?

N6-腺苷甲基化修飾及其對LINE-1的調控機制

2024-03-22 03:23張傲岑山李曉宇
遺傳 2024年3期
關鍵詞:轉座子染色質逆轉錄

張傲,岑山,李曉宇

綜 述

N-腺苷甲基化修飾及其對LINE-1的調控機制

張傲,岑山,李曉宇

中國醫學科學院&北京協和醫學院,醫藥生物技術研究所免疫生物學室,北京 100050

長散布元件-1 (long interspersed elements-1,LINE-1)是現今在人類基因組中唯一具有自主轉座能力的轉座子,其轉座會引起細胞基因組結構和功能的改變,是導致多種嚴重疾病的重要因素。在轉座過程中,LINE-1 mRNA是轉座中間體的核心,宿主細胞對其進行相關修飾直接影響轉座。N-腺苷甲基化修飾(m6A)是真核細胞RNA上最豐富且動態可逆的表觀遺傳修飾。目前發現m6A修飾也存在于LINE-1 mRNA上,參與LINE-1整個生命周期的調控,影響其轉座和基因組中LINE-1相鄰基因的表達,進而影響基因組穩定性、細胞自我更新與分化潛能,在人類發育和疾病中具有重要作用。本文介紹了LINE-1 m6A修飾的位置、功能以及相關機制,并總結了LINE-1的m6A修飾對其轉座調控的研究進展,以期為相關疾病發生發展的機制研究和治療提供新的思路。

m6A修飾;逆轉錄轉座子;LINE-1;基因組;基因組穩定性

長散布元件(long interspersed elements,LINE-1)是一種非長末端重復序列(non-long terminal repeats,non-LTR)逆轉錄轉座子。據統計大約45%的人類基因組衍生自轉座子(transposable elements,TEs),其中LINE-1約占人基因組的17%,是目前人類基因組中唯一證實具有自主轉座活性的轉座子[1,2]。LINE-1以RNA為媒介進行轉座,是一種RNA轉座子[3],全長約6 kb,其編碼的兩個蛋白ORF1蛋白(ORF1p)和ORF2蛋白(ORF2p),在細胞質中與LINE-1 mRNA形成核糖核蛋白復合物(ribonu-cleoprotein complexes,RNPs),后利用ORF2p核酸內切酶及逆轉錄酶活性,以LINE-1 mRNA為模板逆轉錄產生cDNA,形成RNA:DNA雜交體,該過程被稱為“靶點引導逆轉錄過程”(target-site primed reverse transcription,TPRT)[4,5],是LINE-1復制的關鍵步驟?;蚪M中大多數LINE-1 5′ UTR區缺失或倒置,喪失轉座活性,僅80~100個LINE-1拷貝結構完整,是具有逆轉座活性的LINE-1 (retrotransposition-competent LINE-1s,RC-L1s)。從物種進化上來看,活躍的逆轉錄轉座子在生物進化、物種形成和胚胎發育、記憶形成等方面發揮生理學作用[6,7],但對個體而言,轉座的發生會對宿主細胞基因組的結構和功能產生嚴重影響,LINE-1在基因組DNA中的插入、缺失和重組,會改變宿主基因的表達,導致衰老、癌癥、基因疾病、代謝性疾病、神經退行性疾病和自身免疫性疾病等多種疾病的發生[8~11]。此外,LINE-1還可以協助不具有自主轉座能力的非LTR轉座子短散布元件(short interspersed elements,SINEs) Alu和加工后的假基因進行轉座,進而誘發疾病[12]。因此宿主對正常體細胞中LINE-1的表達與轉座活性是嚴格控制的,而且這種調控是多層次、多方面的,包括表觀遺傳修飾[13,14]、非編碼小RNA[15,16]以及多種宿主限制因子[17~19]等調控。

除研究較多的DNA、組蛋白甲基化外,N-甲基化腺嘌呤(N-methylated adenine,m6A)陸續在細菌DNA、細菌和酵母的RNA和哺乳動物mRNA中被發現,m6A甲基化對RNA代謝和功能調控具有多樣性[20~23]。隨著對LINE-1轉座調控機制的深入研究,研究者們發現在LINE-1上存在的m6A修飾對其轉座調控也發揮著重要的作用。本文主要介紹m6A修飾的生物學功能,以及該修飾對LINE-1各階段的調控機制和LINE-1周圍染色質狀態、基因表達的影響,以期對m6A修飾的生物學功能研究擴展及宿主對LINE-1調控網絡的探究提供新的思路。

