質, 使顆粒周圍溶解有機碳比較富集, 從而導致顆粒周圍的細菌豐度進一步增大, 給在顆粒上生活的原生動物帶來了額外福利(Artolozagaet al., 2002)。

5 微食物網生物的碳通量及其貢獻

微食物網生物的碳通量及其在碳通量中的貢獻的研究方法和本文第2部分顆粒有機碳中生物的比例的研究方法類似, 不同之處在于樣品來自沉積物捕獲器。Taylor(1989)研究了北太平洋環流沉積物捕獲器中的微食物網生物, 發現微型生物的碳通量約占6%~8%的顆粒有機碳通量, 其中硅藻和甲藻等浮游植物占的比例小于20%, 寡毛類纖毛蟲占的比例(45%~79%)最大, 而細菌的比例為2.7%~ 28.6%。在真光層底部, 生命體對顆粒有機碳通量的貢獻為36%, 其中微食物網生物占的比例通常大于10%, 這一比例在真光層以下逐漸減小, 在海洋中層(mesopelagic zone)為22%, 在深海(bathypelagic zone)為11%, 沉積物捕獲器獲得的生命體中的優勢類群在不同的站位和層次也不相同(Silver and Gowing, 1991)。

微型生物造成的碳沉降有兩種途徑: 第一是被浮游動物濾食; 第二是結合成顆粒, 自己沉降, 或被浮游動物攝食, 成為糞便沉降。傳統認識中微型浮游生物個體微小, 其自身的沉降較慢, 而攝食者微型浮游動物產生的糞便也很小, 沉降也較慢, 故微型浮游動物的糞便和微型生物本身在沒有沉降到底前就會被細菌等分解掉, 不能形成有效的沉降。但是Richardson和Jackson(2007)通過研究估算出小型浮游植物對生物泵的貢獻和大型植物相當, 隨后其他研究發現微微型浮游植物對碳通量的貢獻和它們對初級生產力的貢獻成正比, 與生物量的貢獻沒有關系(Stukel and Landry, 2010), 中型浮游動物攝食聚合顆粒才是微微型浮游植物初級生產輸出的重要途徑(Wilson and Steinberg, 2010; Lomas and Moran, 2011; Stukel et al., 2013)。

6 結語

迄今為止, 對海洋顆粒的研究已經歷了約半個世紀, 近年來隨著研究手段的進步, 學者們從多角度對海洋微食物網生物與顆粒的關系開展了研究, “不同類型顆粒上的微食物網生物類群和豐度”、“微食物網生物促進顆粒的生成和轉化”以及“顆粒對微食物網生物碳通量的影響”是研究熱點。海洋浮游微食物網生物在海洋顆粒上豐度很高, 并能夠促進顆粒的形成和沉降, 在海洋碳通量中有著重要的作用。我國在這些方面的研究才剛剛起步, 隨著我國海洋浮游微食物網研究的深入, 相信這個方向的研究會迅速開展起來。

Albright L J, Sherr E B, Sherr B Fet al., 1987. Grazing of ciliated protozoa on free and particle—attached bacteria. Marine Ecology Progress Series, 38: 125—129

Alldredge A L, Cole J J, Caron D A, 1986. Production of heterotrophic bacteria inhabiting macroscopic organic aggregates(marine snow) from surface waters. Limnology and Oceanography, 31(1): 68—78

Alldredge A L, Passow U, Logan B E, 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Research Part I: Oceanographic Research Papers, 40(6): 1131—1140

Anderson O R, 2015. Particle-associated planktonic naked amoebae in the Hudson Estuary: size—fraction related densities, cell sizes and estimated carbon content. Acta Protozoologica, 50(1): 15—22

Artolozaga I, Ayo B, Latatu Aet al., 2000. Spatial distribution of protists in the presence of macroaggregates in a marine system. FEMS Microbiology Ecology, 33(3): 191—196

Artolozaga I, Santamaría E, López Aet al., 1997. Succession of bacterivorous protists on laboratory—made marine snow. Journal of Plankton Research, 19(10): 1429—1440

Artolozaga I, Valcárcel M, Ayo Bet al., 2002. Grazing rates of bacterivorous protists inhabiting diverse marine planktonic microenvironments. Limnology and Oceanography, 47(1): 142—150

Azam F, Smith D C, Steward G F et al., 1993. Bacteria—organic matter coupling and its significance for oceanic carbon cycling. Microbial Ecology, 28(2): 167—179

