?

改性生物炭對鎘砷復合污染土壤的修復研究進展

2024-03-25 17:58孫遠陳敏周育智丁佳敏周海牛經緯陳孝
江蘇農業科學 2024年2期
關鍵詞:生物炭鈍化劑影響因素

孫遠 陳敏 周育智 丁佳敏 周海 牛經緯 陳孝

摘要: 土壤鎘砷復合污染已成為一個嚴重的環境問題,由于鎘砷具有相反的化學性質,運用生物炭修復鎘砷復合污染土壤效果不佳,而改性生物炭在修復鎘砷復合污染土壤方面取得了顯著的成果。本文介紹了生物炭制備的方法與理化性質,總結了生物炭修復單一鎘、砷污染的效果與機理,并闡述了生物炭處理復合污染的不足和難點。重點綜述了改性生物炭的制備方法及理化性質,改性生物炭修復土壤鎘砷復合污染的影響因素,以及改性生物炭處理鎘砷復合污染的效果與機理。與原始生物炭相比,改性生物炭對鎘砷具有更高的吸附性能,在復合污染土壤修復中表現出明顯優勢。但是,改性生物炭的回收問題尚未完全解決,解吸再生和老化問題需要深入研究,改性生物炭仍具有廣大的研究和發展前景。

關鍵詞: 生物炭;鈍化劑;鎘砷復合污染;原位修復;影響因素;修復機理

中圖分類號:X53 ?文獻標志碼:A

文章編號:1002-1302(2024)02-0001-10

重金屬污染長期以來被視為人類健康的重大威脅,而鎘、砷是國際公認的強毒性重金屬[1],鎘和砷主要通過大氣沉降、工業活動和采礦作業等方式進入土壤環境。土壤中存在的鎘、砷會通過食物鏈和食物網在生物體中累積,尤其是水稻等農作物中[2],人體吸收后會對神經、生殖、肌肉、骨骼等系統或器官產生巨大的傷害,并顯著提升患癌風險[3]。施加生物炭是常用于處理土壤重金屬污染的方法,生物炭具有巨大的比表面積、豐富的表面官能團、復雜微孔結構和強大的吸附能力,是由生物質在限氧條件下熱解生成的[4],還具有改善土壤結構,增強土壤肥力等功能[5]。生物炭修復土壤重金屬的能力來源于其獨特的物理化學性質,復雜的孔隙結構和巨大的比表面積賦予了生物炭強大的物理吸附能力,而豐富的官能團則能絡合重金屬離子。原始生物炭對于陰離子重金屬如砷的吸附效果欠佳,甚至會引起土壤中穩定態砷向活性態轉化[6]。Chen等認為,生物炭對單一鎘污染效果顯著,而對鎘砷復合污染修復效果有限[7-9]。鎘砷復合污染在我國礦區、工業區和農業區土壤中廣泛存在,迫于生物炭對鎘砷復合污染的處理乏力,其改性工作受到研究者的廣泛關注,為了修復土壤重金屬污染,使用金屬及金屬氧化物、酸堿或有機化合物與生物炭結合,達到改變理化性質及同時固定鎘砷的目的[10]。本文簡要介紹生物炭的制備方法、對鎘砷修復機理和生物炭修復鎘砷復合污染的不足,并對近年來對改性生物炭制備方法、鎘砷吸附效果和吸附機理的研究進展進行總結,對未來生物炭改性工作的發展具有借鑒意義。

1 鎘砷復合污染土壤現狀及其修復難點

1.1 鎘砷復合污染土壤現狀

全國范圍內鎘砷復合污染從總體分布來看,南方土壤污染重于北方,污染物含量從西北到東南,從東北到西南逐漸升高[11]。姚紅勝等對云南省喀斯特區域土壤進行分析,發現研究區土壤Cd、As篩選值超標率分別為88.25%、60.98%,Cd、As平均值超過背景值[12]。卞馨怡等對上海市某工業園區土壤重金屬污染狀況進行調查,發現鎘、砷在土壤中含量最大值分別為0.32、14.3 mg/kg[13]。長三角經濟帶工業區鎘砷土壤含量平均值分別為4.32、34.73 mg/kg,農業區鎘砷土壤含量平均值分別為5.42、49.54 mg/kg[14]。2005—2022年全國工業礦業區土壤Cd、As含量相較于土壤背景值分別增加897.42%、171.29%[15]。綜上,鎘砷污染存在一定的相關性,在工業區和礦區復合污染尤為復雜,全國各地的鎘砷污染正嚴重危害農田土壤、農作物和人類生命健康。