1 m6A修飾的生物學功能

m6A一般發生在RNA中腺苷酸的N位置上,是通過特定的甲基轉移酶進行的甲基化修飾(圖1),在mRNA和其他類型核內RNA,如轉運RNA (transfer RNA,tRNA)、核糖體RNA(ribosomal RNA,rRNA)、小核RNA(small nuclear RNA,snRNA)均有分布。m6A甲基化具有RRACH共同識別序列(其中R表示A或G,H表示A、C或U),受多種調控因子調控,通過“編碼器”m6A甲基轉移酶裝配,并可被“讀碼器”m6A結合蛋白識別或被“消碼器”去甲基化酶移除[24,25]。m6A主要在終止密碼子和3′非翻譯區(3′UTR)附近富集,在內含子和5′非翻譯區(5′UTR)也有低豐度的m6A。

m6A甲基化對RNA代謝過程的多個環節均具有重要的影響,包括RNA剪接[26,27]、核輸出[28]、降解[29,30]和翻譯[31,32]。在RNA剪接過程中,m6A被相應蛋白識別并結合,通過招募YTHDC1蛋白、抑制剪接因子或改變RNA局部構象來調節mRNA前體(pre-mRNA)選擇性剪接[26,27]。在核輸出過程中,m6A被YTHDC1蛋白識別,促進RNA與核輸出組分的相互作用,調控mRNA的亞細胞定位[28]。m6A還可以被YTHDF2蛋白識別進而降解m6A修飾的靶轉錄本[29,30]。此外,m6A對mRNA轉錄后調控也具有一定的作用,mRNA的翻譯方式與m6A在轉錄本的位置有關。正常生理條件下,m6A修飾主要位于RNA 的3′UTR區,被YTHDF1蛋白或YTHDF3蛋白識別,招募真核細胞翻譯起始因子eIF3,促進帽依賴性翻譯[31,32]。而在應激條件下,5′UTR區的m6A作為m6A誘導的核糖體進入位點(m6A-induced ribosome engagement site,MIRES),促進mRNA進行帽非依賴性翻譯,這種m6A介導的帽非依賴性翻譯同樣需要m6A“讀碼器”eIF3的識別[33]。另有研究表明,mRNA上的m6A可影響轉錄本與tRNAs的相互作用進而抑制翻譯[34]。

圖1 腺苷酸甲基化修飾結構示意圖

RNA腺苷酸N位置的甲基化修飾通過m6A甲基轉移酶裝配,被m6A結合蛋白識別或被去甲基化酶移除。

m6A還參與哺乳動物多種病理生理學過程,包括胚胎發育[35]、神經發生[36]、晝夜節律[37]、應激反應[38]、腫瘤發生[24,39]和病毒感染[40]等。隨著m6A甲基化組學分析的發展,m6A在腫瘤發生發展的相關機制研究取得了主要突破。RNA m6A甲基化水平改變影響細胞的增殖、分化與自我更新[41]。m6A是腫瘤代謝的重要調節因子,腫瘤代謝應激反應可導致異常的m6A甲基化,調節代謝重組相關的信號通路、轉錄因子和代謝酶[42]。目前已有多項研究發現,m6A修飾異常與多種癌癥的發生發展相關,不同底物的m6A修飾會促進或抑制腫瘤的發展,具有促癌和抑癌的雙重作用,是一把雙刃劍[24]。機體對LINE-1的調控影響基因組穩定性,含有m6A修飾的LINE-1 mRNA具有宿主逃逸機制,被正向選擇并表達,從而促進疾病的發生發展。研究發現,是口腔鱗狀細胞癌(oral squamous cell carcinoma,OSCC)的原癌基因,其編碼的HNRNPA2B1蛋白可能作為m6A“讀碼器”促進LINE-1 mRNA翻譯,進而通過LINE-1/TGF-β1/Smad2/Slug信號通路靶向上皮細胞-間充質轉化(epithelial-mesenchymal transition,EMT),促進腫瘤細胞增殖、遷移和侵襲[43]。這提示m6A修飾的LINE-1可能與多種癌癥致病機制均相關,為癌癥預防及治療提供了新的思路。根據m6A修飾的不同位置,將其分為4個部分:具有轉座活性的LINE-1 5′ UTR、位于宿主基因內含子區域和形成R-環的LINE-1的m6A修飾,以及LINE-1 DNA的6mA修飾(圖2A)。近年來,研究人員發現m6A對LINE-1的整個復制周期均有調控作用,“編碼器”對各階段LINE-1進行m6A修飾,該修飾被“讀碼器”識別,或被“消碼器”移除,影響LINE-1的轉座活性及轉錄與翻譯水平(圖2B)。