Azam F. 1998. Microbial control of oceanic carbon flux: the plot thickens. Science, 280(5364): 694—696

Barber R T, 1966. Interaction of bubbles and bacteria in the formation of organic aggregates in sea-water. Nature, 211(5046): 257—258

Beaumont K L, Nash G V, Davidson A T, 2002. Ultrastructure, morphology and flux of microzooplankton faecal pellets in an east Antarctic fjord. Marine Ecology Progress Series, 245: 133—148

Benner R, Pakulski J D, McCarthy M et al., 1992. Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255(5051): 1561—1564

Bent E J, Goulder R, 1981. Planktonic bacteria in the Humber Estuary; seasonal variation in population density and heterotrophic activity. Marine Biology, 62(1): 35—45

Berger B, Hoch B, Kavka G, et al., 1996. Bacterial colonization of suspended solids in the River Danube. Aquatic Microbial Ecology, 10(1): 37—44

Biddanda B A, 1985. Microbial synthesis of macroparticulate matter. Marine Ecology Progress Series, 20(3): 241—251

Buck K R, Bolt P A, Garrison D L, 1990. Phagotrophy and fecal pellet production by an athecate dinoflagellate in Antarctic sea ice. Marine Ecology Progress Series, 60: 75—84

Buck K R, Newton J, 1995. Fecal pellet flux in Dabob Bay during a diatom bloom: contribution of microzooplankton. Limnology and Oceanography, 40(2): 306—315

Buck K, Marin R, Chavez F, 2005. Heterotrophic dinoflagellate fecal pellet production: grazing of large, chain—forming diatoms during upwelling events in Monterey Bay, California. Aquatic Microbial Ecology, 40(3): 293—298

Caron D A, 1987. Grazing of attached bacteria by heterotrophic microflagellates. Microbial Ecology, 13(3): 203—218

Caron D A, Dam H G, Kremer Pet al., 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Research Part I: Oceanographic Research Papers, 42(6): 943—972

Caron D A, Davis P G, Madin L Pet al., 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science, 218(4574): 795—797

Cho B C, Azam F, 1988. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature, 332(6163): 441—443

Ding Y X, Chin W C, Rodriguez A, et al., 2008. Amphiphilic exopolymers frominduce DOM self-assembly and formation of marine microgels. Marine Chemistry, 112 (1-2): 11—19.

Fenchel T M, J?rgensen B B, 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. In: Marshall K C, ed. Advances in Microbial Ecology. Boston, MA: Springer, 1—58

Fenchel T, 1986. The ecology of heterotrophic microflagellates. In: Marshall K C, ed. Advances in Microbial Ecology. Boston, MA: Springer, 57—97

Fortier L, Le Fèvre J, Legendre L, 1994. Export of biogenic carbon to fish and to the deep ocean: the role of large planktonic microphages. Journal of Plankton Research, 16(7): 809—839

Fukuda H, Koike I, 2000. Feeding currents of particle-attached nanoflagellates-a novel mechanism for aggregation of submicron particles. Marine Ecology Progress Series, 202: 101—112

Fukuda H, Koike I, 2004. Microbial stimulation of the aggregation process between submicron—sized particles and suspended particles in coastal waters. Aquatic Microbial Ecology, 37(1): 63—73

G?rdes A, Iversen M H, Grossart H Pet al., 2011. Diatom-associated bacteria are required for aggregation of. The ISME Journal, 5(3): 436—445

G?rdes A, Ramaye Y, Grossart H Pet al., 2012. Effects of Marinobacter adhaerens HP15 on polymer exudation byat different N: P ratios. Marine Ecology Progress Series, 461: 1—14

Goulder R, 1976. Relationships between suspended solids and standing crops and activities of bacteria in an estuary during a neap-spring-neap tidal cycle. Oecologia, 24(1): 83—90

Goulder R, 1977. Attached and free bacteria in an estuary with abundant suspended solids. Journal of Applied Microbiology, 43(3): 399—405

Gowing M M, Garrison D L, Kunze H Bet al., 2001. Biological components of Ross Sea short-term particle fluxes in the austral summer of 1995-1996. Deep Sea Research Part I: Oceanographic Research Papers, 48(12): 2645—2671

Gowing M M, Silver M W, 1985. Minipellets: a new and abundant size class of marine fecal pellets. Journal of Marine Research, 43(2): 395—418