1.2 生物炭修復鎘砷復合污染土壤難點

pH值和Eh值是影響鎘砷在土壤中形態的重要因素,鎘在土壤中以水溶態和非水溶態存在,水溶性鎘主要以Cd2+形式存在,非水溶性鎘主要以碳酸鹽、磷酸鹽和氫氧化物等沉淀形式存在。砷在土壤中主要以As(Ⅴ)(H2AsO-4/HAsO2-4)和As(Ⅲ) (H3AsO3/H2AsO-3)形式為主[16],pH值較低時土壤膠體表面官能團質子化,H+和Cd2+會競爭吸附點位,土壤膠體中正電荷量較高,此時土壤中陰離子As優先靜電吸附。當pH值由低逐漸升高,土壤中無機礦物和有機質表面官能團去質子化,H+和Cd2+的競爭作用減弱,表面負電荷增加有利于土壤對鎘離子的靜電吸附。所以土壤pH值較低時,鎘的遷移率和生物利用率較高[17],而砷與鎘相反,pH值較高時遷移率和生物利用率較高[18],所以通過改變土壤pH值來同時固定鎘砷難度很大。好氧干燥條件的土壤Eh值較高,砷一般固定在土壤中的鐵氧化物、鋁氧化物礦物中。淹水厭氧條件下的土壤Eh值較低,鐵、鋁氧化物還原溶解,固定的砷被釋放,鎘與土壤中有機質形成螯合物或生成硫化物沉淀。土壤pH值和Eh值變化呈顯著的負相關,隨著pH值的升高和Eh值的降低,鎘從高生物利用率形態轉變為低生物利用率形態, 砷從低生物利用率形態轉變為高生物利用率形態[19-20]。此外,土壤中其他離子對鎘砷吸附有一定的競爭作用,如Marzi等認為,鈣質土壤中磷酸鹽、檸檬酸鹽和草酸鹽的存在對砷的吸附有顯著影響,其中磷酸鹽的存在會顯著降低土壤砷的吸附能力[21]。這是因為磷酸鹽和砷酸鹽的形態和化學性質類似,占據了大量吸附點位[22]。Cd2+也和Pb2+、Zn2+、Ni+、Cu2+存在不同程度的競爭吸附,從而降低生物炭對鎘污染的吸附能力[23-24]。

綜上,鎘砷在對pH值和Eh因素的響應方面性質相反,且在多元污染體系土壤中各種離子干擾,使得鎘砷復合污染土壤中鎘砷的同步修復存在難點。

2 生物炭對鎘、砷污染土壤的修復

2.1 生物炭制備方法

生物炭是一種碳質多孔固體材料,通過限氧條件下植物或動物生物質炭化形成,具有高度芳香化和高耐分解的特點[25]。生產生物炭有直接燃燒、氣化、烘焙、熱解、水熱碳化等多種方式,由于產率和空氣污染水平等條件的限制,熱解逐漸成為生產生物炭的主要方法[26]。熱解是在隔絕空氣或供給少量空氣的條件下,通過熱化學轉換,將生物質轉變成為木炭、液體和氣體等低分子物質的過程,主要有快速熱解和慢速熱解2種方法[27](表1)。

2.2 生物炭理化性質

生物炭的原料和熱解溫度決定了生物炭的理化性質,如pH值、陽離子交換容量、比表面積、平均孔徑、有機碳含量和表面官能團[32]。生物質熱解后堿性組分和無機礦物留在生物炭中,有機酸等揮發,所以大部分生物炭呈堿性[33]。生物炭原料中的木質纖維素占比決定了材料中微孔的結構和比表面積,比表面積在一定溫度范圍內隨熱解溫度的升高而增大[34]。在熱解過程中原料中的纖維素和半纖維素有助于形成含氧官能團(—OH,—COOH,—C—O—,—COOR),且生物炭表面官能團的數量與熱解溫度密切相關,隨著熱解溫度升高,總官能團數量和密度下降[35](表2)。

2.3 生物炭修復鎘、砷污染土壤機理

2.3.1 鎘污染土壤修復機理

常見的修復鎘污染土壤的機理包括靜電吸引、離子交換、表面絡合、沉淀和共沉淀。生物炭摻入土壤中后土壤中負電荷增加,帶有正電荷的Cd2+被生物炭吸引,降低了鎘的生物利用度[41]。生物炭表面官能團中的陽離子和土壤溶液中的鎘離子進行離子交換,有研究發現,水葫蘆生物炭吸附后釋放的陽離子(K+、Ca2+、Na+、Mg2+)總量幾乎等于被吸附的鎘的總量[42]。表明離子交換是生物炭吸附鎘的主要機理之一。由于生物炭表面存在許多官能團,如羧基、羰基和羥基等,因此很容易在重金屬和這些基團間形成絡合物[43]。Chen等對污泥生物炭吸附鎘前后的FTIR光譜進行比較,發現羧基的峰值 發生了顯著變化,表明與含氧官能團的絡合是鎘吸附的重要機理[7]。此外,當生物炭中可溶性鹽的濃度較高時,沉淀也是鎘吸附的機理之一。Xu等在350 ℃條件下制備的牛糞生物炭中可溶性碳酸鹽和磷酸鹽濃度較高,生物炭表面吸附的鎘有88%是因為生成碳酸鹽和磷酸鹽沉淀[44]。

2.3.2 砷污染土壤修復機理

在有氧環境下,砷主要以As(Ⅴ)形式存在,在厭氧環境下,As(Ⅴ)易被還原成毒性更強的As(Ⅲ),Su等觀察到水稻長期淹水情況下,植株中積累了過量的砷,并經過試驗發現砷酸鹽處理的水稻汁液中84%的總砷為亞砷酸鹽[45]。土壤的厭氧條件導致鐵、錳、鋁氧化物/氫氧化物礦物的還原溶解和其吸附的砷酸鹽/亞砷酸鹽的釋放,生物炭的加入不僅能物理吸附和絡合砷,還可以減少淹水土壤中Fe(Ⅲ)還原細菌的豐度,減少了鐵氧化物/氫氧化物礦物的還原溶解,有利于砷的固定[46]。絡合作用是生物炭吸附砷的主要機理,Samsuri等比較了來自空果束和稻殼的2種生物炭之間的As(Ⅴ)和As(Ⅲ)吸附??展锾侩m然比表面積小于稻殼生物炭,但是空果束生物炭表面官能團濃度更高,而2種生物炭吸附砷的能力相似[47],說明官能團絡合是吸附的主要機制。生物炭表面含氧官能團的濃度與熱解溫度有關,當熱解溫度較高時,含氧官能團數量減少[35],Wang等測量了4種材料在不同溫度下(300、450、600 ℃)12種生物炭的吸附性能,發現As(Ⅴ)吸附量通常隨著熱解溫度上升而降低[48],這也證明官能團絡合作用對吸附砷的重要性。除絡合作用外,靜電相互作用是生物炭吸附As(Ⅴ)的另一個重要機制。存在于生物炭表面的各種官能團往往根據土壤pH值被質子化,從而改變生物炭的表面電荷。當pH值小于pHpzc時,生物炭表面帶正電荷,此時對As(Ⅴ)的靜電吸附力較強[49]。