2 m6A修飾在LINE-1復制周期不同階段的調控機制

2.1 具有轉座活性的LINE-1 5′ UTR的m6A修飾

最新的一項研究表明,LINE-1轉錄本是人類細胞中主要的m6A修飾RNA。與DNA和一些組蛋白甲基化的抑制作用相反,如組蛋白H3K9me3,RC-L1s的RNA m6A修飾可促進其表達與轉座。m6A偏向于修飾年輕的LINE-1,這些LINE-1結構完整,并具有豐富的RRACH序列。除了帽依賴性翻譯外,m6A還啟動LINE-1 RNA帽非依賴性翻譯。該研究發現,在LINE-1 5′ UTR第333位發生m6A獲得性突變后,形成m6A共識別序列,使得第332位腺苷上發生m6A修飾,eIF3識別該修飾位點后,提高ORF1的翻譯速率,刺激ORF2p合成,產生具有逆轉錄活性的LINE-1 核糖核蛋白RNP,促進LINE-1逆轉錄轉座[44,45]。LINE-1的5′ UTR m6A修飾是其產生逆轉錄轉座功能所必需的,只有具有完整5′ UTR,m6A修飾相關酶才可調控LINE-1的表達[46]。此外,m6A修飾可以改變RNA-蛋白相互作用或RNA二級結構,這可能影響LINE-1 ORF2p的酶活性[45]。目前已發現,m6A甲基化酶METTL3使LINE-1 m6A水平升高,促進其逆轉座[45]。相反,m6A去甲基化酶ALKBH5使LINE-1 m6A水平降低,抑制其逆轉座[45]。m6A甲基化酶METTL14和ZC3H13或其識別蛋白YTHDC1缺失將降低宿主中m6A標記的年輕LINE-1的水平[46]。雖然m6A修飾提高LINE-1 RNA的翻譯效率,但不改變LINE-1 RNA在細胞內定位[45]。此外,m6A僅對年輕LINE-1的表達和逆轉座活性有促進作用,在較老或低甲基化的LINE-1中有抑制作用,當m6A識別蛋白缺陷時,古老的LINE-1轉座活性反而增加[46]。

2.2 基因內含子中無轉座活性的 LINE-1 的m6A修飾

基因組中多數LINE-1 5′ UTR區域缺失或突變,失去逆轉座活性。研究發現,基因內含子中經m6A修飾后的無逆轉座活性的LINE-1 (m6A-marked intronic LINE-1s,MILs)是一種新的調控元件,優先駐留在長基因中,作為轉錄“障礙”阻礙宿主基因的表達,但具體機制尚不清楚[46]。這些長基因在DNA損傷修復(DNA damage repair,DDR)等生理過程中發揮關鍵作用。研究發現,m6A識別蛋白SAFB/SAFB2復合體以m6A增強的方式結合RC-L1s和MILs RNA來抑制其表達[46]。此外,SAFB/SAFB2還可糾正MILs對重要宿主基因的轉錄阻斷作用,以保護宿主基因的轉錄,但SAFB并不與m6A發生特異性結合,可能通過m6A改變局部RNA結構以實現RNA-RBP (RNA結合蛋白)相互作用(即“m6A開關”),形成的LINE-1 RNA高級結構允許更強的L1-SAFB結合[46]。MILs通過影響長基因轉錄,使m6A調節的L1-宿主相互作用在基因調控、基因組完整性、人類發育和疾病中發揮廣泛作用[46,47]。

圖2 m6A修飾對LINE-1的影響

A:LINE-1的結構。LINE-1由開放閱讀框ORF0、ORF1、ORF2和非編碼區5′UTR、3′UTR構成,5′UTR 有兩個啟動子,是雙向的:正義啟動子活性可轉錄 ORF1、ORF2,反義啟動子(ASP)能夠啟動與LINE-1方向相反的轉錄物轉錄。B:m6A修飾酶影響LINE-1復制周期模式圖。①LINE-1 DNA可能富集6mA甲基化修飾,抑制mRNA轉錄;②LINE-1 mRNA與ORF1p、ORF2p結合生成LINE-1 RNP復合物,入核后進行“TPRT”生成cDNA,插入宿主基因組;③在細胞質中,翻譯起始因子eIF3與m6A特異性相互作用,提高翻譯水平;④METTL3、YTHDC1促進LINE-1逆轉座,ALKBH5、SAFB/SAFB2抑制LINE-1逆轉座;⑤SAFB/SAFB2可糾正MILs對重要宿主基因的轉錄阻斷。