Grossart H P, 2010. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environmental Microbiology Reports, 2(6): 706—714

Grossart H P, Ki?rboe T, Tang K Wet al., 2006. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquatic Microbial Ecology, 42: 19—26

Gundersen K, Orcutt K M, Purdie D Aet al., 2001. Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study(BATS) site. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8-9): 1697—1718

Isao K, Hara S, Terauchi K et al., 1990. Role of sub—micrometre particles in the ocean. Nature, 345(6272): 242—244

Kawasaki N, Sohrin R, Ogawa Het al., 2011. Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean. Aquatic Microbial Ecology, 62(2): 165—176

Ki?rboe T, Grossart H P, Ploug Het al., 2004. Particle-associated flagellates: swimming patterns, colonization rates, and grazing on attached bacteria. Aquatic Microbial Ecology, 35: 141—152

Ki?rboe T, Jackson G A, 2001. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnology and Oceanography, 46(6): 1309—1318

Ki?rboe T, Tang K, Grossart H Pet al., 2003. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Applied and Environmental Microbiology, 69(6): 3036—3047

Kirchman D L, Keel R G, Simon M et al., 1993. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 40(5): 967—988

Kwon E Y, Primeau F, Sarmiento J L, 2009. The impact of remineralization depth on the air-sea carbon balance. Nature Geoscience, 2(9): 630—635

Leppard G G, 1992. Size, morphology and composition of particulates in aquatic ecosystems: solving speciation problems by correlative electron microscopy. Analyst, 117(3): 595—603

Lochte K, Turley C M, 1988. Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature, 333(6168): 67—69

Lomas M W, Moran S B, 2011. Evidence for aggregation and export of cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone. Biogeosciences, 8(1): 203—216

Long R A, Azam F, 1996. Abundant protein-containing particles in the sea. Aquatic Microbial Ecology, 10: 213—221

Mari X, Ki?rboe T, 1996. Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat. Journal of Plankton Research, 18(6): 969—986

Mostajir B, Dolan J R, Rassoulzadegan F, 1995. Seasonal variations of pico-and nano-detrital particles (DAPI Yellow Particles, DYP) in the Ligurian Sea (NW Mediterranean). Aquatic Microbial Ecology, 9(3): 267—277

N?thig E M, Von Bodungen B, 1989. Occurrence and vertical flux of faecal pellets of probably protozoan origin in the southeastern Weddell Sea(Antarctica) Marine Ecology Progress Series, 56: 281—289

Paerl H W, 1975. Microbial attachment to particles in marine and freshwater ecosystems. Microbial Ecology, 2(1): 73—83

Passow U, 2002. Transparent exopolymer particles (TEP) in aquatic environments. Progress in Oceanography, 55(3-4): 287—333

Passow U, Alldredge A, 1994. Distribution, size and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Marine Ecology Progress Series, 113: 185—198

Pasternak A, Arashkevich E, Riser C W et al., 2000. Seasonal variation in Zooplankton and suspended faecal pellets in the subarctic Norwegian Baisfjorden, in 1996. Sarsia, 85(5-6): 439—452

Pedrós-Alió C, Mas J, Gasol J M et al., 1989. Sinking speeds of free-living phototrophic bacteria determined with covered and uncovered traps. Journal of Plankton Research, 11(5): 887—905

Pelegri S, Christaki U, Dolan J et al., 1999. Particulate and dissolved organic carbon production by the heterotrophic nanoflagellatePatterson and Fenchel. Microbial Ecology, 37(4): 276—284

Pomeroy L R, 1980. Detritus and its role as a food source. In: Barnes R, Mann K, eds. Fundamentals of Aquatic Ecosystems. London: Blackwell Scientific Publications, 84—102

Posch T, Arndt H, 1996. Uptake of sub-micrometre-and micrometre-sized detrital particles by bacterivorous and omnivorous ciliates. Aquatic Microbial Ecology, 10(1): 45—53

Richardson T L, Jackson G A, 2007. Small phytoplankton and carbon export from the surface ocean. Science, 315(5813): 838—840

Riley G A, 1963. Organic aggregates in seawater and the dynamics of their formation and utilization. Limnology and Oceanography, 8(4): 372—381

Rogerson A, Anderson O R, Vogel C, 2003. Are planktonic naked amoebae predominately floc associated or free in the water column? Journal of Plankton Research, 25(11): 1359—1365