3 改性生物炭對鎘砷復合污染土壤的修復

3.1 生物炭修復鎘砷復合污染存在的問題

由于鎘和砷在土壤中的生化性質通常相反,生物炭對鎘和砷通常會不一致轉化,即一種重金屬的固定會導致另一種重金屬遷移,或對其他重金屬幾乎沒有影響[50]。相對于砷,生物炭可以更加有效地降低鎘的生物有效性。生物炭的施加會使土壤pH值提高,增加土壤的凈負電荷和陽離子交換點位,有利于靜電吸附和陽離子交換,從而大大降低鎘的遷移率和生物有效性[51]。但是土壤pH值的增加會促進土壤As的釋放,Wu等發現土壤pH值的增加導致材料表面與As陰離子之間的靜電斥力增強,使得As在土壤中的遷移率升高[52]。此外,Guo等研究發現,隨著土壤pH值的增加,OH—濃度的升高導致OH—與As陰離子之間的競爭吸附增強,存在于鐵氧化物/氫氧化物中的部分As可以被OH—取代,導致As的生物利用度增加[53]。土壤中的As常吸附于Fe(Ⅲ)礦物中,可以隨礦物的還原溶解釋放,由As(Ⅴ)還原轉化為As(Ⅲ),而As(Ⅲ)的生物毒性和遷移能力都強于As(Ⅴ)[22]。有研究認為,生物炭可作為細菌和Fe(Ⅲ)礦物之間的電子穿梭體促進Fe還原微生物生長[54],易導致Fe(Ⅲ)礦物還原溶解及As(Ⅲ)的釋放。生物炭的加入也會顯著增加異化金屬還原菌的豐度,使Geobacter、Anaeromyxobacter、Rhizobium 和 Balneimonas等菌種占優勢[55],上述菌種已被證明有利于As和Fe的活化[56]。Wang等對是否加入生物炭2組水稻土壤進行基因檢測,發現生物炭組arrA、arsC、arsM基因均顯著增加,其中arsC基因最豐富,這也說明生物炭促進了砷還原菌的生長[57]。

由于生物炭難以滿足同時修復鎘砷污染的要求,迫切需要對生物炭進行改性工作,改變生物炭的部分理化性質,增強其吸附性能,以達到修復鎘砷復合污染的目的。

3.2 生物炭改性

普通生物炭具有強度低、易碎、修復土壤后難以回收利用的特點,其表面積、孔隙和吸附點位等條件,也無法滿足復雜的重金屬污染土壤的要求,所以為了實現高效修復土壤并回收利用,國內外研究者都進行了生物炭改性的工作。改性生物炭的方法包括酸性改性、堿性改性、氧化劑改性和負載金屬等[58]。

不同生物炭類型的主要官能團也不同,不同改性方法也會產生不同的官能團。酸性改性導致其表面產生大量酸性官能團,疏水性降低,同時增加了極性有利于溶液中的有機和無機污染的化學吸附。與酸改性生物炭相比,堿性處理產生更大的表面積,具有更高的H/C、N/C和較低的O/C,這意味著更高的表面芳香度和更低的親水性[59]。金屬改性能夠在生物炭表面附著金屬氧化物并產生新官能團,提供更多的吸附點位(表3)。

一般來說,比表面積和微孔體積越大,生物炭的物理吸附能力就越強。生物炭的比表面積通常會隨著改性而增加,有時也有例外,改性后比表面積小于原生物炭,Lee等對3種生物炭(稻草、木質、混合物)進行了酸性、堿性、氧化、錳氧化物和鐵氧化物5種改性,發現某幾種組合表面積反而下降了,是因為化學處理導致微孔體積減小,孔隙擴大、孔壁破壞、孔隙結構破壞[64]。但是改性生物炭擁有更多的官能團和吸附點位,絡合作用將起到更大作用。如今,納米材料改性正成為熱門研究方向,Zhang等合成了生物炭復合微納米α-MnO2材料,該材料表面積是普通生物炭的7.5~13.5倍,對 As(Ⅲ,Ⅴ) 的去除能力比普通生物炭高5.0~13.0倍[65]。 Zhang等制備的納米氧化鐵改性生物炭,分別降低水稻根系和莖葉鎘遷移因子84.7%、80.0%[66]。

修復鎘砷復合土壤污染多使用負載金屬法改性生物炭,鐵是最常用的負載金屬,因為鐵氧化物能有效吸附砷,克服生物炭對砷吸附困難的缺點。幾種鐵改性生物炭修復鎘砷復合污染土壤的制備原料、方法和修復目標見表4。