2.3 LINE-1 RNA:DNA雜交分子(R-環)的m6A修飾

R-環普遍存在于高轉錄基因中,并在重復序列中積累,其中包括逆轉錄轉座子LINE-1[48]。LINE-1逆轉錄轉座過程中,RNP剪切基因組DNA雙鏈,形成由LINE-1 RNA:DNA雜交分子和未配對單鏈DNA組成的R-環,R環在細胞分裂S期達到頂峰,參與了從轉錄調控到DNA修復等諸多重要生物學過程[49]。Abakir等[50]發現,在人多能性干細胞(human pluripotent stem cells,hPSCs)RNA:DNA雜交體中有大量m6A修飾,m6A修飾存在于RNA:DNA雜交體的RNA鏈上,含有m6A的R環在細胞周期G2/M期積累,在G0/G1期耗盡。在正常生理條件下,R-環在基因啟動子區和終止區富集,參與mRNA轉錄起始和終止,調控基因表達。當R-環沒有被正常分解時,其積累會導致DNA損傷和/或復制叉停滯,破壞基因組的穩定性[51~53]。m6A修飾可調控R環的積累,不同的m6A結合蛋白識別R環,維持基因組的穩定性。目前已發現甲基轉移酶METTL3、識別蛋白HNRNPA2B1、促進mRNA翻譯的YTHDF1以及促進mRNA降解的YTHDF2均與富集R環的位點相互作用[50]。已有研究表明,YTHDF2可阻止含有m6A的LINE-1 RNA:DNA雜交體積累,有助于修復哺乳動物中R-環依賴性DNA損傷,維護基因組穩定性[50]。

2.4 LINE-1 DNA的6mA修飾

DNAN-甲基化腺嘌呤(6mA)修飾在原核生物中廣泛分布,而在哺乳動物細胞中豐度極低[54,55]。早期研究人員利用SMRT-ChIP在小鼠胚胎干細胞(mouse embryonic stem cells,mESCs)中發現6mA修飾,證明6mA修飾與LINE-1轉座子的進化年齡呈負相關,在年輕、完整的LINE-1元件中強烈富集。與LINE-1 RNA的m6A甲基化沉積位置相似,6mA大多數富集在年輕全長LINE-1的5′ UTR和ORF1上。在6mA去甲基化酶ALKBH1缺陷的細胞中,DNA 6mA水平增加導致轉錄沉默。6mA修飾與LINE-1轉座子及其鄰近增強子和基因的表觀遺傳沉默相關,在胚胎干細胞分化過程中抵抗基因激活信號[56]。與其他常染色體相比,較年輕的全長LINE-1在X染色體上強烈富集,經6mA修飾后沉默位于X染色體上的基因[56,57]。不同于6mA在其他生物基因中的激活作用,它在哺乳動物進化中表現出表觀遺傳沉默的新作用。然而,該研究結果存在很大爭議,其他研究者對真核生物中DNA 6mA的存在表示懷疑,認為已有方法受污染源的影響容易產生假陽性結果。故作者使用6mASCOPE方法對6mA定量去卷積,結果排除非特異性偏倚后,不支持HEK293中年輕LINE-1具有6mA富集特點[54]。但這項研究仍存在局限性,需要進一步優化檢測方法。

3 LINE-1的m6A修飾對染色質狀態和基因表達的調控

LINE-1上修飾的m6A不僅調控其自身的復制過程,對其相鄰基因的表觀遺傳調控、塑造基因組結構和維持基因組穩定性方面也具有廣泛的作用。染色體相關調控RNA (chromat-in-associated regulatory RNAs,carRNAs)上的m6A修飾可以全局調控染色質狀態和轉錄,依賴于METTL3甲基化的carRNAs包括啟動子相關RNA、增強子RNA和重復序列RNA(如LINE-1)。carRNAs m6A修飾可以維持基因間區域染色質濃縮,而YTHDC1識別m6A后,通過核外泌體靶向(nuclear exosome targeting,NEXT)復合物促進carRNAs降解。m6A甲基化缺失導致染色質開放和轉錄本富集,這與活性組蛋白H3K4me3和H3K27ac修飾增加相關,后續招募表觀遺傳因子如組蛋白乙酰轉移酶(EP-300)來維持開放的染色質構象和下游轉錄。此外,carRNAs中“重復序列RNA”在m6A高甲基化和轉錄下調之間表現出強相關性,其中LINE-1受影響最大,影響細胞自我更新和分化潛能[58~60]。