Roman M R, Caron D A, Kremer Pet al., 1995. Spatial and temporal changes in the partitioning of organic carbon in the plankton community of the Sargasso Sea off Bermuda. Deep Sea Research Part I: Oceanographic Research Papers, 42(6): 973—992

Scherwass A, Fischer Y, Arndt H, 2005. Detritus as a potential food source for protozoans: utilization of fine particulate plant detritus by a heterotrophic flagellate,, and a ciliate,. Aquatic Ecology, 39(4): 439—445

Schuster S, Herndl G J, 1995. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Marine Ecology Progress Series, 124: 227—236

Schuster S, Herndl G J, 1995. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Marine Ecology Progress Series, 124: 227—236

Schuster S, Herndl G J, 1995. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Marine Ecology Progress Series, 124: 227—236

Silver M W, Alldredge A L, 1981. Bathypelagic marine snow: deep-sea algal and detrital community. Journal of Marine Research, 39: 501—530

Silver M W, Coale S L, Pilskaln C H et al., 1998. Giant aggregates: Importance as microbial centers and agents of material flux in the mesopelagic zone. Limnology and Oceanography, 43(3): 498—507

Silver M W, Gowing M M, 1991. The “particle” flux: origins and biological components. Progress in Oceanography, 26(1): 75—113

Silver M W, Gowing M M, Brownlee D C et al., 1984. Ciliated protozoa associated with oceanic sinking detritus. Nature, 309(5965): 246—248

Silver M W, Gowing M M, Davoll P J, 1986. The association of photosynthetic picoplankton and ultraplankton with pelagic detritus through the water column (0-2000 m). Canadian Bulletin of Fisheries and Aquatic Sciences, 214: 311—341

Simon M, Grossart H P, Schweitzer B et al., 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology, 28(2): 175—211

Smith K L, Williams P M, Druffel E R M, 1989. Upward fluxes of particulate organic matter in the deep North Pacific. Nature, 337(6209): 724—726

Stoderegger K E, Herndl G J, 1998. Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnology and Oceanography, 43(5): 877—884

Stoderegger K E, Herndl G J, 1999. Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions. Marine Ecology Progress Series, 189: 9—16

Stoecker D K, 1984. Particle production by planktonic ciliates. Limnology and Oceanography, 29(5): 930—940

Stukel M R, Décima M, Selph K E et al., 2013. The role ofin vertical flux in the Costa Rica upwelling dome. Progress in Oceanography, 112—113: 49—59

Stukel M R, Landry M R, 2010. Contribution of picophytoplankton to carbon export in the equatorial Pacific: A reassessment of food web flux inferences from inverse models. Limnology and Oceanography, 55(6): 2669—2685

Sugimoto K, Fukuda H, Baki M A et al., 2007. Bacterial contributions to formation of transparent exopolymer particles(TEP) and seasonal trends in coastal waters of Sagami Bay, Japan. Aquatic Microbial Ecology, 46: 31—41

Suzuki N, Kato K, 1953. Studies on suspended materials marine snow in the sea: Part Ⅰ. sources of marine snow. Bulletin of The Faculty of Fisheries Hokkaido University, 4(2): 132—137

Tang K W, Grossart H P, Yam E M et al., 2006. Mesocosm study of particle dynamics and control of particle—associated bacteria by flagellate grazing. Marine Ecology Progress Series, 325: 15—27

Taylor G T, 1989. Variability in the vertical flux of microorganisms and biogenic material in the epipelagic zone of a North Pacific central gyre station. Deep Sea Research Part I: Oceanographic Research Papers, 36(9): 1287—1308

Thiel H, Pfannkuche O, Schriever G et al., 1989. Phytodetritus on the deep-sea floor in a central oceanic region of the Northeast Atlantic. Biological Oceanography, 6(2): 203—239

Toggweiler J R, 1989. Are rising and falling particles microbial elevators? Nature, 337(6209): 691—692

Turley C M, Mackie P J, 1994. Biogeochemical significance of attached and free—living bacteria and the flux of particles in the NE Atlantic Ocean. Marine Ecology Progress Series, 115: 191—203

Unanue M, Ayo B, Azúa I et al., 1992. Temporal variability of attached and free—living bacteria in coastal waters. Microbial Ecology, 23(1): 27—39

Verdugo P, 2012. Marine microgels. Annual Review of Marine Science, 4(1): 375—400

Verdugo P, Alldredge A L, Azam F et al., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Marine Chemistry, 92(1-4): 67—85