3.3 改性生物炭修復鎘砷復合污染土壤的影響因素

3.3.1 pH值

pH值是影響修復效果的主要因素之一,改性生物炭的添加往往會增加土壤的pH值,導致穩定態As遷移轉化,同時固定非穩定態Cd[72]。Wu等制備的鈣基磁性生物炭在低pH值條件下表面質子化使其帶正電,由于靜電排斥難以吸附Cd(Ⅱ),且因為表面鐵氧化物溶解,導致As(Ⅲ)的去除率也很低[73]。Xiao等研究發現,當pH值pHpzc值時生物炭表面帶負電荷。較高的pH值有利于吸附劑的酚類、羥基、羧基和其他酸性官能團的去質子化,在材料的表面產生了負電荷位點,進而增加其對Cd(Ⅱ)離子的吸引力,但會排斥As(Ⅲ)離子[74]。

3.3.2 Eh值

氧化還原電位是鎘砷在土壤中形態的主要影響因素,鎘、砷對Eh變化的響應相反[19,75]。Honma等認為, 土壤中 總溶解砷隨著Eh的?增加而急速下降,相反總溶解鎘隨著Eh值的增加而顯著增加[76]。Yao等認為,鎘的生物利用度與Eh值呈正相關,而砷的生物利用度與Eh值呈負相關[77]。一般生物炭加入土壤后pH值升高Eh值降低,鐵氧化物/氫氧化物礦物溶解,砷的遷移率和生物利用率升高,而有效鎘的濃度降低。有研究指出,在還原條件下,鐵改性生物炭攜帶的外源鐵可以被還原為Fe2+,并和As(Ⅲ)形成Fe-As-DOC絡合物,起到固定移動性砷的作用[78]。

3.3.3 生物炭用量

生物炭的用量也是修復效果的影響因素之一[79],Li等制備的鎂鋁改性生物炭,去除效率隨投加量增加而增加,但不選擇效果最好的3%投加量,而選擇2%作為土壤培養試驗的投加量[80]。生物炭投加過多會導致土壤pH值和EC值增加,且大量生物炭會吸附土壤中的營養物質,抑制植物生長。適量的生物炭已能提供足夠的吸附點位,不需要過量投加,實際運用時應對土壤背景值和改性生物炭吸附能力進行綜合考量,并考慮經濟成本來判斷投加量。

3.3.4 微生物群落

微生物被認為是影響鎘砷形態的重要因子,可以通過表面羥基、羧基等官能團參與重金屬的絡合[81],也可以將重金屬離子運輸到細胞中,通過呼吸作用固定和轉化,將重金屬形態從可交換態轉變為有機結合和殘渣態[82]。如耐鎘菌可以通過Cd結合蛋白吸收、沉淀等機制降低土壤中有效鎘[83],劉玉玲等通過Delftia sp. B9菌種負載生物炭有效降低了土壤中有效態砷、鐵型砷和鋁型砷,使其向殘渣態轉化[84]。同時也存在不利于鎘砷修復的微生物,如在植物根部組織中發現的外生菌根真菌淡黃曲霉菌(Paxillus involutus)能提高Cd的植物利用度22%[85],異化金屬還原菌會還原溶解鐵錳氧化物導致砷釋放[55]。

3.4 改性生物炭修復鎘砷復合污染土壤效果與機理

同時有效修復鎘砷污染是研究的主要難題,在某些環境下生物炭修復鎘污染的能力甚至強于改性生物炭,卻無法有效控制砷的遷移,運用改性生物炭同時降低重金屬在土壤中的有效濃度和植物中的累積是關鍵。相對于實驗室模擬的環境,被污染的土壤現場環境更加復雜,修復污染土壤的效果還有待考量。

由表5可知,金屬改性方法中鐵改性生物炭已成為大多數研究者修復鎘砷土壤污染的有效選擇。鐵改性因其對砷的強力吸附能力和賦予生物炭磁性的能力近年來受到研究者的青睞,鐵氧化物表面可以與As(Ⅲ)形成單齒或與As(Ⅴ)形成雙齒螯合物[93],材料表面吸附的As(Ⅲ)還可以為Cd(Ⅱ) 提供新的吸附點位,形成三元表面配合物O- As(Ⅲ)-Cd(Ⅱ)[94],因吸附砷后負電荷量增加,也對鎘的靜電吸附有協同作用[95]。除鐵改性外,其他金屬如鎂、鋁、鈣等改性也能顯著提高鎘砷的吸附效果,鎂鋁改性生物炭在吸附后表征中發現了Cd3(AsO4)2的存在,這歸因于鎘砷的共沉淀作用,同時Mg/Al-OH的含量下降,而Mg/Al-O含量上升,這表明含氧官能團的絡合作用[80]。鈣基磁性改性生物炭的施加顯著提高了土壤pH值和陽離子交換量,使鎘的生物有效性顯著降低,氧化鐵則是為了應對土壤pH值增加后的As活化[67]。

酸性改性生物炭擁有大量的—COOH, 絡合作用成為吸附的主要機理。如Guo等制備的HA/Fe- Mn氧化物負載生物炭在吸附Cd(Ⅱ)和As(Ⅴ)后,FT- IR表征發現羧基被消耗,形成了As-O/Cd-O[96]。而堿性改性則引入大量—OH和C C[97],也有利于鎘砷與官能團的絡合作用。有機化合物擁有羥基、羧基、巰基和氨基等基團,其改性能賦予生物炭豐富的官能團,殼聚糖是常用于生物炭改性的有機化合物[98],其表面的質子化N+可以通過靜電作用吸引帶負電荷的H2AsO-4或HAsO2-4,富含的—OH和O—C—O也能有效絡合鎘砷。

綜上,生物炭改性方法及對應強化的機理見圖1,主要包括:(1)靜電吸引,生物炭的電負性有利于陽離子鎘的吸附;(2)沉淀/共沉淀,生成磷酸鹽、碳酸鹽等沉淀或與砷結合生成Cd3(AsO4)2沉淀;(3)絡合作用,與金屬氧化物或含氧官能團絡合;(4)陽離子交換,Cd2+可以與K+、Ca2+、Na+、Mg2+等陽離子交換。對砷污染的主要修復機理有:(1)靜電吸引,pH值