另有研究發現,識別蛋白YTHDC1通過多種機制參與逆轉錄轉座子的調控和染色質修飾。在mESCs中,YTHDC1與m6A修飾的LINE-1轉錄本結合,募集組蛋白甲基轉移酶SETDB1、TRIM28和核仁素(nucleolin,NCL),共同形成沉默復合物,促進H3K9me3的富集,沉默逆轉錄轉座子[59,60]。此外,YTHDC1識別細胞核中LINE-1 RNA上的m6A,招募轉錄調控因子KAP1,并調控LINE1-NCL復合物的形成和KAP1在染色質上的募集,形成LINE1-NCL-KAP1復合物,抑制2細胞期(two-cell stage,2C)胚胎特異性轉錄的主要激活因子Dux,關閉2C基因表達程序。同時,LINE1-NCL-KAP1復合物可與核糖體DNA(rDNA)結合,促進rRNA合成和mESCs自我更新[59,61]。KAP1在LINE-1上的富集同樣也促進H3K9me3沉積,導致在mESCs和內細胞團(ICM)細胞中組蛋白修飾位點的轉錄沉默,降低染色質開放狀態,有助于識別mESCs并促進胚胎發育,調節mESCs從2C樣狀態退出[62]。另一項研究發現,在mESCs中發現肥胖蛋白FTO是LINE-1 m6A去甲基化酶,促進LINE-1相鄰基因位點的染色質開放。FTO與LINE-1 RNA和LINE-1 RNA-DNA相互作用的消失導致染色質濃縮、抑制性組蛋白標記富集,順式調控相鄰基因,降低相鄰基因表達。有趣的是,與YTHDC1作用相反,FTO敲除后,LINE-1 RNA反式調節不相鄰的2C基因,使2C基因去抑制,導致類似2C狀態發生和mESCs狀態丟失,使得多功能性基因的表達減少,細胞分化和自我更新受損,因此FTO-LINE-1軸對于胚胎發育是必不可少的[63,64]。

4 結語與展望

m6A修飾對LINE-1的調控機制目前正在深入研究中,一些問題仍需要進一步探究闡述,如LINE-1 RNA上的m6A被YTHDC1識別后促進抑制性組蛋白富集,抑制基因表達。但另有研究發現,m6A“讀碼器”YTHDC1協同轉錄使組蛋白H3K9me2去甲基化,促進基因表達[65]。多種表觀遺傳信號共同調節基因的表達,故仍需進一步探究LINE-1不同表觀轉錄組修飾間的相互影響,以及與染色質修飾的相互作用關系。此外,LINE-1 DNA 6mA是否具有顯著性富集特點也有待進一步探討。若LINE-1 DNA 上6mA修飾富集且抑制其活性,而LINE-1 RNA m6A修飾促進其轉座,那么兩者是否在發育或疾病中相互干擾,以及如何介導LINE-1活性或宿主基因表達,是未來研究的重要內容。此外,LINE-1 m6A修飾調控組蛋白修飾,阻止染色質開放狀態及相鄰基因的表達。但由不同m6A相關酶介導調控的2C基因表達作用相反,出現這種差異是由于m6A調控相關蛋白具有特異性還是其他調控系統參與其中仍不可知。另外,值得注意的是,m6A對不同的逆轉錄轉座子家族具有截然相反的影響:YTHDC1識別某些TEs上m6A修飾后破壞其穩定性,如IAPs[60];m6A通過招募YTHDF家族縮短IAP mRNA半衰期[66]。這表明在TEs可能發生了額外的依賴于m6A的調控,如依賴于其他m6A甲基轉移酶(METTL5、METTL16和ZCCHC4)或識別結合蛋白的活性,這些蛋白可以通過翻譯后修飾或與其他分子相互作用進行調控[60]。隨著高通量測序等新技術的發展,研究人員對m6A的研究有望發現新的生物調節系統,LINE-1的m6A修飾也有望成為未來疾病治療與診斷的新靶點。

在腫瘤疾病研究方面,LINE-1可作為診斷癌癥的生物標志物和潛在的治療靶點[67]。其中,LINE-1 DNA或組蛋白的大量低甲基化,被認為是大多數惡性轉化的標志,是一種很有前途的癌癥發展的候選生物標志物[8]。而LINE-1雖通常被認為具有促癌功能,但在急性髓系粒細胞白血病(AML)中發揮抑癌作用[68]。這是宿主不同調控機制的作用結果。LINE-1 m6A甲基化修飾研究的突破性進展或許將有助于解開LINE-1相關疾病研究的許多未解之謎。

[1] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Bl?cker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome, 2001, 409(6822): 860–921.

[2] Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health, 2008, 18(3): 343–358.

[3] Goodier JL, Kazazian HH. Retrotransposons revisited: the restraint and rehabilitation of parasites, 2008, 135(1): 23–35.

[4] Babushok DV, Kazazian HH. Progress in understanding the biology of the human mutagen LINE-1, 2007, 28(6): 527–539.

[5] Zhang X, Zhang R, Yu JP. New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation, 2020, 8: 657.

[6] Jachowicz JW, Bing XY, Pontabry J, Bo?kovi? A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo, 2017, 49(10): 1502– 1510.

[7] Mao Y, Li XY. Advances in the study of LINE-1 retrotransposition in nervous system, 2019, 16(5): 27–29, 46.毛洋, 李曉宇. 神經系統中LINE-1轉座的研究進展. 中國醫藥導報, 2019, 16(5): 27–29, 46.