Verity P G, Williams S C, Hong Y, 2000. Formation, degradation, and mass: volume ratios of detritus derived from decaying phytoplankton. Marine Ecology Progress Series, 207: 53—68

Waite A M, Safi K A, Hall J A et al., 2000. Mass sedimentation of picoplankton embedded in organic aggregates. Limnology and Oceanography, 45(1): 87—97

Wells M L, Goldberg E D, 1993. Colloid aggregation in seawater. Marine Chemistry, 41(4): 353—358

Wilson S E, Steinberg D K, 2010. Autotrophic picoplankton in mesozooplankton guts: evidence of aggregate feeding in the mesopelagic zone and export of small phytoplankton. Marine Ecology Progress Series, 412: 11—27

Yamada Y, Fukuda H, Inoue K et al., 2013. Effects of attached bacteria on organic aggregate settling velocity in seawater. Aquatic Microbial Ecology, 70(3): 261—272

Yamada Y, Fukuda H, Tada Y et al., 2016. Bacterial enhancement of gel particle coagulation in seawater. Aquatic Microbial Ecology, 77(1): 11—22

Yamasaki A, Fukuda H, Fukuda R et al., 1998. Submicrometer particles in northwest Pacific coastal environments: Abundance, size distribution, and biological origins. Limnology and Oceanography, 43(3): 536—542

Zetsche E M, Ploug H, 2015. Marine chemistry special issue: Particles in aquatic environments: From invisible exopolymers to sinking aggregates. Marine Chemistry, 175: 1—4

The Function of Marine Pelagic Microbial Food Web Organisms in Marine Particle Formation and Sedimentation

ZHAO Yuan1, 2ZHAO Li1, 2DONG Yi1, 2LI Hai-Bo1, 2ZHANG Wu-Chang1, 2*XIAO Tian1, 2

(1. CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 2. Laboratory of Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China)

In addition to living organisms, there are a lot of non-living particles in seawater. These non-living particles include classical particles (referred to as particles without special definition) with a fixed shape and new particles (referred to as aggregates) without a fixed shape. When a new particle is extracted from seawater, the water inside the particle drains and the particle collapses. New particles are divided into macroaggregates, microaggregates, and submicron particles according to their size. These particles form a habitat that is different from pure seawater. Different organisms inhabit the surface and the space between these particles with greater abundance than those found in seawater. The role of marine pelagic microbial food web organisms in the formation, transformation, and sedimentation of particles is reviewed in this paper. Bacteria and microzooplankton help form aggregates, while microzooplankton produce miniparticles through defecation. Bacteria inhabit particles to use organic carbon. Cyanobacteria adhere to these particles. With an increase in the volume of particles, some cyanobacteria are packaged into them. Microzooplankton are attracted to particles for grazing. These organisms could help particles grow by adhering to them and, simultaneously, diminish the size of the particle (or even break it apart) by converting the POC into DOC and the grazing effect. Although organisms in the microbial food web are too small to sediment quickly, they could significantly contribute to the carbon flux to the deep sea possibly through interaction with particles.

Microbial food web; Marine particle; Sedimentation; Carbon flux

Q178.1

10.12036/hykxjk20170822002

國家自然科學基金(41576164); 國家自然科學基金-山東省聯合基金(U1606404); 國家重點基礎研究發展計劃資助項目(2014CB441504); 中國科學院戰略性先導科技專項(XDA11030202.2)。趙 苑, 女, 副研究員, 主要從事海洋微食物網生態學研究, E-mail: yuanzhao@qdio.ac.cn

張武昌, 男, 研究員, 主要從事海洋微食物網生態學研究, E-mail: wuchangzhang@qdio.ac.cn

2017-08-22,

2017-08-27

猜你喜歡
纖毛蟲攝食海水
渤海灣浮游纖毛蟲豐度和生物量的周年變化
兩種不同投喂策略對加州鱸攝食量和生長的影響
“川山×蜀水”小蠶人工飼料攝食性改良研究進展
輕則攝食減慢,重則大量死魚!加州鱸養殖亞硝酸鹽超標,預防處理如何做好?
喝多少杯海水能把人“渴死”?
渤海灣近岸海域浮游纖毛蟲豐度和生物量的季節變化*
海水為什么不能喝?
海水
拉魯濕地夏、秋季纖毛蟲物種多樣性研究
巴嘎雪濕地秋季水生纖毛蟲群落特征與水環境關系
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合