4 結論與展望

本研究綜述生物炭及改性生物炭修復鎘砷復合污染土壤的相關研究進展,生物炭因鎘砷對土壤pH值、Eh值響應不一致和離子干擾等原因對鎘砷復合污染修復效果不良,所以通過不同改性方法使生物炭理化性質獲得針對性的改變。改性對生物炭的比表面積、孔隙度、官能團密度等理化性質進行了改良,增強了非特異性吸附(物理吸附、靜電吸附),且得益于改性生物炭表面豐富的官能團,絡合作用大大增強,是鎘砷吸附的主要機制,同時鎘砷之間的協同 吸附也非常值得關注。對于鎘砷復合污染土壤, 鐵基改性生物炭修復效果最理想,鐵氧化物對砷的強大吸附能力是主要原因。

生物炭/改性生物炭雖然擁有修復重金屬污染的強大潛力,但仍存在以下幾點不足之處,需要在之后的研究中解決。第一,改性生物炭修復鎘砷復合污染土壤主要通過鐵基改性,以達到外加磁場回收的目的,負載金屬的形態和不同改性方法對修復效果的影響尚不明確,應進一步開展金屬改性方法的對比研究,探究相對最優改性方法。第二,現有研究結果已證明改性生物炭在多輪解吸再生后仍有良好的吸附性能和磁力性能。但是在田間長期吸附后的生物炭存在老化問題(結構破壞、吸附性能降低),改性生物炭老化的相關研究尚存在較大空缺,重金屬污染被改性生物炭吸附后在土壤中釋放和遷移機制亟待闡明。第三,已有研究使用微生物負載生物炭進行土壤修復并取得良好的修復效果,而外源微生物影響改性生物炭修復土壤的作用機制尚不清楚,微生物和生物炭的協同作用對于鎘砷形態轉化仍需進一步研究。

參考文獻:

[1] Ye X X,Li H Y,Zhang L G,et al. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil[J]. Ecotoxicology and Environmental Safety,2018,147:708-714.

[2]Gall J E,Boyd R S,Rajakaruna N.Transfer of heavy metals through terrestrial food webs:a review[J]. Environmental Monitoring and Assessment,2015,187(4):201.

[3]Parker G H,Gillie C E,Miller J V,et al. Human health risk assessment of arsenic,cadmium,lead,and mercury ingestion from baby foods[J]. Toxicology Reports,2022,9:238-249.

[4]Wang J L,Wang S Z.Preparation,modification and environmental application of biochar:a review[J]. Journal of Cleaner Production,2019,227:1002-1022.

[5]van Zwieten L,Kimber S,Morris S,et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil,2010,327(1):235-246.

[6]Beesley L,Inneh O S,Norton G J,et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil[J]. Environmental Pollution,2014,186:195-202.

[7]Chen T,Zhou Z Y,Han R,et al. Adsorption of cadmium by biochar derived from municipal sewage sludge:impact factors and adsorption mechanism[J]. Chemosphere,2015,134:286-293.

[8]Yang D,Zhang J W,Yang S Y,et al. Biochar-supported nanoscale zero-valent iron can simultaneously decrease cadmium and arsenic uptake by rice grains in co-contaminated soil[J]. Science of the Total Environment,2022,814:152798.

[9]程鈺瑩,王嘉銘,王 平,等. 不同植物基生物炭對NH+4及 Cd(Ⅱ) 的吸附特性[J]. 中南林業科技大學學報,2022,42(3):180-192.

[10] Zhang K,Yi Y Q,Fang Z Q.Remediation of cadmium or arsenic contaminated water and soil by modified biochar:a review[J]. Chemosphere,2023,311:136914.

[11]王玉軍,劉 存,周東美,等. 客觀地看待我國耕地土壤環境質量的現狀——關于《全國土壤污染狀況調查公報》中有關問題的討論和建議[J]. 農業環境科學學報,2014,33(8):1465-1473.

[12]姚紅勝,楊濤明,和麗萍,等. 滇東喀斯特鎘砷高背景值區耕地土壤重金屬污染現狀及潛在生態風險評估[J]. 西北林學院學報,2022,37(4):29-36.

[13]卞馨怡,彭流月. 上海某場地重金屬污染現狀及生態風險評價[J]. 廣東化工,2022,49(11):167-169,172.

[14]張 義,周心勸,曾曉敏,等. 長江經濟帶工業區土壤重金屬污染特征與評價[J]. 環境科學,2022,43(4):2062-2070.

[15]晏利晶,姜 淼,趙慶良,等. 基于Meta分析的中國工礦業場地土壤重金屬污染評價[J]. 環境科學研究,2023,36(1):9-18.

[16]Zhu Y G,Xue X M,Kappler A,et al. Linking genes to microbial biogeochemical cycling:lessons from arsenic[J]. Environmental Science & Technology,2017,51(13):7326-7339.

[17]Markovi c ?' ?J,Jovi c ?' ?M,Smi c ?ˇ iklas I,et al. Cadmium retention and distribution in contaminated soil:effects and interactions of soil properties,contamination level,aging time and in situ immobilization agents[J]. Ecotoxicology and Environmental Safety,2019,174:305-314.

[18]Wei M,Chen J J,Wang X W.Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA,oxalic and phosphoric acid:optimization conditions,removal effectiveness and ecological risks[J]. Chemosphere,2016,156:252-261.