[8] Ponomaryova AA, Rykova EY, Gervas PA, Cherdyntseva NV, Mamedov IZ, Azhikina TL. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers, 2020, 9(9): 2017.

[9] Burns KH. Our conflict with transposable elements and its implications for human disease, 2020, 15: 51–70.

[10] Gorbunova V, Seluanov A, Mita P, McKerrow W, Feny? D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age- associated diseases, 2021, 596(7870): 43–53.

[11] Liu Q, Wang JH, Li XY, Cen S. The connection between LINE-1 retrotransposition and human tumorigenesis, 2016, 38(2): 93–102.劉茜, 王瑾暉, 李曉宇, 岑山. 逆轉錄轉座子LINE-1與腫瘤的發生和發展. 遺傳, 2016, 38(2): 93–102.

[12] Ostertag EM, Goodier JL, Zhang Y, Kazazian HH. SVA elements are nonautonomous retrotransposons that cause disease in humans, 2003, 73(6): 1444– 1451.

[13] Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond, 2012, 13(7): 484–492.

[14] Fukuda K, Shinkai Y. SETDB1-mediated silencing of retroelements, 2020, 12(6): 596.

[15] Hamdorf M, Idica A, Zisoulis DG, Gamelin L, Martin C, Sanders KJ, Pedersen IM. miR-128 represses L1 retrotransposition by binding directly to L1 RNA, 2015, 22(10): 824–831.

[16] De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements, 2011, 480(7376): 259–263.

[17] Choi J, Hwang SY, Ahn K. Interplay between RNASEH2 and MOV10 controls LINE-1 retrotransposition, 2018, 46(4): 1912–1926.

[18] Goodier JL. Restricting retrotransposons: a review, 2016, 7: 16.

[19] Hu SQ, Li J, Xu FW, Mei S, Le Duff Y, Yin LJ, Pang XJ, Cen S, Jin Q, Liang C, Guo F. SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation, 2015, 11(7): e1005367.

[20] Dunn DB, Smith JD. Occurrence of a new base in the deoxyribonucleic acid of a strain of, 1955, 175(4451): 336–337.

[21] Littlefield JW, Dunn DB. Natural occurrence of thymine and three methylated adenine bases in several ribonucleic acids, 1958, 181(4604): 254–255.

[22] Adler M, Weissmann B, Gutman AB. Occurrence of methylated purine bases in yeast ribonucleic acid, 1958, 230(2): 717–723.

[23] Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells, 1974, 71(10): 3971–3975.

[24] Sun T, Wu RY, Ming L. The role of m6A RNA methylation in cancer, 2019, 112: 108613.

[25] Shi HL, Wei JB, He C. Where, when, and how: context- dependent functions of RNA methylation writers, readers, and erasers, 2019, 74(4): 640–650.

[26] Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG. Nuclear m6A reader YTHDC1 regulates mRNA splicing, 2016, 61(4): 507–519.

[27] Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing, 2017, 45(19): 11356–11370.

[28] Roundtree IA, Luo GZ, Zhang ZJ, Wang X, Zhou T, Cui YQ, Sha JH, Huang XX, Guerrero L, Xie P, He E, Shen B, He C. YTHDC1 mediates nuclear export ofN- methyladenosine methylated mRNAs, 2017, 6: e31311.

[29] Wang X, Lu ZK, Gomez A, Hon GC, Yue YN, Han DL, Fu Y, Parisien M, Dai Q, Jia GF, Ren B, Pan T, He C.N-methyladenosine-dependent regulation of messenger RNA stability, 2014, 505(7481): 117–120.

[30] Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism, 2018, 28(6): 616–624.

[31] Wang X, Zhao BS, Roundtree IA, Lu ZK, Han DL, Ma HH, Weng XC, Chen K, Shi HL, He C.N-methyladenosine modulates messenger RNA translation efficiency, 2015, 161(6): 1388–1399.

[32] Shi HL, Wang X, Lu ZK, Zhao BS, Ma HH, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay ofN-methyladenosine-modified RNA, 2017, 27(3): 315–328.

[33] Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′ UTR m6A promotes cap-independent translation, 2015, 163(4): 999–1010.

[34] Boulias K, Greer EL. Biological roles of adenine methylation in RNA, 2023, 24(3): 143– 160.

[35] McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovineembryo development, 2007, 133(3): 597–608.

[36] Deng JH, Chen XH, Chen AD, Zheng XC. m6A RNA methylation in brain injury and neurodegenerative disease, 2022, 13: 995747.

[37] Xu ZJ, Lv BB, Qin Y, Zhang B. Emerging roles and mechanism of m6A methylation in cardiometabolic diseases, 2022, 11(7): 1101.