[19]Shen B B,Wang X M,Zhang Y,et al. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application[J]. Science of the Total Environment,2020,711:135229.

[20]Yamaguchi N,Nakamura T,Dong D,et al. Arsenic release from flooded paddy soils is influenced by speciation,Eh,pH,and iron dissolution[J]. Chemosphere,2011,83(7):925-932.

[21]Marzi M,Towfighi H,Shahbazi K,et al. Study of arsenic adsorption in calcareous soils:competitive effect of phosphate,citrate,oxalate,humic acid and fulvic acid[J]. Journal of Environmental Management,2022,318:115532.

[22]Bakhat H F,Zia Z,Fahad S,et al. Arsenic uptake,accumulation and toxicity in rice plants:possible remedies for its detoxification:a review[J]. Environmental Science and Pollution Research,2017,24(10):9142-9158.

[23]El-Naggar A,Chang S X,Cai Y J,et al. Mechanistic insights into ?the (im)mobilization of arsenic,cadmium,lead,and zinc in a multi- contaminated soil treated with different biochars[J]. Environment International,2021,156:106638.

[24]Meng Z W,Huang S,Wu J W,et al. Competitive adsorption and immobilization of Cd,Ni,and Cu by biochar in unsaturated soils under single-,binary-,and ternary-metal systems[J]. Journal of Hazardous Materials,2023,451:131106.

[25]Rangabhashiyam S,Balasubramanian P.The potential of lignocellulosic biomass precursors for biochar production:performance,mechanism and wastewater application:a review[J]. Industrial Crops and Products,2019,128:405-423.

[26]Amalina F,Razak A S A,Krishnan S,et al. Biochar production techniques utilizing biomass waste-derived materials and environmental applications:a review[J]. Journal of Hazardous Materials Advances,2022,7:100134.

[27]Al-Rumaihi A,Shahbaz M,McKay G,et al. A review of pyrolysis technologies and feedstock:a blending approach for plastic and biomass towards optimum biochar yield[J]. Renewable and Sustainable Energy Reviews,2022,167:112715.

[28]DeSisto W J,Hill N,Beis S H,et al. Fast pyrolysis of pine sawdust in a fluidized-bed reactor[J]. Energy & Fuels,2010,24(4):2642-2651.

[29]Elkhalifa S,Al-Ansari T,MacKey H R,et al. Food waste to biochars through pyrolysis:a review[J]. Resources,Conservation and Recycling,2019,144:310-320.

[30]Tripathi M,Sahu J N,Ganesan P.Effect of process parameters on production of biochar from biomass waste through pyrolysis:a review[J]. Renewable and Sustainable Energy Reviews,2016,55:467-481.

[31]Le H S,Chen W H,Ahmed S F,et al. Hydrothermal carbonization of food waste as sustainable energy conversion path[J]. Bioresource Technology,2022,363:127958.

[32]Mansoor S,Kour N,Manhas S,et al. Biochar as a tool for effective management of drought and heavy metal toxicity[J]. Chemosphere,2021,271:129458.

[33]Ghodake G S,Shinde S K,Kadam A A,et al. Review on biomass feedstocks,pyrolysis mechanism and physicochemical properties of biochar:state-of-the-art framework to speed up vision of circular bioeconomy[J]. Journal of Cleaner Production,2021,297:126645.

[34]姚 森,付濼檀,劉 闖,等. 高比表面積石墨化生物炭吸附性能研究[J]. 工程熱物理學報,2021,42(10):2681-2685.

[35]Li C,Hayashi J I,Sun Y,et al. Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2021,155:105031.

[36]Wang Q Y,Yuan J,Yang X,et al. Responses of soil respiration and C sequestration efficiency to biochar amendment in maize field of Northeast China[J]. Soil and Tillage Research,2022,223:105442.

[37]Cen L,Cheng H G,Liu Q Y,et al. Arsenic release from arsenopyrite weathering in acid mine drainage:Kinetics,transformation,and effect of biochar[J]. Environment International,2022,170:107558.

[38]Das S K,Ghosh G K,Avasthe R.Ecotoxicological responses of weed biochar on seed germination and seedling growth in acidic soil[J]. Environmental Technology & Innovation,2020,20:101074.

[39]Oginni O,Singh K.Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars[J]. Journal of Environmental Chemical Engineering,2020,8(5):104169.

[40]Jia Y M,Hu Z Y,Mu J,et al. Preparation of biochar as a coating material for biochar-coated urea[J]. Science of the Total Environment,2020,731:139063.

[41]Peng X,Ye L L,Wang C H,et al. Temperature-and duration-dependent rice straw-derived biochar:characteristics and its effects on soil properties of an Ultisol in Southern China[J]. Soil and Tillage Research,2011,112(2):159-166.

[42]Zhang F,Wang X,Yin D X,et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)[J]. Journal of Environmental Management,2015,153:68-73.

[43]Cui L Q,Noerpel M R,Scheckel K G,et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International,2019,126:69-75.

[44]Xu X Y,Cao X D,Zhao L,et al. Removal of Cu,Zn,and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research,2013,20(1):358-368.

[45]Su Y H,McGrath S P,Zhao F J.Rice is more efficient in arsenite uptake and translocation than wheat and barley[J]. Plant and Soil,2010,328(1):27-34.

[46]Kumarathilaka P,Bundschuh J,Seneweera S,et al. An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice[J]. Journal of Hazardous Materials,2021,405:124188.

[47]Samsuri A W,Sadegh-Zadeh F,Seh-Bardan B J. Adsorption of As(Ⅲ) and As(Ⅴ) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk[J]. Journal of Environmental Chemical Engineering,2013,1(4):981-988.

[48]Wang S S,Gao B,Zimmerman A R,et al. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite[J]. Bioresource Technology,2015,175:391-395.

[49]Vithanage M,Herath I,Joseph S,et al. Interaction of arsenic with biochar in soil and water:a critical review[J]. Carbon,2017,113:219-230.

[50]Houben D,Evrard L,Sonnet P.Mobility,bioavailability and pH-dependent leaching of cadmium,zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere,2013,92(11):1450-1457.

[51]Kim H S,Seo B H,Kuppusamy S,et al. A DOC coagulant,gypsum treatment can simultaneously reduce As,Cd and Pb uptake by medicinal plants grown in contaminated soil[J]. Ecotoxicology and Environmental Safety,2018,148:615-619.

[52]Wu J Z,Li Z T,Wang L,et al. A novel calcium-based magnetic biochar reduces the accumulation of As in grains of rice (Oryza sativa L.) in As-contaminated paddy soils[J]. Journal of Hazardous Materials,2020,394:122507.

[53]Guo X J,Du Y H,Chen F H,et al. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH):EXAFS study[J]. Journal of Colloid and Interface Science,2007,314(2):427-433.

[54]Kappler A,Wuestner M L,Ruecker A,et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters,2014,1(8):339-344.

[55]Chen Z,Wang Y P,Xia D,et al. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J]. Journal of Hazardous Materials,2016,311:20-29.

[56]Dong G W,Huang Y H,Yu Q Q,et al. Role of nanoparticles in controlling arsenic mobilization from sediments near a realgar tailing[J]. Environmental Science & Technology,2014,48(13):7469-7476.

[57]Wang N,Xue X M,Juhasz A L,et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution,2017,220:514-522.

[58]Li H B,Dong X L,da Silva E B,et al. Mechanisms of metal sorption by biochars:biochar characteristics and modifications[J]. Chemosphere,2017,178:466-478.

[59]Ahmed M B,Zhou J L,Ngo H H,et al. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater[J]. Bioresource Technology,2016,214:836-851.

[60]Wang P P,Cao J L,Mao L G,et al. Effect of H3PO4-modified biochar on the fate of atrazine and remediation of bacterial community in atrazine-contaminated soil[J]. Science of the Total Environment,2022,851:158278.

[61]Liu M Y,Liu X S,Wu Z M,et al. Sulfur-modified Pleurotus ostreatus spent substrate biochar enhances the removal of cadmium in aqueous solution:characterization,performance,mechanism[J]. Journal of Environmental Management,2022,322:115900.

[62]Yusuff A S,Lala M A,Thompson-Yusuff K A,et al. ZnCl2-modified eucalyptus bark biochar as adsorbent:preparation,characterization and its application in adsorption of Cr(Ⅵ) from aqueous solutions[J]. South African Journal of Chemical Engineering,2022,42:138-145.

[63]Dobrzyńska J,Wysokińska A,Olchowski R. Raspberry stalks-derived biochar,magnetic biochar and urea modified magnetic biochar-synthesis,characterization and application for As(Ⅴ) and Cr(Ⅵ) removal from river water[J]. Journal of Environmental Management,2022,316:115260.

[64]Lee H S,Shin H S.Competitive adsorption of heavy metals onto modified biochars:comparison of biochar properties and modification methods[J]. Journal of Environmental Management,2021,299:113651.

[65]Zhang B,Han L F,Sun K,et al. Loading with micro-nanosized α-MnO2 efficiently promotes the removal of arsenite and arsenate by biochar derived from maize straw waste:dual role of deep oxidation and adsorption[J]. Science of the Total Environment,2022,807:150994.

[66]Zhang J Y,Zhou H,Zeng P,et al. Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root[J]. Chemosphere,2021,276:130212.

[67]Wu J Z,Li Z T,Huang D,et al. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils[J]. Journal of Hazardous Materials,2020,387:122010.

[68]Irshad M K,Noman A,Alhaithloul H A S,et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil[J]. Science of the Total Environment,2020,717:137086.

[69]Yang X,Wen E G,Ge C J,et al. Iron-modified phosphorus-and silicon-based biochars exhibited various influences on arsenic,cadmium,and lead accumulation in rice and enzyme activities in a paddy soil[J]. Journal of Hazardous Materials,2023,443:130203.

[70]Yang D,Yang S Y,Wang L,et al. Performance of biochar-supported nanoscale zero-valent iron for cadmium and arsenic co-contaminated soil remediation:insights on availability,bioaccumulation and health risk[J]. Environmental Pollution,2021,290:118054.

[71]Wan X M,Li C Y,Parikh S J.Simultaneous removal of arsenic,cadmium,and lead from soil by iron-modified magnetic biochar[J]. Environmental Pollution,2020,261:114157.

[72]Dai Z M,Zhang X J,Tang C,et al. Potential role of biochars in decreasing soil acidification-a critical review[J]. Science of the Total Environment,2017,581/582:601-611.

[73]Wu J Z,Huang D,Liu X M,et al. Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J]. Journal of Hazardous Materials,2018,348:10-19.

[74]Xiao J,Hu R,Chen G C. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(Ⅱ),Cu(Ⅱ) and Pb(Ⅱ)[J]. Journal of Hazardous Materials,2020,387:121980.

[75]Lu P,Zhu C. Arsenic Eh-pH diagrams at 25 ℃ and 1bar[J]. Environmental Earth Sciences,2011,62(8):1673-1683.

[76]Honma T,Ohba H,Kaneko-Kadokura A,et al. Optimal soil Eh,pH,and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology,2016,50(8):4178-4185.