[38] Wilkinson E, Cui YH, He YY. Context-dependent roles of RNA modifications in stress responses and diseases, 2021, 22(4): 1949.

[39] Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond, 2022, 21(1): 52.

[40] Loh D, Reiter RJ. Melatonin: regulation of viral phase separation and epitranscriptomics in post-acute sequelae of COVID-19, 2022, 23(15): 8122.

[41] Pan YT, Ma P, Liu Y, Li W, Shu YQ. Multiple functions of m6A RNA methylation in cancer, 2018, 11(1): 48.

[42] An YY, Duan H. The role of m6A RNA methylation in cancer metabolism, 2022, 21(1): 14.

[43] Zhu FY, Yang TR, Yao MF, Shen T, Fang CY. HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma, 2021, 11: 716921.

[44] Dmitriev SE, Andreev DE, Terenin IM, Olovnikov IA, Prassolov VS, Merrick WC, Shatsky IN. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated, 2007, 27(13): 4685–4697.

[45] Hwang SY, Jung H, Mun S, Lee S, Park K, Baek SC, Moon HC, Kim H, Kim B, Choi Y, Go YH, Tang WXF, Choi J, Choi JK, Cha HJ, Park HY, Liang P, Kim VN, Han K, Ahn K. L1 retrotransposons exploit RNA m6A modification as an evolutionary driving force, 2021, 12(1): 880.

[46] Xiong F, Wang RY, Lee JH, Li SL, Chen SF, Liao ZA, Hasani LA, Nguyen PT, Zhu XY, Krakowiak J, Lee DF, Han L, Tsai KL, Liu Y, Li WB. RNA m6A modification orchestrates a LINE-1-host interaction that facilitates retrotransposition and contributes to long gene vulnerability, 2021, 31(8): 861–885.

[47] Billon V, Cristofari G. Nascent RNA m6A modification at the heart of the gene-retrotransposon conflict, 2021, 31(8): 829–831.

[48] Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability, 2020, 21(3): 167–178.

[49] Mita P, Wudzinska A, Sun XJ, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, Feny? D, Boeke JD. LINE-1 protein localization and functional dynamics during the cell cycle, 2018, 7: e30058.

[50] Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li MM, Eleftheriou M, Crutchley J, Flatt L, Young L, Gaffney DJ, Denning C, Dalhus B, Emes RD, Gackowski D, Corrêa IR, Garcia-Perez JL, Klungland A, Gromak N, Ruzov A. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells, 2020, 52(1): 48–55.

[51] Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression, 2014, 28(13): 1384–1396.

[52] García-Muse T, Aguilera A. R loops: from physiological to pathological roles, 2019, 179(3): 604–618.

[53] Duda KJ, Ching RW, Jerabek L, Shukeir N, Erikson G, Engist B, Onishi-Seebacher M, Perrera V, Richter F, Mittler G, Fritz K, Helm M, Knuckles P, Bühler M, Jenuwein T. m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin, 2021, 49(10): 5568–5587.

[54] Kong YM, Cao L, Deikus G, Fan Y, Mead EA, Lai WY, Zhang YZ, Yong R, Sebra R, Wang HL, Zhang XS, Fang G. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution, 2022, 375(6580): 515–522.

[55] Chen LQ, Zhang Z, Chen HX, Xi JF, Liu XH, Ma DZ, Zhong YH, Ng WH, Chen T, Mak DW, Chen Q, Chen YQ, Luo GZ. High-precision mapping reveals rareN- deoxyadenosine methylation in the mammalian genome, 2022, 8(1): 138.

[56] Wu TP, Wang T, Seetin MG, Lai YQ, Zhu SJ, Lin KX, Liu YF, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang GL, Hon LS, Fang G, Swenberg JA, Xiao AZ. DNA methylation onN-adenine in mammalian embryonic stem cells, 2016, 532(7599): 329–333.

[57] Bailey JA, Carrel L, Chakravarti A, Eichler EE. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis, 2000, 97(12): 6634–6639.

[58] Liu J, Dou XY, Chen CY, Chen C, Liu C, Xu MM, Zhao SQ, Shen B, Gao YW, Han DL, He C.N-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription, 2020, 367(6477): 580– 586.

[59] Liu JD, Gao MW, He JP, Wu KX, Lin SY, Jin LM, Chen YP, Liu H, Shi JJ, Wang XW, Chang L, Lin YY, Zhao YL, Zhang XF, Zhang M, Luo GZ, Wu GM, Pei DQ, Wang J, Bao XC, Chen JK. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity, 2021, 591(7849): 322–326.

[60] Selmi T, Lanzuolo C. Driving chromatin organisation through N6-methyladenosine modification of RNA: what do we know and what lies ahead?, 2022, 13(2): 340.