[77]Yao B M,Wang S Q,Xie S T,et al. Optimal soil Eh,pH for simultaneous decrease of bioavailable Cd,As in co-contaminated paddy soil under water management strategies[J]. Science of the Total Environment,2022,806:151342.

[78]Yang X,Shaheen S M,Wang J X,et al. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques[J]. Journal of Hazardous Materials,2022,422:126808.

[79]Ibrahim E A,El-Sherbini M A A,Selim E M M. Effects of biochar on soil properties,heavy metal availability and uptake,and growth of summer squash grown in metal-contaminated soil[J]. Scientia Horticulturae,2022,301:111097.

[80]Li Q N,Liang W Y,Liu F,et al. Simultaneous immobilization of arsenic,lead and cadmium by magnesium-aluminum modified biochar in mining soil[J]. Journal of Environmental Management,2022,310:114792.

[81]Peng C,Zhao X,Ji X W,et al. Mixed bacteria passivation for the remediation of arsenic,lead,and cadmium:medium optimization and mechanisms[J]. Process Safety and Environmental Protection,2023,170:720-727.

[82]Nies D H. Heavy metal-resistant bacteria as extremophiles:molecular physiology and biotechnological use of Ralstonia sp. CH34[J]. Extremophiles,2000,4(2):77-82.

[83]Siripornadulsil S,Siripornadulsil W.Cadmium-tolerant bacteria reduce the uptake of cadmium in rice:potential for microbial bioremediation[J]. Ecotoxicology and Environmental Safety,2013,94:94-103.

[84]劉玉玲,朱虎成,彭 鷗,等. 玉米秸稈生物炭固化細菌對鎘砷吸附[J]. 環境科學,2020,41(9):4322-4332.

[85]Baum C,Hrynkiewicz K,Leinweber P,et al. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J]. Journal of Plant Nutrition and Soil Science,2006,169(4):516-522.

[86]Wen E G,Yang X,Chen H B,et al. Iron-modified biochar and water management regime-induced changes in plant growth,enzyme activities,and phytoavailability of arsenic,cadmium and lead in a paddy soil[J]. Journal of Hazardous Materials,2021,407:124344.

[87]Islam M S,Magid A S I A,Chen Y L,et al. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues[J]. Science of the Total Environment,2021,785:147163.

[88]Ji X W,Wan J,Wang X D,et al. Mixed bacteria-loaded biochar for the immobilization of arsenic,lead,and cadmium in a polluted soil system:effects and mechanisms[J]. Science of the Total Environment,2022,811:152112.

[89]Luo M K,Lin H,He Y H,et al. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil[J]. Science of the Total Environment,2020,717:137014.

[90]Irshad M K,Noman A,Wang Y,et al. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa L.)[J]. Environmental Research,2022,206:112238.

[91]楊京民,梁新然,姜 娜,等. 組配/改性材料對鎘砷復合污染土壤的鈍化修復[J]. 農業環境科學學報,2022,41(2):285-294.

[92]Wu P P,Li L,Wang J. Effects of Fe-loaded biochar on the bioavailability of arsenic and cadmium to lettuce growing in a mining contaminated soil[J]. Environmental Technology,2019,42:2145-2153.

[93]Ohtsuka T,Yamaguchi N,Makino T,et al. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp.OR-1[J]. Environmental Science & Technology,2013,47(12):6263-6271.

[94]Wang L,Li Z T,Wang Y,et al. Performance and mechanisms for remediation of Cd(Ⅱ) and As(Ⅲ) co-contamination by magnetic biochar-microbe biochemical composite:competition and synergy? effects[J]. Science of the Total Environment,2021,750:141672.

[95]Yang D,Wang L,Li Z T,et al. Simultaneous adsorption of Cd(Ⅱ) and As(Ⅲ) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems[J]. Science of the Total Environment,2020,708:134823.

[96]Guo J H,Yan C Z,Luo Z X,et al. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in ?cadmium(Ⅱ) and arsenic(Ⅴ) adsorption[J]. Journal of Environmental ?Sciences,2019,85:168-176.

[97]Nguyen V T,Nguyen T B,Huang C P,et al. Alkaline modified biochar derived from spent coffee ground for removal of tetracycline from aqueous solutions[J]. Journal of Water Process Engineering,2021,40:101908.

[98]Liu S B,Huang B Y,Chai L Y,et al. Enhancement of As(Ⅴ) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances,2017,7(18):10891-10900.

收 稿日期:2023-03-14

基金項目:國家自然科學基金(編號:41572333);安徽省綠色礦山工程研究中心開放基金課題。

作者簡介:孫 遠(2000—),男,安徽蚌埠人,碩士研究生,主要從事土壤重金屬穩定化材料研究。E-mail:2022200067@aust.edu.cn。

通信作者:陳孝楊,博士,教授,主要從事礦山環境治理與場地污染修復研究。E-mail:chenxy@aust.edu.cn。

猜你喜歡
生物炭鈍化劑影響因素
鈍化劑對催化劑重金屬污染的影響及其在催化裝置的應用
不同組分與配比鈍化劑對Pb、Cd污染土壤修復時效性研究
不同時間下鈍化劑對污染土壤中Cd和Pb的鈍化效果
生物炭的制備與表征比較研究
環衛工人生存狀況的調查分析
農業生產性服務業需求影響因素分析
村級發展互助資金組織的運行效率研究
基于系統論的煤層瓦斯壓力測定影響因素分析
生物炭的應用研究進展
鈍化劑對河道底泥鈍化作用的試驗研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合