[61] Percharde M, Lin CJ, Yin YF, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen XH, Ramalho-Santos M. A LINE1-Nucleolin partnership regulates early development and ESC identity, 2018, 174(2): 391–405.e19.

[62] Chen C, Liu WQ, Guo JY, Liu YY, Liu XL, Liu J, Dou XY, Le RR, Huang YX, Li C, Yang LY, Kou XC, Zhao YH, Wu Y, Chen JY, Wang H, Shen B, Gao YW, Gao SR. Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos, 2021, 12(6): 455-474.

[63] Sommerkamp P. Substrates of the m6A demethylase FTO: FTO-LINE1 RNA axis regulates chromatin state in mESCs, 2022, 7(1): 212.

[64] Wei JB, Yu XB, Yang L, Liu XL, Gao BY, Huang BX, Dou XY, Liu J, Zou ZY, Cui XL, Zhang LS, Zhao XS, Liu QZ, He PC, Sepich-Poore C, Zhong N, Liu WQ, Li YH, Kou XC, Zhao YH, Wu Y, Cheng XJ, Chen C, An YM, Dong XY, Wang HY, Shu Q, Hao ZY, Duan T, He YY, Li XK, Gao SR, Gao YW, He C. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development, 2022, 376(6596): 968–973.

[65] Li Y, Xia LJ, Tan KF, Ye XD, Zuo ZX, Li MC, Xiao R, Wang ZH, Liu XN, Deng MQ, Cui JR, Yang MT, Luo QZ, Liu S, Cao X, Zhu HR, Liu TQ, Hu JX, Shi JF, Xiao S, Xia LX.N-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2, 2020, 52(9): 870–877.

[66] Chelmicki T, Roger E, Teissandier A, Dura M, Bonneville L, Rucli S, Dossin F, Fouassier C, Lameiras S, Bourc’his D. m6A RNA methylation regulates the fate of endogenous retroviruses, 2021, 591(7849): 312–316.

[67] Rodic N. LINE-1 activity and regulation in cancer, 2018, 23(9): 1680–1686.

[68] Gu ZM, Liu YX, Zhang Y, Cao H, Lyu JH, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An WF, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia, 2021, 53(5): 672–682.

N-adenosine methylation and the regulatory mechanism on LINE-1

Ao Zhang, Shan Cen, Xiaoyu Li

Long interspersed elements-1(LINE-1) is the only autonomous transposon in human genome,and its retrotransposition results in change of cellular genome structure and function, leading occurrence of various severe diseases. As a central key intermediated component during life cycle of LINE-1 retrotransposition, the host modification of LINE-1 mRNA affects the LINE-1 transposition directly.N-adenosine methylation(m6A), the most abundant epigenetic modification on eukaryotic RNA, is dynamically reversible. m6A modification is also found on LINE-1 mRNA, and it participants regulation of the whole LINE-1 replication cycle, with affecting LINE-1 retrotransposition as well as its adjacent genes expression, followed by influencing genomic stability, cellular self-renewal, and differentiation potential, which plays important roles in human development and diseases. In this review, we summarize the research progress in LINE-1 m6A modification, including its modification positions, patterns and related mechanisms, hoping to provide a new sight on the mechanism research and treatment of related diseases.

m6A modification; retrotransposon; LINE-1; genome; genome stability

2023-11-10;

2023-12-28;

2024-01-19

國家自然科學基金面上項目(編號:31870164)資助[Supported by the National Natural Science Foundation of China (No.31870164)]

張傲,碩士研究生,專業方向:LINE-1與腫瘤維持機制的研究。E-mail: za1632649341@163.com

岑山,博士,研究員,研究方向:病毒學。E-mail: shancen@hotmail.com

李曉宇,博士,研究員,研究方向:病毒學。E-mail: xiaoyulik@hotmail.com

10.16288/j.yczz.23-248

(責任編委: 宋旭)

猜你喜歡
轉座子染色質逆轉錄
染色質開放性與動物胚胎發育關系的研究進展
毛竹Mariner-like element自主轉座子的鑒定與生物信息學分析*
哺乳動物合子基因組激活過程中的染色質重塑
地熊蜂基因組中具有潛在活性的轉座子鑒定
抗逆轉錄病毒治療對艾滋病患者腦灰質體積的影響
病毒如何與人類共進化——內源性逆轉錄病毒的秘密
染色質可接近性在前列腺癌研究中的作用
“哺乳動物卵母細胞生發泡染色質構型的研究進展”一文附圖
鯉春病毒血癥病毒逆轉錄環介導等溫擴增(RT—LAMP)檢測方法的建立
花葉矢竹轉錄組中的轉座子表達分析
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合